1. (3+3+2 pts.)

- (a) Suppose that $\triangle AMC \cong \triangle BMD$. Show that $\triangle ABC \cong \triangle BAD$.
- (b) Use Similarity-Angle Angle (S-AA) to show that $\triangle AMB \sim \triangle DMC$.

(c) Let PQRS be a parallelogram. If $\overline{QR} \cong \overline{ST}$ and $|\hat{1}| = 45^{\circ}$, then find $|\hat{2}|$ and $|\hat{3}|$.

Solution:

- (a) Note that $\overline{CM} \cong \overline{DM}$ and $\overline{AM} \cong \overline{BM}$ and hence $\overline{AD} \cong \overline{BC}$. Also, we have $\overline{AC} \cong \overline{BD}$. Furthermore, \overline{AB} is common in $\triangle ABC$ and $\triangle BAD$. Therefore, by SSS, $\triangle ABC \cong \triangle BAD$.
- (b) Let | CMD | = | AMB | = x. Since △ CMD and △ AMB are both isosceles, we have | MÂB | = | MBA | = 180 x. Hence | MÂB | = | MBA | = 90 x/2. In a similar way, we can show that | MĈD | = | MDC | = 90 x/2. Hence by S-AA, we have △ AMB ~ △ DMC.
 (c) Clearly, PS ≃ QR ≃ ST. Hence, △ PST is isosceles triangle and hence | 2 | = 45°.
- Moreover, $\hat{2} \cong \hat{3}$ since they are corresponding angles. Thus $|\hat{3}| = 45^{\circ}$ as well.

2. (4 pts. each)

- (a) The chords \overline{AB} and \overline{CD} in the diagram are congruent. Show that $\overline{AD} \cong \overline{BC}$.
- (b) In the diagram, let \overline{AB} be a diameter in the circle, $|\widehat{BC}| = 40^{\circ}$, and $|\hat{1}| = 60^{\circ}$. Find $|\widehat{BD}|$.

Solution:

- (a) Since $\overline{AB} \cong \overline{CD}$, we have $\widehat{AB} \cong \widehat{CD}$. Then $|\widehat{AB}| + |\widehat{BD}| = |\widehat{CD}| + |\widehat{BD}|$. That is $|\widehat{AD}| = |\widehat{BC}|$. Therefore, $\overline{AD} \cong \overline{BC}$.
- (b) Clearly, by Theorem in class $|\hat{1}| = \frac{1}{2} (|\widehat{BC}| + |\widehat{AD}|)$. That is $60^{\circ} = \frac{1}{2} (40^{\circ} + |\widehat{AD}|)$. Hence $|\widehat{AD}| = 120^{\circ} - 40^{\circ} = 80^{\circ}$. Therefore, $|\widehat{BD}| = 100^{\circ}$

- 3. (3+3+2 pts.)
 - (a) The rotation $\mathcal{R}_{O,x}$ maps line *a* to line *b*. In the diagram, what is the measure of the angle from *a* to *b*? Show your work.
 - (b) $\triangle ABC$ and $\triangle DEC$ are isosceles right triangles. Show that $\overline{AD} \perp \overline{BE}$.
 - (c) Let **T** be a dilative reflection that is not an isometry, and let O be a point on the line r. If $\mathbf{T} = \mathbf{R}_r \mathcal{D}_{O,\lambda}$ "reflection after dilation", then r is invariant under **T**. Find another invariant line under **T**.

Solution:

- (a) Let F be a point on a so that $\overline{OF} \perp a$. Thus, $\mathcal{R}_{O,x}(F) = F' \in b$. Let G be the point of intersection of \overline{OF} with b, and let H be the intersection point of a with b. Since $|O\hat{F}H| = 90$, we get $|O\hat{F'}H| = 90$ as well since rotation preserves angles. Thus, we get $|F'\hat{G}O| = 90 - x$. Therefore, $|G\hat{H}F| = 90 - (90 - x) = x$.
- (b) This is an application of part (a): Note that $\mathcal{R}_{C,90}(B) = A$ and $\mathcal{R}_{C,90}(E) = D$. Hence, under the same rotation, we have \overline{BE} maps to \overline{AD} . That is $\mathcal{R}_{C,90}(\overline{BE}) = \overline{AD}$. Therefore, $\overline{BE} \perp \overline{AD}$ since the angle inbetween is 90°.
- (c) **T** is not isometry and hence $\lambda \neq \pm 1$ and $\mathbf{T} \neq \mathbf{I}$.

Line: Let l be perpendicular to r at O. Then $\mathcal{D}_{O,\lambda}(P) = P_1$ and $\mathbf{R}_r(P_1) = P' \in l$. Therefore, l is invariant. There are no other invariant lines under \mathbf{T} since any line m must be perpendicular to r to be invariant under reflection. But if it does not contain O, then for any point $A \in m$, $\mathcal{D}_{O,\lambda}(A) = A' \notin m$. It is not invariant.

4. (3 pts. each)

- (a) Let $l_1 : 2x + y 5 = 0$ and $l_2 : x 3y 1 = 0$ be two lines. Find the locus of points equidistants from l_1 and l_2 .
- (b) Find an equation of the line *l* tangent to the circle $x^2 + y^2 = 25$ at the point A(-4,3).
- (c) Find an equation of the circle with center A(-3, 2) and tangent to the y-axis. Furthermore, find the points of intersection of the circle and x-axis.

Solution:

(a) Notice that if l₁ || l₂, then the locus is a line that is parallel to both lines l₁ and l₂. Otherwise, the locus is two lines which are angle bisectors of the two lines.
Let M(x, y) be the points of the locus. Thus,

$$d(M, l_1) = d(M, l_2) \Rightarrow \frac{|2x + y - 5|}{\sqrt{4 + 1}} = \frac{|x - 3y - 1|}{\sqrt{1 + 9}} \Rightarrow \sqrt{2} |2x + y - 5| = |x - 3y - 1|.$$

That is we have two cases:

Case 1: $\sqrt{2}(2x+y-5) = +(x-3y-1)$, and hence $(2\sqrt{2}-1)x + (\sqrt{2}+3)y - 5\sqrt{2} + 1 = 0$. Case 2: $\sqrt{2}(2x+y-5) = -(x-3y-1)$, and hence $(2\sqrt{2}+1)x + (\sqrt{2}-3)y - 5\sqrt{2} - 1 = 0$.

Therefore, the locus is formed by the previous two lines. We obtain here that l_1 and l_2 are not parallel.

- (b) The center of the circle is the origin O(0,0) and its radius is 5. Thus, the slope of \overline{OA} is $\frac{3-0}{-4-0} = -\frac{3}{4}$. Therefore, $m_l = \frac{4}{3}$ since $l \perp \overline{OA}$. Therefore, $l: (y-3) = \frac{4}{3}(x+4)$.
- (c) Since the circle is tangent to y-axis, we have the radius equals to the x-coordinates of A which is the distance from y-axis to A. Thus, r = |3| = 3, and hence the circle equation: $(x+3)^2 + (y-2)^2 = 9.$

Substitute y = 0 in the circle equation to get $x = \pm\sqrt{5} - 3$. Thus the points of intersection are $(\sqrt{5} - 3, 0)$ and $(-\sqrt{5} - 3, 0)$.

- 5. (3 pts. each) Find the image of the circle $(x-1)^2 + (y-2)^2 = 1$ under each of the following:
 - (a) A reflection in the line y 2x = 0.
 - (b) A rotation $\mathcal{R}_{(1,0),\frac{\pi}{2}}$.
 - (c) A dilation $\mathcal{D}_{O,-2}$.

Solution:

- (a) Note that the center of the circle P(1,2) lies on the line of reflection. Therefore, the circle is invariant, and hence the image is again: $(x-1)^2 + (y-2)^2 = 1$.
- (b) The rotation matrix about the origin through the angle $\frac{\pi}{2}$ is given by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. But we are rotating about (1,0). Thus the image of P(1,2) is P'(x,y) where

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Therefore, the image of the circle is: $(x+1)^2 + y^2 = 1$.

(c) Dilation is **not** an isometry. Hence the new radius $r' = |\lambda| |1| = |-2| = 2$. Also, $\mathcal{D}_{O,-2}(A(1,2)) = A'(-2,-4)$. Thus,

$$c'(A', r'): (x+2)^2 + (y+4)^2 = 4$$