Euclidean Geometry 0410-226 Final Exam

Monday, December 16, 2019
Fall 2019/2020

Duration 2 hours (This exam contains 6 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Calculators and communication devices are not allowed in the examination room. Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Total	

Good Luck

1. (6 pts.) In the diagram, let $\overline{A M}$ bisect the angle $C \hat{O} B$. Assume that $\triangle B C O$ is an isosceles triangle. Show that $\triangle A B M \cong \triangle A C M$.

Solution:

In triangles $\triangle O B M$ and $\triangle O C M$, we have:
(a) $\hat{3} \cong \hat{4}$ ($\overline{A M}$ is a bisector).
(b) $\overline{O B} \cong \overline{O C}$ (given - $\triangle B C O$ is isocseles).
(c) $\hat{1} \cong \hat{2}$ (given $-\triangle B C O$ is isocseles).

By ASA, we have $\triangle O B M \cong \triangle O C M$. That is $\overline{B M} \cong \overline{C M}$ and $B \hat{M} A \cong C \hat{M} A$ (both right angles). Now, in triangles $\triangle A B M$ and $\triangle A C M$, we have:
(a) $\overline{A M}$ - common.
(b) $\hat{A} B \cong A \hat{M} C$ (proved).
(c) $\overline{M B} \cong \overline{M C}$ (proved).

By SAS, we have $\triangle A B M \cong \triangle A C M$.
2. (3 pts. each)
(a) Let $\overline{R S}$ be tangent to $\odot A$ and $\odot B$. Show that $\triangle A R C \sim \triangle B S C$.
(b) If $|\overline{B S}|=0.5|\overline{A R}|$, define a transformation that maps $\odot B$ to $\odot A$.
(c) Let $\overline{A B}$ be a diameter of the circle $\odot O,|\overparen{\mathrm{BC}}|=40^{\circ}$, and $|\hat{1}|=60^{\circ}$. Find $|\overparen{\mathrm{BD}}|$.

Solution:

Figure: Part (a) and (b)

Figure: Part (c)

(a) Clearly, $\hat{1} \cong \hat{2}$ (vertically opposite). Also $\hat{S} \cong \hat{R}$ (both are right angles). By S-AA, $\triangle A R C \sim \triangle B S C$.
(b) A dilation $\mathcal{D}_{C,-2}$ would maps $\odot B$ to $\odot A$.
(b) Clearly, by Theorem in class $|\hat{1}|=\frac{1}{2}(|\overparen{\mathrm{BC}}|+|\widehat{\mathrm{AD}}|)$. That is $60^{\circ}=\frac{1}{2}\left(40^{\circ}+|\widehat{\mathrm{AD}}|\right)$. Hence $|\overparen{\mathrm{AD}}|=120^{\circ}-40^{\circ}=80^{\circ}$. Therefore, $|\overparen{\mathrm{BD}}|=100^{\circ}$
3. (3 pts. each)
(a) Let O, P and Q be three noncollinear points so that $\mathcal{R}_{O, \theta}(O)=O, \mathcal{R}_{O, \theta}(P)=P^{\prime}$ and $\mathcal{R}_{O, \theta}(Q)=Q^{\prime}$. Show that $\overline{P Q} \cong \overline{P^{\prime} Q^{\prime}}$.
(b) Assume that $\triangle A B C$ and $\triangle D E C$ are two isosceles right triangles. Show that $\overline{A D} \cong \overline{B E}$.

Solution:

Figure: Part (b)

Figure: Part (a)

(a) We need to show that $|\overline{P Q}|=\left|\overline{P^{\prime} Q^{\prime}}\right|$. In $\triangle P O Q$ and $\triangle P^{\prime} O Q^{\prime}$, we have:
i. $|\overline{O P}|=\left|\overline{O P^{\prime}}\right|$ and $|\overline{O Q}|=\left|\overline{O Q^{\prime}}\right|$ (definition of rotation).
ii. $|\hat{1}|=\theta-|\hat{2}|=|\hat{3}|$ (look at diagram).

By SAS, $\triangle P O Q \cong \triangle P^{\prime} O Q^{\prime}$. That is $|\overline{P Q}|=\left|\overline{P^{\prime} Q^{\prime}}\right|$.
(b) Note that $\mathcal{R}_{C, 90}(B)=A$ and $\mathcal{R}_{C, 90}(E)=D$. Hence, under the same rotation, we have $\overline{B E}$ maps to $\overline{A D}$. That is $\mathcal{R}_{C, 90}(\overline{B E})=\overline{A D}$. Therefore, $\overline{A D} \cong \overline{B E}$ since rotation is an isometry (or by part a).
4. $(4+3+3$ pts.)
(a) Let l_{1} : $x+y-1=0$ and $l_{2}: x-y-1=0$ be two lines. Find all points that are equidistants from l_{1} and l_{2}.
(b) Use lines l_{1} and l_{2} (from part a) to write the product $\mathbf{R}_{l_{1}} \circ \mathbf{R}_{l_{2}}$ as a single rotation centered at the intersection point (if any) of the two lines.
(c) Find an equation of the circle with center $A(-1,2)$ and tangent to the y-axis. Furthermore, if any find the point(s) of intersection of the circle and x-axis.

Solution:

(a) Let $M(x, y)$ be the points of the locus. Thus,

$$
d\left(M, l_{1}\right)=d\left(M, l_{2}\right) \Rightarrow \frac{|x+y-1|}{\sqrt{1+1}}=\frac{|x-y-1|}{\sqrt{1+1}} \Rightarrow|x+y-1|=|x-y-1| .
$$

That is we have two cases:
Case 1: $(x+y-1)=+(x-y-1)$, and hence $y=0$.
Case 2: $(x+y-1)=-(x-y-1)$, and hence $x=1$.
Therefore, all points that are equidistant from l_{1} and l_{2} lie on the two lines $y=0$ and $x=1$
(b) Note that the slopes of l_{1} and l_{2} are -1 and 1 , respectively. Thus, the two lines are perpendicular. Thus the angle between the two lines is 90°. Moreover, the two lines are intersecting in the point $(1,0)$. Therefore, $\mathbf{R}_{l_{1}} \circ \mathbf{R}_{l_{2}}=\mathcal{R}_{(1,0), 180^{\circ}}$.
(c) Since the circle is tangent to y-axis, we have the radius equals to the x-coordinates of A which is the distance from y-axis to A. Thus, $r=|-1|=1$, and hence the circle equation: $(x+1)^{2}+(y-2)^{2}=1$.
Substitute $y=0$ in the circle equation to get $(x+1)^{2}=-4$. This is not possible. Hence, there are no intersection points.
5. ($\mathbf{3} \mathbf{~ p t s .}$ each) Find the image of the circle $(x-1)^{2}+(y-3)^{2}=1$ under each of the following:
(a) A reflection in the line $y-3 x=0$.
(b) A rotation $\mathcal{R}_{(1,-1), \frac{\pi}{2}}$.
(c) A dilation $\mathcal{D}_{O,-3}$.

Solution:

(a) Note that the center of the circle $P(1,3)$ lies on the line of reflection. Therefore, the circle is invariant, and hence the image is again: $(x-1)^{2}+(y-3)^{2}=1$.
(b) The rotation matrix about the origin through the angle $\frac{\pi}{2}$ is given by $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. But we are rotating about $(1,-1)$. Thus the image of $P(1,3)$ is $P^{\prime}(x, y)$ where

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]-\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]
$$

Therefore, the image of the circle is: $(x+3)^{2}+(y+1)^{2}=1$.
(c) Dilation is not an isometry. Hence the new radius $r^{\prime}=|\lambda| 1=|-3|=3$.

Also, $\mathcal{D}_{O,-3}(A(1,3))=A^{\prime}(-3,-9)$. Thus,

$$
c^{\prime}\left(A^{\prime}, r^{\prime}\right):(x+3)^{2}+(y+9)^{2}=9
$$

6. (2 pts.) Bonus Question: Give a detailed definition of a homothecy of the Euclidean Plane.

Solution: Let λ be a nonzero scalar. A homothecy (or homothety, or dilation), denoted $\mathcal{D}_{O, \lambda}$, is the transformation that maps O to itself and for any other point P,

$$
P \mapsto \begin{cases}P^{\prime} \in \overrightarrow{O P}, & \text { if } \lambda>0 \\ P^{\prime} \in \overrightarrow{P O}, & \text { if } \lambda<0\end{cases}
$$

such that $\left|\overline{O P^{\prime}}\right|=|\lambda||\overline{O P}|$. The point O and the scalar λ are called the center of and the ratio of the homothecy, respectively.

