1. (4 pts.) Given a point P and a line a, what is the locus of points 3 cm from P and 1 cm from a ? Justify your answer.

Solution:

The locus is $0,1,2,3$, or 4 points, depending on the intersection of $\odot P$ with radius 3 cm , and two paralell lines to a at distance 1 cm .

2. ($\mathbf{2}$ pts. each) Let \mathbf{T} and \mathbf{S} be two isometries of the plane.
(a) Show that $\mathbf{S} \circ \mathbf{T}$ is an isometry.
(b) Show that \mathbf{T}^{-1} is an isometry.
(c) Show that if \mathbf{T} and \mathbf{S} agrees on three noncollinear points, then they are identical.

Solution:

(a) For any A and $B, \mathbf{T}(\overline{A B})=\overline{A^{\prime} B^{\prime}}$ and $\mathbf{S}\left(\overline{A^{\prime} B^{\prime}}\right)=\overline{A^{\prime \prime} B^{\prime \prime}}$, where $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$ (\mathbf{T} is isometry) and $\overline{A^{\prime} B^{\prime}} \cong \overline{A^{\prime \prime} B^{\prime \prime}}$ (\mathbf{S} is isometry).
Therefore, $\mathbf{S T}(\overline{A B})=\mathbf{S}(\mathbf{T}(\overline{A B}))=\mathbf{S}\left(\overline{A^{\prime} B^{\prime}}\right)=\overline{A^{\prime \prime} B^{\prime \prime}}$, with $\overline{A B} \cong \overline{A^{\prime \prime} B^{\prime \prime}}$.
(b) Assume that $\mathbf{T}(\overline{A B})=\overline{A^{\prime} B^{\prime}}$ with $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$. Then clearly, $\mathbf{T}^{-1}\left(\overline{A^{\prime} B^{\prime}}\right)=\overline{A B}$ and $\overline{A^{\prime} B^{\prime}} \cong \overline{A B}$.
(c) Assume that $\mathbf{T}(A)=\mathbf{S}(A), \mathbf{T}(B)=\mathbf{S}(B), \mathbf{T}(C)=\mathbf{S}(C)$, for noncollinear points A, B, C. Then $\mathbf{S}^{-1} \mathbf{T}(A)=A, \mathbf{S}^{-1} \mathbf{T}(B)=B, \mathbf{S}^{-1} \mathbf{T}(C)=C$. That is $\mathbf{S}^{-1} \mathbf{T}=\mathbf{I}$. Hence, $\mathbf{T}=\mathbf{S}$.
3. (4 pts. each) Let \mathbf{R}_{l} denote a reflection in a line l.
(a) Let A and B be points in the plane so that $\mathbf{R}_{a}(A)=A_{1}=A$, and $\mathbf{R}_{a}(B)=B_{1} \neq B$. Use the definition of reflection to show that $\overline{A B} \cong \overline{A_{1} B_{1}}$.
(b) Let a, b, r be three lines in the plane. If $\mathbf{R}_{r}(a)=b$, show that $a \| r$ iff $b \| r$.

Solution:

(a) Note that $A \in a$ since $\mathbf{R}_{a}(A)=A_{1}=A$. Then, we have two cases for B as follows:

- $a \perp \overline{A B}: B \notin a$ and hence line a is perpendicular bisector of $\overline{B B_{1}}$ (by the definition of reflection). Therefore, A is the midpoint of $\overline{B B_{1}}$ and hence $|\overline{A B}|=\left|\overline{A_{1} B_{1}}\right|$.
- $a \not \perp \overline{A B}: a$ is the perpendicular bisector of $\overline{B B_{1}}$. Let $M \in a$ be the midpoint of $\overline{B B_{1}}$. In right triangles $\triangle A B M$ and $\triangle A_{1} B_{1} M$, we have
i. $\overline{A M}$ is common.
ii. $\overline{B M} \cong \overline{B_{1} M}$ (a is a bisector).
iii. $B \hat{M} A \cong B_{1} \hat{M} A_{1}\left(a\right.$ is perpendicular on $\left.\overline{B B_{1}}\right)$.

By SAS, $\triangle A B M \cong \triangle A_{1} B_{1} M$, and hence $\overline{A B} \cong \overline{A_{1} B_{1}}$.

(b) Clearly \mathbf{R}_{r} is an isometry and hence it preserves parallelism. Thus, if $a \| r$, then $\mathbf{R}_{r}(a) \| \mathbf{R}_{r}(r)$ then $b \| r$ (note that line r is fixed under reflection in r).
Assume now that $b \| r$. Since $\mathbf{R}_{r}(a)=b$, then $\mathbf{R}_{r}(b)=a$ (this is because $\mathbf{R}_{r}^{-1}=\mathbf{R}_{r}$). Thus, if $b \| r$, then $\mathbf{R}_{r}(b) \| \mathbf{R}_{r}(r)$ then $a \| r$.
4. (4 pts. each)
(a) Let a and b be two lines intersecting in point C with an angle from a to b equals to r. Use the definition of reflection to show that $\mathbf{R}_{b} \circ \mathbf{R}_{a}$ is simply $\mathcal{R}_{O, \theta}$, and find the point O and the angle θ.
(b) Let $\triangle A B C$ be a triangle with the vertices labelled clockwise such that $|\overline{A C}|=|\overline{B C}|$ and $|A \hat{C} B|=90^{\circ}$. Let $\mathbf{R}_{\overleftrightarrow{A B}}$ be the reflection in the line $\overleftrightarrow{A B}, \mathbf{R}_{\overleftrightarrow{A C}}$ be the reflection in the line $\overleftrightarrow{A C}$, and $\mathcal{R}_{B, 90^{\circ}}$ be the rotation by 90° counterclockwise around B. Identify the composition $\mathcal{R}_{B, 90^{\circ}} \circ \mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}$. Justify your answer.

Solution:

(a) Assume that lines a and line b intersect at point C with a directed angle from a to b equals to $r=(x+y)$.
Let P be a point so that $\mathbf{R}_{a}(P)=P^{\prime}$ and $\mathbf{R}_{b}\left(P^{\prime}\right)=P^{\prime \prime}$. As it is clear in the diagram, by SAS we have $\triangle C P M \cong \triangle C P^{\prime} M$ and $\triangle C P^{\prime} N \cong \triangle C P^{\prime \prime} N$. Hence we have

$$
\text { (1) } \cdots \quad|\overline{C P}|=\left|\overline{C P^{\prime}}\right|=\left|\overline{C P^{\prime \prime}}\right| \text {. }
$$

Moreover, the (directed) angle from $\overline{C P}$ to $\overline{C P^{\prime \prime}}$ is

$$
\text { (2) } \cdots \quad 2(x+y)=2 r \text {. }
$$

Therefore, from (1) and (2) we have $\mathbf{R}_{b} \circ \mathbf{R}_{a}=\mathcal{R}_{C, 2 r}$. That is O the intersecting points C of lines a and b, and $\theta=2 r$.
(a) Note that $\mathcal{R}_{B, 90^{\circ}}$ is simply $\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{A B}}$ with an angle from $\overleftrightarrow{A B}$ to $\overleftrightarrow{B C}$ equals to 45°. That is,

$$
\begin{aligned}
\mathcal{R}_{B, 90^{\circ}} \circ\left(\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}\right) & =\left(\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{A B}}\right) \circ\left(\mathbf{R}_{\overleftrightarrow{A B}} \circ \mathbf{R}_{\overleftrightarrow{A C}}\right) \\
& =\left(\mathbf{R}_{\overleftrightarrow{B C}} \circ \mathbf{R}_{\overleftrightarrow{A C}}\right)=\mathcal{R}_{C, 180^{\circ}}
\end{aligned}
$$

