1. $(3+3+2$ pts. $)$
(a) Suppose that $\triangle A M C \cong \triangle B M D$. Show that $\triangle A B C \cong \triangle B A D$.
(b) Use Similarity-Angle Angle (S-AA) to show that $\triangle A M B \sim \triangle D M C$.
(c) Let $P Q R S$ be a parallelogram. If $\overline{Q R} \cong \overline{S T}$ and $|\hat{1}|=45^{\circ}$, then find $|\hat{2}|$ and $|\hat{3}|$.

Solution:

Figure: Part (a) and (b)

Figure: Part (c)

(a) Note that $\overline{C M} \cong \overline{D M}$ and $\overline{A M} \cong \overline{B M}$ and hence $\overline{A D} \cong \overline{B C}$. Also, we have $\overline{A C} \cong \overline{B D}$. Furthermore, $\overline{A B}$ is common in $\triangle A B C$ and $\triangle B A D$. Therefore, by SSS, $\triangle A B C \cong \triangle B A D$.
(b) Let $|C \hat{M} D|=|A \hat{M} B|=x$. Since $\triangle C M D$ and $\triangle A M B$ are both isosceles, we have $|M \hat{A} B|=|M \hat{B} A|=180-x$. Hence $|M \hat{A} B|=|M \hat{B} A|=90-\frac{x}{2}$. In a similar way, we can show that $|M \hat{C} D|=|M \hat{D} C|=90-\frac{x}{2}$. Hence by S-AA, we have $\triangle A M B \sim \triangle D M C$.
(c) Clearly, $\overline{P S} \cong \overline{Q R} \cong \overline{S T}$. Hence, $\triangle P S T$ is isosceles triangle and hence $|\hat{2}|=45^{\circ}$. Moreover, $\hat{2} \cong \hat{3}$ since they are corresponding angles. Thus $|\hat{3}|=45^{\circ}$ as well.
2. (4 pts. each)
(a) The chords $\overline{A B}$ and $\overline{C D}$ in the diagram are congruent. Show that $\overline{A D} \cong \overline{B C}$.
(b) In the diagram, let $\overline{A B}$ be a diameter in the circle, $|\overparen{\mathrm{BC}}|=40^{\circ}$, and $|\hat{1}|=60^{\circ}$. Find $|\widehat{\mathrm{BD}}|$.

Solution:

Figure: Part (a)

Figure: Part (b)

(a) Since $\overline{A B} \cong \overline{C D}$, we have $\widehat{\mathrm{AB}} \cong \widehat{\mathrm{CD}}$. Then $|\widehat{\mathrm{AB}}|+|\widehat{\mathrm{BD}}|=|\widehat{\mathrm{CD}}|+|\widehat{\mathrm{BD}}|$. That is $|\widehat{\mathrm{AD}}|=|\widehat{\mathrm{BC}}|$. Therefore, $\overline{A D} \cong \overline{B C}$.
(b) Clearly, by Theorem in class $|\hat{1}|=\frac{1}{2}(|\widehat{\mathrm{BC}}|+|\widehat{\mathrm{AD}}|)$. That is $60^{\circ}=\frac{1}{2}\left(40^{\circ}+|\widehat{\mathrm{AD}}|\right)$. Hence $|\widehat{\mathrm{AD}}|=120^{\circ}-40^{\circ}=80^{\circ}$. Therefore, $|\overparen{\mathrm{BD}}|=100^{\circ}$
3. $(3+3+2$ pts.)
(a) The rotation $\mathcal{R}_{O, x}$ maps line a to line b. In the diagram, what is the measure of the angle from a to b ? Show your work.
(b) $\triangle A B C$ and $\triangle D E C$ are isosceles right triangles. Show that $\overline{A D} \perp \overline{B E}$.
(c) Let \mathbf{T} be a dilative reflection that is not an isometry, and let O be a point on the line r. If $\mathbf{T}=\mathbf{R}_{r} \mathcal{D}_{O, \lambda}$ "reflection after dilation", then r is invariant under \mathbf{T}. Find another invariant line under \mathbf{T}.

Solution:

Figure: Part (a)

Figure: Part (b)

Figure: Part (c)

(a) Let F be a point on a so that $\overline{O F} \perp a$. Thus, $\mathcal{R}_{O, x}(F)=F^{\prime} \in b$.

Let G be the point of intersection of $\overline{O F}$ with b, and let H be the intersection point of a with b. Since $|O \hat{F} H|=90$, we get $\left|O \hat{F}^{\prime} H\right|=90$ as well since rotation preserves angles. Thus, we get $\left|F^{\prime} \hat{G} O\right|=90-x$. Therefore, $|G \hat{H} F|=90-(90-x)=x$.
(b) This is an application of part (a): Note that $\mathcal{R}_{C, 90}(B)=A$ and $\mathcal{R}_{C, 90}(E)=D$. Hence, under the same rotation, we have $\overline{B E}$ maps to $\overline{A D}$. That is $\mathcal{R}_{C, 90}(\overline{B E})=\overline{A D}$. Therefore, $\overline{B E} \perp \overline{A D}$ since the angle inbetween is 90°.
(c) \mathbf{T} is not isometry and hence $\lambda \neq \pm 1$ and $\mathbf{T} \neq \mathbf{I}$.

Line: Let l be perpendicular to r at O. Then $\mathcal{D}_{O, \lambda}(P)=P_{1}$ and $\mathbf{R}_{r}\left(P_{1}\right)=P^{\prime} \in l$. Therefore, l is invariant. There are no other invariant lines under \mathbf{T} since any line m must be perpendicular to r to be invariant under reflection. But if it does not contain O, then for any point $A \in m, \mathcal{D}_{O, \lambda}(A)=A^{\prime} \notin m$. It is not invariant.

4. (3 pts. each)

(a) Let $l_{1}: 2 x+y-5=0$ and $l_{2}: x-3 y-1=0$ be two lines. Find the locus of points equidistants from l_{1} and l_{2}.
(b) Find an equation of the line l tangent to the circle $x^{2}+y^{2}=25$ at the point $A(-4,3)$.
(c) Find an equation of the circle with center $A(-3,2)$ and tangent to the y-axis. Furthermore, find the points of intersection of the circle and x-axis.

Solution:

(a) Notice that if $l_{1} \| l_{2}$, then the locus is a line that is parallel to both lines l_{1} and l_{2}. Otherwise, the locus is two lines which are angle bisectors of the two lines.
Let $M(x, y)$ be the points of the locus. Thus,

$$
d\left(M, l_{1}\right)=d\left(M, l_{2}\right) \Rightarrow \frac{|2 x+y-5|}{\sqrt{4+1}}=\frac{|x-3 y-1|}{\sqrt{1+9}} \Rightarrow \sqrt{2}|2 x+y-5|=|x-3 y-1| .
$$

That is we have two cases:
Case 1: $\sqrt{2}(2 x+y-5)=+(x-3 y-1)$, and hence $(2 \sqrt{2}-1) x+(\sqrt{2}+3) y-5 \sqrt{2}+1=0$.
Case 2: $\sqrt{2}(2 x+y-5)=-(x-3 y-1)$, and hence $(2 \sqrt{2}+1) x+(\sqrt{2}-3) y-5 \sqrt{2}-1=0$.
Therefore, the locus is formed by the previous two lines. We obtain here that l_{1} and l_{2} are not parallel.
(b) The center of the circle is the origin $O(0,0)$ and its radius is 5 . Thus, the slope of $\overline{O A}$ is $\frac{3-0}{-4-0}=-\frac{3}{4}$. Therefore, $m_{l}=\frac{4}{3}$ since $l \perp \overline{O A}$. Therefore, $l:(y-3)=\frac{4}{3}(x+4)$.
(c) Since the circle is tangent to y-axis, we have the radius equals to the x-coordinates of A which is the distance from y-axis to A. Thus, $r=|3|=3$, and hence the circle equation: $(x+3)^{2}+(y-2)^{2}=9$.
Substitute $y=0$ in the circle equation to get $x= \pm \sqrt{5}-3$. Thus the points of intersection are $(\sqrt{5}-3,0)$ and $(-\sqrt{5}-3,0)$.
5. ($\mathbf{3} \mathbf{~ p t s .}$ each) Find the image of the circle $(x-1)^{2}+(y-2)^{2}=1$ under each of the following:
(a) A reflection in the line $y-2 x=0$.
(b) A rotation $\mathcal{R}_{(1,0), \frac{\pi}{2}}$.
(c) A dilation $\mathcal{D}_{O,-2}$.

Solution:

(a) Note that the center of the circle $P(1,2)$ lies on the line of reflection. Therefore, the circle is invariant, and hence the image is again: $(x-1)^{2}+(y-2)^{2}=1$.
(b) The rotation matrix about the origin through the angle $\frac{\pi}{2}$ is given by $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. But we are rotating about $(1,0)$. Thus the image of $P(1,2)$ is $P^{\prime}(x, y)$ where

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Therefore, the image of the circle is: $(x+1)^{2}+y^{2}=1$.
(c) Dilation is not an isometry. Hence the new radius $r^{\prime}=|\lambda| 1=|-2|=2$.

Also, $\mathcal{D}_{O,-2}(A(1,2))=A^{\prime}(-2,-4)$. Thus,

$$
c^{\prime}\left(A^{\prime}, r^{\prime}\right):(x+2)^{2}+(y+4)^{2}=4
$$

