

Kuwait University Faculty of Science Department of Mathematics

Euclidean Geometry

0410-226 Second Exam

Monday, November 25, 2019 Fall 2019/2020

Name					
ID Number					
Serial Number					

Duration 75 minutes (This exam contains **4** questions).

Section No.	Instructor Name
1	Dr. Abdullah Alazemi

Calculators and communication devices are not allowed in the examination room.

Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

- 1. (2 pts. each) Let T and S be two isometries of the plane.
 - (a) Show that the product of \mathbf{T} and \mathbf{S} is an isometry.
 - (b) Show that if **T** and **S** agrees on three noncollinear points, then they are identical.

Solution:

- (a) For any A and B, $\mathbf{T}(\overline{AB}) = \overline{A'B'}$ and $\mathbf{S}(\overline{A'B'}) = \overline{A''B''}$, where $\overline{AB} \cong \overline{A'B'}$ (\mathbf{T} is isometry) and $\overline{A'B'} \cong \overline{A''B''}$ (\mathbf{S} is isometry). Therefore, $\mathbf{ST}(\overline{AB}) = \mathbf{S}(\mathbf{T}(\overline{AB})) = \mathbf{S}(\overline{A'B'}) = \overline{A''B''}$, with $\overline{AB} \cong \overline{A''B''}$.
- (b) Assume that $\mathbf{T}(A) = \mathbf{S}(A)$, $\mathbf{T}(B) = \mathbf{S}(B)$, $\mathbf{T}(C) = \mathbf{S}(C)$, for noncollinear points A, B, C. Then $\mathbf{S}^{-1}\mathbf{T}(A) = A$, $\mathbf{S}^{-1}\mathbf{T}(B) = B$, $\mathbf{S}^{-1}\mathbf{T}(C) = C$. That is $\mathbf{S}^{-1}\mathbf{T} = \mathbf{I}$. Hence, $\mathbf{T} = \mathbf{S}$.

2. (3 pts. each)

- (a) Show that a rotation is an isometry.
- (b) In the right diagram, identify $\mathbf{R}_{\overrightarrow{BC}} \circ \mathcal{R}_{B,120^{\circ}} \circ \mathbf{R}_{\overrightarrow{AC}}$.
- (c) In the right diagram, express the rotation $\mathcal{R}_{B,240^{\circ}}$ as a product of two rotations centered at A and C.

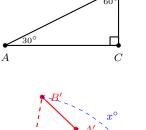
Solution:

(a) Consider a rotation $\mathcal{R}_{O,x}$ about some point O through x° . Let A and B be points in the plane with $\mathcal{R}_{O,x}(A) = A'$ and $\mathcal{R}_{O,x}(B) = B'$. Then, we need to show that $|\overline{AB}| = |\overline{A'B'}|$. In $\triangle AOB$ and $\triangle A'OB'$, we have:

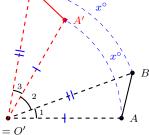
i.
$$|\overline{OA}| = |\overline{OA'}|$$
 and $|\overline{OB}| = |\overline{OB'}|$ (definition of rotation)
ii. $|\hat{1}| = x - |\hat{2}| = |\hat{3}|$ (look at diagram).

By SAS, $\triangle AOB \cong \triangle A'OB'$. That is $\left| \overline{AB} \right| = \left| \overline{A'B'} \right|$.

(b) Note that $\mathcal{R}_{B,120^{\circ}} = \mathbf{R}_{\overleftarrow{BC}} \circ \mathbf{R}_{\overleftarrow{AB}}$. Therefore,



B



0

$$\mathbf{R}_{\overrightarrow{BC}} \circ \mathcal{R}_{B,120^{\circ}} \circ \mathbf{R}_{\overrightarrow{AC}} = \mathbf{R}_{\overrightarrow{BC}} \circ \mathbf{R}_{\overrightarrow{BC}} \circ \mathbf{R}_{\overrightarrow{AB}} \circ \mathbf{R}_{\overrightarrow{AC}} = \mathbf{R}_{\overrightarrow{AB}} \circ \mathbf{R}_{\overrightarrow{AC}} = \mathcal{R}_{A,60^{\circ}}$$

(c) Note that $\mathcal{R}_{B,240^{\circ}} = \mathbf{R}_{\overrightarrow{AB}} \circ \mathbf{R}_{\overrightarrow{BC}}$. Therefore,

$$\begin{aligned} \mathcal{R}_{B,240^{\circ}} &= \mathbf{R}_{\overrightarrow{AB}} \circ \mathbf{R}_{\overrightarrow{BC}} = \mathbf{R}_{\overrightarrow{AB}} \circ I \circ \mathbf{R}_{\overrightarrow{BC}} \\ &= \mathbf{R}_{\overrightarrow{AB}} \circ \left(\mathbf{R}_{\overrightarrow{AC}} \circ \mathbf{R}_{\overrightarrow{AC}} \right) \circ \mathbf{R}_{\overrightarrow{BC}} \\ &= \left(\mathbf{R}_{\overrightarrow{AB}} \circ \mathbf{R}_{\overrightarrow{AC}} \right) \left(\circ \mathbf{R}_{\overrightarrow{AC}} \circ \mathbf{R}_{\overrightarrow{BC}} \right) \\ &= \mathcal{R}_{A,60^{\circ}} \circ \mathcal{R}_{C,180^{\circ}}. \end{aligned}$$

3. (4 + 2 pts.)

- (a) Show that every translation is a product of two half-turns.
- (b) Let \mathbf{T} be a translation identified as $\mathbf{R}_a \circ \mathbf{R}_b$. Find its inverse.

Solution:

(a) Let $\mathcal{T}_{\overrightarrow{AB}}$ be any translation. Then $\mathcal{T}_{\overrightarrow{AB}}$ can be written as a product of two reflections in parallel lines a and b. That is, $\mathcal{T}_{\overrightarrow{AB}} = \mathbf{R}_a \mathbf{R}_b$. Let c be a line perpendicular to a and b in points O_1 and O_2 . Then, $\mathcal{H}_{O_1} = \mathbf{R}_a \mathbf{R}_c$ and $\mathcal{H}_{O_2} = \mathbf{R}_c \mathbf{R}_b$. Therefore,

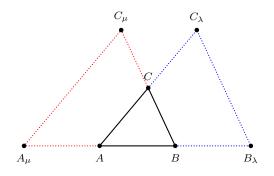
$$\mathcal{T}_{\overrightarrow{AB}} = \mathbf{R}_a \mathbf{R}_b = \mathbf{R}_a \mathbf{I} \mathbf{R}_b = \mathbf{R}_a \mathbf{R}_c \mathbf{R}_c \mathbf{R}_b = \mathcal{H}_{O_1} \mathcal{H}_{O_2}.$$

(b) Clearly $\mathbf{T}^{-1} = \mathbf{R}_b \circ \mathbf{R}_a$.

4. (4+2 pts.) Let $\triangle ABC$ be a given acute triangle and let $\lambda, \mu > 1$.

- (a) Show that $\mathcal{D}_{A,\lambda}(\triangle ABC) \sim \mathcal{D}_{B,\mu}(\triangle ABC)$.
- (b) Show that if $\lambda = \mu$, then $\mathcal{D}_{A,\lambda} (\triangle ABC) \cong \mathcal{D}_{B,\mu} (\triangle ABC)$.

Solution:



- (a) Clearly **Theorem 5.1.1** ensures that the trangles $\triangle AB_{\lambda}C_{\lambda}$ and $\triangle A_{\mu}BC_{\mu}$ are all similar to $\triangle ABC$ and hence each one of them is similar to the other.
- (b) If $\lambda = \mu$ (both positive), then we have $|\overline{A_{\mu}B}| = \mu |\overline{AB}| = \lambda |\overline{AB}| = |\overline{AB_{\lambda}}|$. Similarly, $|\overline{A_{\mu}C_{\mu}}| = |\overline{AC_{\lambda}}|$ and $|\overline{BC_{\mu}}| = |\overline{B_{\lambda}C_{\lambda}}|$. By SSS, $\triangle AB_{\lambda}C_{\lambda} \cong \triangle A_{\mu}BC_{\mu}$.