

Kuwait University Faculty of Science Department of Mathematics

Euclidean Geometry

0410-226 First Exam

Monday, October 21, 2019 Fall 2019/2020

Name					
ID Number					
Serial Number					

 $\underline{\mathbf{Duration}}\ \mathbf{75}$ minutes (This exam contains $\mathbf{5}$ questions).

Section No.	Instructor Name		
1	Dr. Abdullah Alazemi		

Calculators and communication devices are not allowed in the examination room. Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

- **1.** (3 pts. each) Let \overline{AC} be an angle bisector for the angles $B\hat{A}D$ and $B\hat{C}D$.
 - (a) Show that $\triangle ABC$ is congruent to $\triangle ADC$.
 - (b) Show that \overline{AC} is perpendicular to \overline{BD} .

Solution:

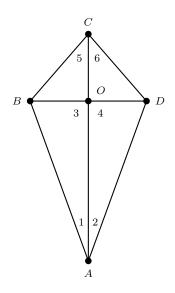
- (a) Clearly, in triangles $\triangle ABC$ and $\triangle ADC$ we have:
 - i. $\hat{1} \cong \hat{2}$ (given).
 - ii. $\hat{5} \cong \hat{6}$ (given).
 - iii. \overline{AC} is common.

Then, by ASA we have $\triangle ABC \cong \triangle ADC$.

- (b) In part (a), we proved that $\overline{AB} \cong \overline{AD}$. Hence, in triangles $\triangle ABO$ and $\triangle ADO$ we have:
 - i. $\overline{AB} \cong \overline{AD}$ proved in part(a).
 - ii. \overline{AO} is common segment.
 - iii. $\hat{1} \cong \hat{2}$ (given).

By SAS, we have $\triangle ABO \cong \triangle ADO$. Therefore, $A\hat{O}B \cong A\hat{O}D$

and hence both are right angles which shows that $\overline{AC} \perp \overline{BD}$.



2. (3 pts. each) Let $\triangle ABC$ be a triangle with M is the midpoint for the segment \overline{AB} . Show that

(a) If $\overline{BC} \parallel \overline{MN}$ then N is the midpoint for \overline{AC} .

(b) If N is the midpoint for \overline{AC} , then $\overline{BC} \parallel \overline{MN}$.

Solution:

(a) Suppose BC || MN. We show that △ ABC ~ △ AMN.
i. 1 ≈ 3 and 2 ≈ 4 (corresponding angles).
ii. Â is common.
Thus, by S-AA, we have △ ABC ~ △ AMN.
Hence, |AN| = |AM| / |AB| = 1/2. Therefore, |AN| = 1/2 |AC| and therefore, N is the midpoint of AC.
(b) Suppose N is the midpoint of AC. In triangles △ ABC and

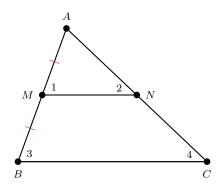
(b) Suppose N is the midpoint of AC. In triangles $\triangle ABC$ and $\triangle AMN$ we have:

i.
$$\hat{A}$$
 is common angle.
 $|\overline{AM}| |\overline{AN}|$

ii.
$$\frac{|AM|}{|\overline{AB}|} = \frac{|AN|}{|\overline{AC}|} = \frac{1}{2}$$
.

Thus, by S-SAS, we have $\triangle ABC \sim \triangle AMN$.

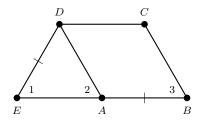
Therefore, $\hat{1} \cong \hat{3}$ (corresponding angles) which implies that $\overline{BC} \parallel \overline{MN}$.



3. (4 pts.) Let ABCD be a parallelogram. Show that if $\overline{AB} \cong \overline{DE}$, and $\hat{1} \cong \hat{2}$, then ABCD is a rhombus.

Solution:

Assume that $\overline{AB} \cong \overline{DE}$. Then, observe that $\triangle DAE$ is isosceles since its base angles $\hat{1}$ and $\hat{2}$ are congruent (given). Thus, $\overline{AD} \cong \overline{DE}$. That is $\overline{AB} \cong \overline{AD}$ and thus ABCD is rhombus (all sides are congruent).



4. (3+2+1+3 pts.) In the diagram, let \overline{EF} be a tangent segment to the circle $\odot O$ at the tangency point B. Let \overline{PA} and \overline{PB} be two secants passing through the points D and C, respectively. Assume that the two chords \overline{AD} and \overline{BC} are congruents. Let $(D\hat{P}C) |\hat{P}| = 15^{\circ}$. Moreover, let

 $\left|\widehat{\operatorname{AB}}\right| = 60^{\circ}, \left|\widehat{\operatorname{CD}}\right| = x, \left|D\widehat{O}C\right| = y, \left|\widehat{\operatorname{AD}}\right| = z \text{ and } \left|\widehat{\operatorname{BC}}\right| = w.$

- (a) Find the values for x, y, z and w.
- (b) Show that $\triangle ADO \cong \triangle BCO$.
- (c) Find $\begin{vmatrix} F\hat{B}A \end{vmatrix}$.
- (d) Show that $\triangle ABO$ is an equiangular triangle.

Solution:

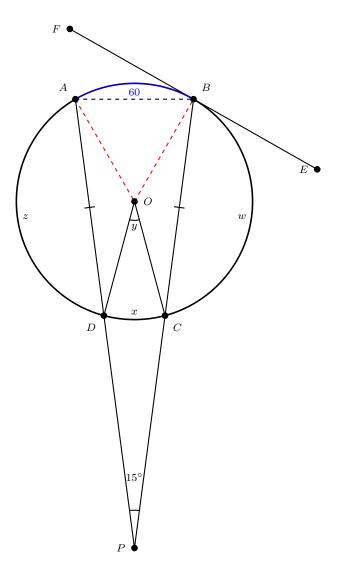
(a) Clearly, x = y (central angle) and z = w (since $\widehat{AD} \cong \widehat{BC}$). Note that $|\hat{P}| = 15^{\circ} = \frac{1}{2}(60 - x)$ (Theorem in the class) which implies that $60^{\circ} - x = 30^{\circ}$ and hence $x = 30^{\circ}$. Therefore, $y = 30^{\circ}$.

Moreover, $60^{\circ} + x + z + w = 60^{\circ} + 30^{\circ} + 2z = 360^{\circ}$ implies that $z = \frac{1}{2}(360 - 90) = 135^{\circ}$. Therefore, $z = w = 135^{\circ}$.

- (b) In the triangles $\bigtriangleup ADO$ and $\bigtriangleup BCO,$ we have:
 - i. $\overline{AO} \cong \overline{BO}$ (both are radii).
 - ii. $\overline{DO} \cong \overline{CO}$ (both are radii).
 - iii. $\overline{AD} \cong \overline{BC}$ (since $\widehat{AD} \cong \widehat{BC}$).

By SSS, $\triangle ADO \cong \triangle BCO$.

- (c) Note that the angle $F\hat{B}A$ is an angle between a tangent line and a chord. Therefore, $|F\hat{B}A| = \frac{1}{2}|\widehat{AB}| = \frac{1}{2}60^{\circ} = 30^{\circ}$.
- (d) Note that $|F\hat{B}A| = 30^{\circ}$. Hence $|A\hat{B}O| = 60^{\circ}$ (since $F\hat{B}O$ is a right angle). But the triangle $\triangle ABO$ is isosceles. Therefore, $|B\hat{A}O| = 60^{\circ}$. Moreover, $|A\hat{O}B| = 60^{\circ}$. Hence, $\triangle ABO$ is an equiangular triangle.



5. (3 pts.) Bonus Question: Find the "Secret Word". Cross the following words to find the secret word!?

MATH - BOOK - IN - EUCLID - BEST - CLASS

S	М	Α	Т	Н	Ι
В	0	0	K	Α	Ν
Е	U	С	\mathbf{L}	Ι	D
В	В	Е	S	Т	Α
С	L	А	S	S	н

The "Secret Word" is