Kuwait University
Faculty of Science

Department of Mathematics

Euclidean Geometry

0410-226
 Second Exam

Monday, November 25, 2019
Fall 2019/2020

Duration 75 minutes (This exam contains 4 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Calculators and communication devices are not allowed in the examination room.
Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. ($\mathbf{2}$ pts. each) Let \mathbf{T} and \mathbf{S} be two isometries of the plane.
(a) Show that the product of \mathbf{T} and \mathbf{S} is an isometry.
(b) Show that if \mathbf{T} and \mathbf{S} agrees on three noncollinear points, then they are identical.

Solution:

(a) For any A and $B, \mathbf{T}(\overline{A B})=\overline{A^{\prime} B^{\prime}}$ and $\mathbf{S}\left(\overline{A^{\prime} B^{\prime}}\right)=\overline{A^{\prime \prime} B^{\prime \prime}}$, where $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$ (\mathbf{T} is isometry) and $\overline{A^{\prime} B^{\prime}} \cong \overline{A^{\prime \prime} B^{\prime \prime}}$ (\mathbf{S} is isometry).
Therefore, $\mathbf{S T}(\overline{A B})=\mathbf{S}(\mathbf{T}(\overline{A B}))=\mathbf{S}\left(\overline{A^{\prime} B^{\prime}}\right)=\overline{A^{\prime \prime} B^{\prime \prime}}$, with $\overline{A B} \cong \overline{A^{\prime \prime} B^{\prime \prime}}$.
(b) Assume that $\mathbf{T}(A)=\mathbf{S}(A), \mathbf{T}(B)=\mathbf{S}(B), \mathbf{T}(C)=\mathbf{S}(C)$, for noncollinear points A, B, C. Then $\mathbf{S}^{-1} \mathbf{T}(A)=A, \mathbf{S}^{-1} \mathbf{T}(B)=B, \mathbf{S}^{-1} \mathbf{T}(C)=C$. That is $\mathbf{S}^{-1} \mathbf{T}=\mathbf{I}$. Hence, $\mathbf{T}=\mathbf{S}$.

2. (3 pts. each)

(a) Show that a rotation is an isometry.
(b) In the right diagram, identify $\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathcal{R}_{B, 120^{\circ}} \circ \mathbf{R}_{\overleftrightarrow{A C}}$.
(c) In the right diagram, express the rotation $\mathcal{R}_{B, 240^{\circ}}$ as a product of two rotations centered at A and C.

Solution:

(a) Consider a rotation $\mathcal{R}_{O, x}$ about some point O through x°. Let A and B be points in the plane with $\mathcal{R}_{O, x}(A)=A^{\prime}$ and $\mathcal{R}_{O, x}(B)=B^{\prime}$. Then, we need to show that $|\overline{A B}|=\left|\overline{A^{\prime} B^{\prime}}\right|$. In $\triangle A O B$ and $\triangle A^{\prime} O B^{\prime}$, we have:
i. $|\overline{O A}|=\left|\overline{O A^{\prime}}\right|$ and $|\overline{O B}|=\left|\overline{O B^{\prime}}\right|$ (definition of rotation).
ii. $|\hat{1}|=x-|\hat{2}|=|\hat{3}|$ (look at diagram).

By SAS, $\triangle A O B \cong \triangle A^{\prime} O B^{\prime}$. That is $|\overline{A B}|=\left|\overline{A^{\prime} B^{\prime}}\right|$.

(b) Note that $\mathcal{R}_{B, 120^{\circ}}=\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{A B}}$. Therefore,

$$
\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathcal{R}_{B, 120^{\circ}} \circ \mathbf{R}_{\overleftrightarrow{A C}}=\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}=\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}=\mathcal{R}_{A, 60^{\circ}}
$$

(c) Note that $\mathcal{R}_{B, 240^{\circ}}=\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{B C}}$. Therefore,

$$
\begin{aligned}
\mathcal{R}_{B, 240^{\circ}} & =\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{B C}}=\mathbf{R}_{\overleftrightarrow{A B}} \circ I \circ \mathbf{R}_{\overleftrightarrow{B C}} \\
& =\mathbf{R}_{\overleftrightarrow{A B}} \circ\left(\mathbf{R}_{\overleftrightarrow{A C}} \circ \mathbf{R}_{\overleftrightarrow{A C}}\right) \circ \mathbf{R}_{\overleftrightarrow{B C}} \\
& =\left(\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}\right)\left(\circ \mathbf{R}_{\overleftrightarrow{A C}} \circ \mathbf{R}_{\overleftrightarrow{B C}}\right) \\
& =\mathcal{R}_{A, 60^{\circ}} \circ \mathcal{R}_{C, 180^{\circ}}
\end{aligned}
$$

3. $(4+2$ pts. $)$
(a) Show that every translation is a product of two half-turns.
(b) Let \mathbf{T} be a translation identified as $\mathbf{R}_{a} \circ \mathbf{R}_{b}$. Find its inverse.

Solution:

(a) Let $\mathcal{T}_{\overrightarrow{A B}}$ be any translation. Then $\mathcal{T}_{\overrightarrow{A B}}$ can be written as a product of two reflections in parallel lines a and b. That is, $\mathcal{T}_{\overrightarrow{A B}}=\mathbf{R}_{a} \mathbf{R}_{b}$. Let c be a line perpendicular to a and b in points O_{1} and O_{2}. Then, $\mathcal{H}_{O_{1}}=\mathbf{R}_{a} \mathbf{R}_{c}$ and $\mathcal{H}_{O_{2}}=\mathbf{R}_{c} \mathbf{R}_{b}$. Therefore,

$$
\mathcal{T}_{\overrightarrow{A B}}=\mathbf{R}_{a} \mathbf{R}_{b}=\mathbf{R}_{a} \mathbf{I} \mathbf{R}_{b}=\mathbf{R}_{a} \mathbf{R}_{c} \mathbf{R}_{c} \mathbf{R}_{b}=\mathcal{H}_{O_{1}} \mathcal{H}_{O_{2}}
$$

(b) Clearly $\mathbf{T}^{-1}=\mathbf{R}_{b} \circ \mathbf{R}_{a}$.
4. $(\mathbf{4}+\mathbf{2} \mathbf{p t s .})$ Let $\triangle A B C$ be a given acute triangle and let $\lambda, \mu>1$.
(a) Show that $\mathcal{D}_{A, \lambda}(\triangle A B C) \sim \mathcal{D}_{B, \mu}(\triangle A B C)$.
(b) Show that if $\lambda=\mu$, then $\mathcal{D}_{A, \lambda}(\triangle A B C) \cong \mathcal{D}_{B, \mu}(\triangle A B C)$.

Solution:

(a) Clearly Theorem 5.1.1 ensures that the trangles $\triangle A B_{\lambda} C_{\lambda}$ and $\triangle A_{\mu} B C_{\mu}$ are all similar to $\triangle A B C$ and hence each one of them is similar to the other.
(b) If $\lambda=\mu$ (both positive), then we have $\left|\overline{A_{\mu} B}\right|=\mu|\overline{A B}|=\lambda|\overline{A B}|=\left|\overline{A B_{\lambda}}\right|$. Similarily, $\left|\overline{A_{\mu} C_{\mu}}\right|=\left|\overline{A C_{\lambda}}\right|$ and $\left|\overline{B C_{\mu}}\right|=\left|\overline{B_{\lambda} C_{\lambda}}\right|$. By SSS, $\triangle A B_{\lambda} C_{\lambda} \cong \triangle A_{\mu} B C_{\mu}$.

