Calculators and communication devices are not allowed. Give full reasons for your answer.

- 1. (4 pts.) Choose only part (a) or (b):
 - (a) Let $S = \{1, 2, 3, 4, 5\}$, $G = S_5$, and $T = \{5\}$. Find G_T , the element-wise stabilizer of T in G.
 - (b) Let G be a non-abelian group of order 49. Show that $a^7 = e$ for each $a \in G$.
- 2. (4 pts.) Show that group isomorphism is a symmetric relation.
- 3. (4 pts.) Show that every subgroup of index 2 is normal.
- 4. (4 pts.) Let a be an element of a group G. Show that C(a), the centralizer of a in G, is a subgroup of G. Find C(e).
- 5. (3+3 pts.) For an integer n>1, define $\theta:\mathbb{Z}\to\mathbb{Z}_n$ by $\theta(a)=[a]$ for each $a\in\mathbb{Z}$.
 - (a) Find $\ker \theta$.
 - (b) Is $\mathbb{Z}/\langle n \rangle$ isomorphic to \mathbb{Z}_n ? Explain your answer.
- 6. (2 pts. each) Let n be an integer so that n > 1.
 - (a) Show that \mathbb{U}_n is closed under the operation \odot .
 - (b) Use the Euclidean algorithm to compute the greatest common divisor of 13 and 40, and write it as a linear combination of 13 and 40.
 - (c) Find the order of \mathbb{U}_{95} .
- 7. (3+3 pts.) Let $\theta: G \to H$ be a group homomorphism.
 - (a) Show that θ is one-to-one if $\ker \theta = \{e_G\}$.
 - (b) Show that $\ker \theta$ is normal subgroup of G.
- 8. (6 pts.) Let M and N be normal subgroups of a group G and let gcd(|M|, |N|) = 1. Show that mn = nm for all $m \in M$ and for all $n \in N$.