1. (3+3+2 pts.)

- (a) Let A, B and C be three nonempty sets. Show that if $A \subseteq B$, then $A C \subseteq B C$.
- (b) Show that there is no odd integer that can be expressed in the form 4m 1 and in the form 4n + 1 for integers m and n.
- (c) Let \mathcal{R} be the equivalence relation on \mathbb{Q} given by $\{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x y \in \mathbb{Z}\}$. Find $\overline{\frac{1}{5}}$, the equivalence class of $\frac{1}{5}$.

2. (4 pts. each)

- (a) Let \mathcal{R} be some relation on a set A, and let \mathcal{S} be a transitive relation containing \mathcal{R} . Show that $\mathcal{R} \circ \mathcal{R} \subseteq S$.
- (b) Let $f: A \to B$ and $g: B \to C$ be two functions for some nonempty sets A, B, and C. Without assuming that $g \circ f$ is a function, show that if $(a, c_1), (a, c_2) \in g \circ f$, then $c_1 = c_2$, where $a \in A$, $c_1, c_2 \in C$.

3. (4 pts. each)

- (a) Let $a_1 = 1$, $a_2 = 1$, and $a_{n+2} = a_{n+1} + a_n$ for all $n \in \mathbb{N}$. Show that a_{3n} is an even number for all natural number n.
- (b) Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function given by f(a, b) = a + b for all $a, b \in \mathbb{N}$. Decide whether f is one-to-one and onto \mathbb{N} .

4. (4+2 pts.) Let A and B be two disjoint denumerable sets. Assume that $f : \mathbb{N} \to A$ and $g : \mathbb{N} \to B$ are two bijections. Define $h : \mathbb{N} \to A \cup B$ by

$$h(x) = \begin{cases} f\left(\frac{x+1}{2}\right) & \text{if } x \text{ is odd,} \\ g\left(\frac{x}{2}\right) & \text{if } x \text{ is even.} \end{cases}$$

- (a) Show that h is bijection.
- (b) Show that $A \cup B$ is countable.

5. (4+4+2 pts.)

- (a) Show that $A = \left\{ \frac{1}{3x+1} : x \in \mathbb{N} \right\}$ is countable.
- (b) Show that $B = (3, 4) \subseteq \mathbb{R}$ is uncountable.
- (c) What is the cardinality of A and B?