Kuwait University
Faculty of Science

Department of Mathematics

Euclidean Geometry

0410-226
 First Exam

Monday, October 21, 2019

> Fall 2019/2020

Duration 75 minutes (This exam contains 5 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Calculators and communication devices are not allowed in the examination room.
Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

1. (3 pts. each) Let $\overline{A C}$ be an angle bisector for the angles $B \hat{A} D$ and $B \hat{C} D$.
(a) Show that $\triangle A B C$ is congruent to $\triangle A D C$.
(b) Show that $\overline{A C}$ is perpendicular to $\overline{B D}$.

Solution:

(a) Clearly, in triangles $\triangle A B C$ and $\triangle A D C$ we have:
i. $\hat{1} \cong \hat{2}$ (given).
ii. $\hat{5} \cong \hat{6}$ (given).
iii. $\overline{A C}$ is common.

Then, by $A S A$ we have $\triangle A B C \cong \triangle A D C$.
(b) In part (a), we proved that $\overline{A B} \cong \overline{A D}$. Hence, in triangles $\triangle A B O$ and $\triangle A D O$ we have:
i. $\overline{A B} \cong \overline{A D}$ - proved in $\operatorname{part}(\mathrm{a})$.
ii. $\overline{A O}$ is common segment.
iii. $\hat{1} \cong \hat{2}$ (given).

By SAS, we have $\triangle A B O \cong \triangle A D O$. Therefore, $A \hat{O} B \cong A \hat{O} D$ and hence both are right angles which shows that $\overline{A C} \perp \overline{B D}$.

2. (3 pts. each) Let $\triangle A B C$ be a triangle with M is the midpoint for the segment $\overline{A B}$. Show that
(a) If $\overline{B C} \| \overline{M N}$ then N is the midpoint for $\overline{A C}$.
(b) If N is the midpoint for $\overline{A C}$, then $\overline{B C} \| \overline{M N}$.

Solution:

(a) Suppose $\overline{B C} \| \overline{M N}$. We show that $\triangle A B C \sim \triangle A M N$.
i. $\hat{1} \cong \hat{3}$ and $\hat{2} \cong \hat{4}$ (corresponding angles).
ii. \hat{A} is common.

Thus, by S-AA, we have $\triangle A B C \sim \triangle A M N$.
Hence, $\frac{|\overline{A N}|}{|\overline{A C}|}=\frac{|\overline{A M}|}{|\overline{A B}|}=\frac{1}{2}$. Therefore, $|\overline{A N}|=\frac{1}{2}|\overline{A C}|$ and therefore, N is the midpoint of $\overline{A C}$.
(b) Suppose N is the midpoint of $\overline{A C}$. In triangles $\triangle A B C$ and $\triangle A M N$ we have:
i. \hat{A} is common angle.
ii. $\frac{|\overline{A M}|}{|\overline{A B}|}=\frac{|\overline{A N}|}{|\overline{A C}|}=\frac{1}{2}$.

Thus, by S-SAS, we have $\triangle A B C \sim \triangle A M N$.
Therefore, $\hat{1} \cong \hat{3}$ (corresponding angles) which implies that $\overline{B C} \| \overline{M N}$.
3. (4 pts.) Let $A B C D$ be a parallelogram. Show that if $\overline{A B} \cong \overline{D E}$, and $\hat{1} \cong \hat{2}$, then $A B C D$ is a rhombus.

Solution:

Assume that $\overline{A B} \cong \overline{D E}$. Then, observe that $\triangle D A E$ is isosceles since its base angles $\hat{1}$ and $\hat{2}$ are congruent (given). Thus, $\overline{A D} \cong \overline{D E}$. That is $\overline{A B} \cong \overline{A D}$ and thus $A B C D$ is rhombus (all sides are congruent).

4. $(\mathbf{3}+\mathbf{2}+\mathbf{1}+\mathbf{3} \mathbf{p t s}$.) In the diagram, let $\overline{E F}$ be a tangent segment to the circle $\odot O$ at the tangency point B. Let $\overline{P A}$ and $\overline{P B}$ be two secants passing through the points D and C, respectively. Assume that the two chords $\overline{A D}$ and $\overline{B C}$ are congruents. Let $(D \hat{P} C)|\hat{P}|=15^{\circ}$. Moreover, let $|\overparen{\mathrm{AB}}|=60^{\circ},|\widehat{\mathrm{CD}}|=x,|D \hat{O} C|=y,|\widehat{\mathrm{AD}}|=z$ and $|\overparen{\mathrm{BC}}|=w$.
(a) Find the values for x, y, z and w.
(b) Show that $\triangle A D O \cong \triangle B C O$.
(c) Find $|F \hat{B} A|$.
(d) Show that $\triangle A B O$ is an equiangular triangle.

Solution:

(a) Clearly, $x=y$ (central angle) and $z=w$ (since $\widehat{\mathrm{AD}} \cong \widehat{\mathrm{BC}}$). Note that $|\hat{P}|=15^{\circ}=\frac{1}{2}(60-x)$ (Theorem in the class) which implies that $60^{\circ}-x=30^{\circ}$ and hence $x=30^{\circ}$. Therefore, $y=30^{\circ}$.
Moreover, $60^{\circ}+x+z+w=60^{\circ}+30^{\circ}+2 z=360^{\circ}$ implies that $z=\frac{1}{2}(360-90)=135^{\circ}$. Therefore, $z=w=135^{\circ}$.
(b) In the triangles $\triangle A D O$ and $\triangle B C O$, we have:
i. $\overline{A O} \cong \overline{B O}$ (both are radii).
ii. $\overline{D O} \cong \overline{C O}$ (both are radii).
iii. $\overline{A D} \cong \overline{B C}$ (since $\overline{\mathrm{AD}} \cong \widehat{\mathrm{BC}}$).

By SSS, $\triangle A D O \cong \triangle B C O$.
(c) Note that the angle $F \hat{B} A$ is an angle between a tangent line and a chord. Therefore, $|F \hat{B} A|=\frac{1}{2}|\widehat{\mathrm{AB}}|=\frac{1}{2} 60^{\circ}=$ 30°.
(d) Note that $|F \hat{B} A|=30^{\circ}$. Hence $|A \hat{B} O|=60^{\circ}$ (since $F \hat{B} O$ is a right angle). But the triangle $\triangle A B O$ is isosceles. Therefore, $|B \hat{A} O|=60^{\circ}$. Moreover, $|A \hat{O} B|=60^{\circ}$. Hence, $\triangle A B O$ is an equiangular triangle.

5. ($\mathbf{3}$ pts.) Bonus Question: Find the "Secret Word".

Cross the following words to find the secret word!?

S	M	A	T	H	I
B	O	O	K	A	N
E	U	C	L	I	D
B	B	E	S	T	A
C	L	A	S	S	H

The "Secret Word" is \qquad

