1. (3 pts. each) Let $\triangle A B C$ be a triangle.
(a) Show that the measure of angles of $\triangle A B C$ sums to 180°.
(b) Show that $|\hat{4}|=|\hat{1}|+|\hat{2}|$ (drawn).

Solution:

(a) Draw a line $\overleftrightarrow{B E}$ parallel to $\overleftrightarrow{A C}$, see the diagram. Note that $|\hat{2}|+|\hat{5}|+|\hat{6}|=180^{\circ}$ (supp. angles). The line $\overleftrightarrow{A B}$ is a transversal to the parallel lines $\overleftrightarrow{B E}$ and $\overleftrightarrow{A C}$. Hence, $\hat{1} \cong \hat{5}$ (alternate interior angles). Also, $\overleftrightarrow{B C}$ is another transversal and hence $\hat{3} \cong \hat{6}$. Thus, $|\hat{2}|+|\hat{1}|+|\hat{3}|=$ $|\hat{2}|+|\hat{5}|+|\hat{6}|=180^{\circ}$.
(b) Note that $\hat{3}$ and $\hat{4}$ are supplementary angles and hence $|\hat{3}|+|\hat{4}|=180^{\circ}$. Thus, $|\hat{1}|+|\hat{2}|+|\hat{3}|=180^{\circ}=$
 $|\hat{3}|+|\hat{4}|$. Therefore, $|\hat{4}|=|\hat{1}|+|\hat{2}|$.
2. ($\mathbf{3} \mathbf{p t s}$. each) If $A B C D$ is a rhombus with midpoints P, Q, R, and S of the sides.
(a) Show that $P Q R S$ is a parallelogram.
(b) Show that $P Q R S$ is a rectangle.

Solution:

(a) Note that in $\triangle A B C$, we have P and Q are the midpoints of $\overline{A B}$ and $\overline{B C}$, respectively. Hence, $\overline{P Q} \| \overline{A C}$ (Theorem in class). Moreover,
i. $\frac{|\overline{B P}|}{|\overline{B A}|}=\frac{|\overline{B Q}|}{|\overline{B C}|}=\frac{1}{2}$.
ii. \hat{B} is common.

Thus we get $\triangle B P Q \sim \triangle B A C$ by S-SAS. That is $\frac{|\overline{P Q}|}{|\overline{A C}|}=\frac{1}{2}$. Do the same procedure on $\triangle D A C$ and $\triangle D S R$, we get: $\overline{S R} \| \overline{A C}$ and $\frac{|\overline{S R}|}{|\overline{A C}|}=\frac{1}{2}$. Therefore, $\overline{P Q} \| \overline{R S}$ and $\overline{P Q} \cong \overline{R S}$. Thus, $P Q R S$ is a parallelogram.
(b) From part (a), we proved that $\overline{P Q} \| \overline{A C}$. We can (in the same way as in part (a)) show that $\overline{P S} \| \overline{B D}$. But $\overline{A C} \perp \overline{B D}$ (since
 $A B C D$ is a rhombus). Therefore, $\overline{P Q} \perp \overline{P S}$ and hence $Q \hat{P} S$ is a right angle. Since $\overline{P S} \| \overline{Q R}$, we also get $P \hat{Q} R$ is right angle as well. Therefore, $P Q R S$ is a rectangle.
3. (3 pts. each) Let $A B C D$ be a parallelogram with Q in $\overline{A D}$ and P in $\overline{B C}$ so that $\overline{P Q} \| \overline{A B}$.
(a) Find $|M C|$ in terms of x, y, z, w.
(b) Show that $|\overline{A M}| \cdot|\overline{C P}|=|\overline{A Q}| \cdot|\overline{C M}|$.

Solution:

(a) Triangle Proportionality Theorem implies $\triangle A B C \sim \triangle M P C$.

That is

$$
\frac{|\overline{A B}|}{|\overline{M P}|}=\frac{|\overline{A C}|}{|\overline{M C}|}=\frac{|\overline{B C}|}{|\overline{P C}|}
$$

Hence, $\frac{z}{x}=\frac{y}{|\overline{M C}|}=\frac{|\overline{B C}|}{w}$. Therefore, $|\overline{M C}|=\frac{x y}{z}$.
(b) Note that $\triangle A M Q$ and $\triangle C M P$ have:

- $A \hat{M} Q \cong P \hat{M} C$ (vertically opposite angles).
- $A \hat{Q} M \cong C \hat{P} M$ (alternate interior angle since $\overline{A D} \| \overline{B C}$).

Therefore, $\triangle A M Q \sim \triangle C M P$. Thus, $\frac{|\overline{A M}|}{|\overline{C M}|}=\frac{|\overline{A Q}|}{|\overline{C P}|}$ and hence the result.
4. $(\mathbf{3}+\mathbf{3}+\mathbf{2} \mathbf{~ p t s .})$ In the diagram, let $|\hat{P}|=30^{\circ}$. Let $\overline{P D}$ be a tangent line to the circle $\odot O$ at the point C. Also assume that $\widehat{\mathrm{AB}} \cong \widehat{\mathrm{AC}}$.
(a) Find x, y, z and w.
(b) Show that $\triangle A B O \cong \triangle A C O$.
(c) Find $|A \hat{C} O|$.

Solution:

(a) Note that $|\hat{P}|=30^{\circ}=\frac{1}{2}(z-x)$ (Theorem in the class) which implies that $60^{\circ}=z-x$ or $z=60^{\circ}+x$. Moreover, $x+2 z=360^{\circ}$ implies that $x+2\left(60^{\circ}+x\right)=360$. That is, $3 x=240^{\circ}$. Therefore, $x=80^{\circ}$ and $z=140^{\circ}$. Therefore, $y=x=80^{\circ}$ (central angle), and $w=\frac{1}{2} x=40^{\circ}$ (inscribed angle).
(b) in the triangles $\triangle A B O$ and $\triangle A C O$, we have:
i. $\overline{B O} \cong \overline{C O}$ (both are radii).
ii. $\overline{A B} \cong \overline{A C}$ (since $\widehat{\mathrm{AB}} \cong \widetilde{\mathrm{AC}}$).
iii. $\overline{A O}$ is common.

By SSS, $\triangle A B O \cong \triangle A C O$.
(c) Clearly $|A \hat{C} D|=\frac{1}{2} z=70^{\circ}$ (Theorem in the class). But $|O \hat{C} D|=90^{\circ}=|A \hat{C} O|+|A \hat{C} D|$. Hence $|A \hat{C} O|=20^{\circ}$.

