1. $(3+3+2$ pts. $)$

(a) Let A, B and C be three nonempty sets. Show that if $A \subseteq B$, then $A-C \subseteq B-C$.
(b) Show that there is no odd integer that can be expressed in the form $4 m-1$ and in the form $4 n+1$ for integers m and n.
(c) Let \mathcal{R} be the equivalence relation on \mathbb{Q} given by $\{(x, y) \in \mathbb{Q} \times \mathbb{Q}: x-y \in \mathbb{Z}\}$. Find $\frac{1}{5}$, the equivalence class of $\frac{1}{5}$.
2. (4 pts. each)
(a) Let \mathcal{R} be some relation on a set A, and let \mathcal{S} be a transitive relation containing \mathcal{R}. Show that $\mathcal{R} \circ \mathcal{R} \subseteq S$.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions for some nonempty sets A, B, and C. Without assuming that $g \circ f$ is a function, show that if $\left(a, c_{1}\right),\left(a, c_{2}\right) \in g \circ f$, then $c_{1}=c_{2}$, where $a \in A$, $c_{1}, c_{2} \in C$.
3. (4 pts. each)
(a) Let $a_{1}=1, a_{2}=1$, and $a_{n+2}=a_{n+1}+a_{n}$ for all $n \in \mathbb{N}$. Show that $a_{3 n}$ is an even number for all natural number n.
(b) Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function given by $f(a, b)=a+b$ for all $a, b \in \mathbb{N}$. Decide whether f is one-to-one and onto \mathbb{N}.
4. (4+2 pts.) Let A and B be two disjoint denumerable sets. Assume that $f: \mathbb{N} \rightarrow A$ and $g: \mathbb{N} \rightarrow B$ are two bijections. Define $h: \mathbb{N} \rightarrow A \cup B$ by

$$
h(x)= \begin{cases}f\left(\frac{x+1}{2}\right) & \text { if } x \text { is odd } \\ g\left(\frac{x}{2}\right) & \text { if } x \text { is even }\end{cases}
$$

(a) Show that h is bijection.
(b) Show that $A \cup B$ is countable.
5. $(4+4+2$ pts.)
(a) Show that $A=\left\{\frac{1}{3 x+1}: x \in \mathbb{N}\right\}$ is countable.
(b) Show that $B=(3,4) \subseteq \mathbb{R}$ is uncountable.
(c) What is the cardinality of A and B ?

