

Kuwait University Faculty of Science Department of Mathematics

Euclidean Geometry 0410-226 Final Exam

Monday, December 16, 2019 Fall 2019/2020

Name					
ID Number					
Serial Number					

Duration 2 hours (This exam contains 6 questions).

Section No.	Instructor Name				
1	Dr. Abdullah Alazemi				

Calculators and communication devices are not allowed in the examination room. Give full reasons for your answer and State clearly any Theorem you use.

Good Luck

1. (6 pts.) In the diagram, let \overline{AM} bisect the angle $C\hat{O}B$. Assume that $\triangle BCO$ is an isosceles triangle. Show that $\triangle ABM \cong \triangle ACM$.

Solution:

In triangles $\triangle OBM$ and $\triangle OCM$, we have:

- (a) $\hat{3} \cong \hat{4}$ (\overline{AM} is a bisector).
- (b) $\overline{OB} \cong \overline{OC}$ (given $\triangle BCO$ is isocseles).
- (c) $\hat{1} \cong \hat{2}$ (given $\triangle BCO$ is isocseles).

By ASA, we have $\triangle OBM \cong \triangle OCM$. That is $\overline{BM} \cong \overline{CM}$ and $B\hat{M}A \cong C\hat{M}A$ (both right angles). Now, in triangles $\triangle ABM$ and $\triangle ACM$, we have:

- (a) \overline{AM} common.
- (b) $A\hat{M}B \cong A\hat{M}C$ (proved).
- (c) $\overline{MB} \cong \overline{MC}$ (proved).
- By SAS, we have $\triangle ABM \cong \triangle ACM$.

2. (3 pts. each)

- (a) Let \overline{RS} be tangent to $\odot A$ and $\odot B$. Show that $\triangle ARC \sim \triangle BSC$.
- (b) If $|\overline{BS}| = 0.5 |\overline{AR}|$, define a transformation that maps $\odot B$ to $\odot A$.

(c) Let \overline{AB} be a diameter of the circle $\odot O$, $|\widehat{BC}| = 40^{\circ}$, and $|\hat{1}| = 60^{\circ}$. Find $|\widehat{BD}|$.

Solution:

- (a) Clearly, $\hat{1} \cong \hat{2}$ (vertically opposite). Also $\hat{S} \cong \hat{R}$ (both are right angles). By S-AA, $\triangle ARC \sim \triangle BSC$.
- (b) A dilation $\mathcal{D}_{C,-2}$ would maps $\odot B$ to $\odot A$.
- (b) Clearly, by Theorem in class $|\hat{1}| = \frac{1}{2} (|\widehat{BC}| + |\widehat{AD}|)$. That is $60^{\circ} = \frac{1}{2} (40^{\circ} + |\widehat{AD}|)$. Hence $|\widehat{AD}| = 120^{\circ} - 40^{\circ} = 80^{\circ}$. Therefore, $|\widehat{BD}| = 100^{\circ}$

3. (3 pts. each)

- (a) Let O, P and Q be three noncollinear points so that $\mathcal{R}_{O,\theta}(O) = O$, $\mathcal{R}_{O,\theta}(P) = P'$ and $\mathcal{R}_{O,\theta}(Q) = Q'$. Show that $\overline{PQ} \cong \overline{P'Q'}$.
- (b) Assume that $\triangle ABC$ and $\triangle DEC$ are two isosceles right triangles. Show that $\overline{AD} \cong \overline{BE}$.

Solution:

- (a) We need to show that $|\overline{PQ}| = |\overline{P'Q'}|$. In $\triangle POQ$ and $\triangle P'OQ'$, we have: i. $|\overline{OP}| = |\overline{OP'}|$ and $|\overline{OQ}| = |\overline{OQ'}|$ (definition of rotation). ii. $|\hat{1}| = \theta - |\hat{2}| = |\hat{3}|$ (look at diagram). By SAS, $\triangle POQ \cong \triangle P'OQ'$. That is $|\overline{PQ}| = |\overline{P'Q'}|$.
- (b) Note that $\mathcal{R}_{C,90}(B) = A$ and $\mathcal{R}_{C,90}(E) = D$. Hence, under the same rotation, we have \overline{BE} maps to \overline{AD} . That is $\mathcal{R}_{C,90}(\overline{BE}) = \overline{AD}$. Therefore, $\overline{AD} \cong \overline{BE}$ since rotation is an isometry (or by part a).

4. (4+3+3 pts.)

- (a) Let $l_1 : x + y 1 = 0$ and $l_2 : x y 1 = 0$ be two lines. Find all points that are equidistants from l_1 and l_2 .
- (b) Use lines l_1 and l_2 (from part a) to write the product $\mathbf{R}_{l_1} \circ \mathbf{R}_{l_2}$ as a single rotation centered at the intersection point (if any) of the two lines.
- (c) Find an equation of the circle with center A(-1, 2) and tangent to the y-axis. Furthermore, **if any** find the point(s) of intersection of the circle and x-axis.

Solution:

(a) Let M(x, y) be the points of the locus. Thus,

$$d(M, l_1) = d(M, l_2) \quad \Rightarrow \quad \frac{|x + y - 1|}{\sqrt{1 + 1}} = \frac{|x - y - 1|}{\sqrt{1 + 1}} \quad \Rightarrow |x + y - 1| = |x - y - 1|.$$

That is we have two cases:

Case 1: (x + y - 1) = +(x - y - 1), and hence y = 0. Case 2: (x + y - 1) = -(x - y - 1), and hence x = 1.

- Therefore, all points that are equidistant from l₁ and l₂ lie on the two lines y = 0 and x = 1
 (b) Note that the slopes of l₁ and l₂ are -1 and 1, respectively. Thus, the two lines are perpendicular. Thus the angle between the two lines is 90°. Moreover, the two lines are intersecting in the point (1,0). Therefore, R_{l1} ∘ R_{l2} = R_{(1,0),180°}.
- (c) Since the circle is tangent to y-axis, we have the radius equals to the x-coordinates of A which is the distance from y-axis to A. Thus, r = |-1| = 1, and hence the circle equation: $(x + 1)^2 + (y - 2)^2 = 1.$

Substitute y = 0 in the circle equation to get $(x + 1)^2 = -4$. This is not possible. Hence, there are no intersection points.

- 5. (3 pts. each) Find the image of the circle $(x-1)^2 + (y-3)^2 = 1$ under each of the following:
 - (a) A reflection in the line y 3x = 0.
 - (b) A rotation $\mathcal{R}_{(1,-1),\frac{\pi}{2}}$.
 - (c) A dilation $\mathcal{D}_{O,-3}$.

Solution:

- (a) Note that the center of the circle P(1,3) lies on the line of reflection. Therefore, the circle is invariant, and hence the image is again: $(x 1)^2 + (y 3)^2 = 1$.
- (b) The rotation matrix about the origin through the angle $\frac{\pi}{2}$ is given by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. But we are rotating about (1, -1). Thus the image of P(1, 3) is P'(x, y) where

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

Therefore, the image of the circle is: $(x+3)^2 + (y+1)^2 = 1$.

(c) Dilation is **not** an isometry. Hence the new radius $r' = |\lambda| |1| = |-3| = 3$. Also, $\mathcal{D}_{O,-3}(A(1,3)) = A'(-3,-9)$. Thus,

$$c'(A', r'): (x+3)^2 + (y+9)^2 = 9.$$

6. (2 pts.) Bonus Question: Give a detailed definition of a homothecy of the Euclidean Plane.

Solution: Let λ be a nonzero scalar. A homothecy (or homothety, or dilation), denoted $\mathcal{D}_{O,\lambda}$, is the transformation that maps O to itself and for any other point P,

$$P \mapsto \begin{cases} P' \in \overrightarrow{OP}, & \text{if } \lambda > 0; \\ P' \in \overrightarrow{PO}, & \text{if } \lambda < 0; \end{cases}$$

such that $\left|\overline{OP'}\right| = |\lambda| |\overline{OP}|$. The point *O* and the scalar λ are called the center of and the ratio of the homothecy, respectively.