- **1.** (3 pts. each) Let  $\triangle ABC$  be a triangle.
  - (a) Show that the measure of angles of  $\triangle ABC$  sums to  $180^{\circ}$ .
  - (b) Show that  $|\hat{4}| = |\hat{1}| + |\hat{2}|$  (drawn).

- (a) Draw a line  $\overrightarrow{BE}$  parallel to  $\overrightarrow{AC}$ , see the diagram. Note that  $|\hat{2}| + |\hat{5}| + |\hat{6}| = 180^{\circ}$  (supp. angles). The line  $\overrightarrow{AB}$  is a transversal to the parallel lines  $\overrightarrow{BE}$  and  $\overleftarrow{AC}$ . Hence,  $\hat{1} \cong \hat{5}$  (alternate interior angles). Also,  $\overrightarrow{BC}$  is another transversal and hence  $\hat{3} \cong \hat{6}$ . Thus,  $|\hat{2}| + |\hat{1}| + |\hat{3}| = |\hat{2}| + |\hat{5}| + |\hat{6}| = 180^{\circ}$ .
- (b) Note that  $\hat{3}$  and  $\hat{4}$  are supplementary angles and hence  $|\hat{3}| + |\hat{4}| = 180^{\circ}$ . Thus,  $|\hat{1}| + |\hat{2}| + |\hat{3}| = 180^{\circ} = |\hat{3}| + |\hat{4}|$ . Therefore,  $|\hat{4}| = |\hat{1}| + |\hat{2}|$ .



- 2. (3 pts. each) If ABCD is a rhombus with midpoints P, Q, R, and S of the sides.
  - (a) Show that PQRS is a parallelogram.
  - (b) Show that PQRS is a rectangle.

(a) Note that in  $\triangle ABC$ , we have P and Q are the midpoints of  $\overline{AB}$  and  $\overline{BC}$ , respectively. Hence,  $\overline{PQ} \parallel \overline{AC}$  (Theorem in class).

Moreover,  $|\overline{BP}|$ 

i. 
$$\frac{|\overline{BP}|}{|\overline{BA}|} = \frac{|\overline{BQ}|}{|\overline{BC}|} = \frac{1}{2}$$
  
ii.  $\hat{B}$  is common.

Thus we get  $\triangle BPQ \sim \triangle BAC$  by S-SAS. That is  $\frac{|\overline{PQ}|}{|\overline{AC}|} = \frac{1}{2}$ . Do the same procedure on  $\triangle DAC$  and  $\triangle DSR$ , we get:  $\overline{SR} \parallel \overline{AC}$ and  $\frac{|\overline{SR}|}{|\overline{AC}|} = \frac{1}{2}$ . Therefore,  $\overline{PQ} \parallel \overline{RS}$  and  $\overline{PQ} \cong \overline{RS}$ . Thus, PQRS is a parallelogram.

(b) From part (a), we proved that  $\overline{PQ} \parallel \overline{AC}$ . We can (in the same way as in part (a)) show that  $\overline{PS} \parallel \overline{BD}$ . But  $\overline{AC} \perp \overline{BD}$  (since ABCD is a rhombus). Therefore,  $\overline{PQ} \perp \overline{PS}$  and hence  $Q\hat{PS}$  is a right angle. Since  $\overline{PS} \parallel \overline{QR}$ , we also get  $P\hat{QR}$  is right angle as well. Therefore, PQRS is a rectangle.



- **3.** (3 pts. each) Let ABCD be a parallelogram with Q in  $\overline{AD}$  and P in  $\overline{BC}$  so that  $\overline{PQ} \parallel \overline{AB}$ .
  - (a) Find |MC| in terms of x, y, z, w.
  - (b) Show that  $|\overline{AM}| \cdot |\overline{CP}| = |\overline{AQ}| \cdot |\overline{CM}|$ .

(a) Triangle Proportionality Theorem implies  $\triangle ABC \sim \triangle MPC$ .

That is

$$\frac{\left|\overline{AB}\right|}{\left|\overline{MP}\right|} = \frac{\left|\overline{AC}\right|}{\left|\overline{MC}\right|} = \frac{\left|\overline{BC}\right|}{\left|\overline{PC}\right|}.$$
Hence,  $\frac{z}{x} = \frac{y}{\left|\overline{MC}\right|} = \frac{\left|\overline{BC}\right|}{w}$ . Therefore,  $\left|\overline{MC}\right| = \frac{xy}{z}$ .  
(b) Note that  $\triangle AMQ$  and  $\triangle CMP$  have:  
•  $A\hat{M}Q \cong P\hat{M}C$  (vertically opposite angles).  
•  $A\hat{Q}\hat{M} \cong C\hat{P}\hat{M}$  (alternate interior angle since  $\overline{AD} \parallel \overline{BC}$ 

Therefore, 
$$\triangle AMQ \sim \triangle CMP$$
. Thus,  $\frac{\left|\overline{AM}\right|}{\left|\overline{CM}\right|} = \frac{\left|\overline{AQ}\right|}{\left|\overline{CP}\right|}$  are hence the result.



- 4. (3+3+2 pts.) In the diagram, let  $|\hat{P}| = 30^{\circ}$ . Let  $\overline{PD}$  be a tangent line to the circle  $\odot O$  at the point C. Also assume that  $\widehat{AB} \cong \widehat{AC}$ .
  - (a) Find x, y, z and w.
  - (b) Show that  $\triangle ABO \cong \triangle ACO$ .
  - (c) Find  $|A\hat{C}O|$ .

- (a) Note that  $|\hat{P}| = 30^{\circ} = \frac{1}{2}(z-x)$  (Theorem in the class) which implies that  $60^{\circ} = z - x$  or  $z = 60^{\circ} + x$ . Moreover,  $x + 2z = 360^{\circ}$ implies that  $x + 2(60^{\circ} + x) = 360$ . That is,  $3x = 240^{\circ}$ . Therefore,  $x = 80^{\circ}$  and  $z = 140^{\circ}$ . Therefore,  $y = x = 80^{\circ}$  (central angle), and  $w = \frac{1}{2}x = 40^{\circ}$  (inscribed angle).
- (b) in the triangles  $\triangle ABO$  and  $\triangle ACO$ , we have:
  - i.  $\overline{BO} \cong \overline{CO}$  (both are radii).
  - ii.  $\overline{AB} \cong \overline{AC}$  (since  $\widehat{AB} \cong \widehat{AC}$ ).
  - iii.  $\overline{AO}$  is common.
  - By SSS,  $\triangle ABO \cong \triangle ACO$ .
- (c) Clearly  $\left| \hat{ACD} \right| = \frac{1}{2}z = 70^{\circ}$  (Theorem in the class). But  $\left| \hat{OCD} \right| = 90^{\circ} = \left| \hat{ACO} \right| + \left| \hat{ACD} \right|$ . Hence  $\left| \hat{ACO} \right| = 20^{\circ}$ .

