Kuwait University

Faculty of Science
Department of Mathematics

Math 250
 Foundations of Mathematics

Spring 2022/2023
Final Exam
Monday, May 15, 2023

Duration 2 hours (This exam contains 6 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Total	

1. (4 pts.) Let $A=(3,4) \cup[5,6)$. Without using the horizontal line test, show that $A \approx(0,1)$ and find its cardinality.
2. (4 pts.) Let $a_{1}=1, a_{2}=1$ and $a_{n+2}=a_{n+1}+a_{n}$ for all $n \in \mathbb{N}$. Show that $a_{3 n+1}$ is an odd number for all natural number n.
3. (4 pts.) Show that A is a countable set, where

$$
A=\left\{\frac{1}{2 k+3}: k \in \mathbb{N}\right\} .
$$

4. (8 pts.)

(a) Let $f: A \rightarrow \mathbb{N}$ be a function defined by $f((m, n))=m$, where $A=\{(m, n) \in \mathbb{N} \times \mathbb{R}: n=m \pi\}$. Show that f is a bijection.
(b) Let $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function given by $g(a, b)=a+b$ for all $a, b \in \mathbb{N}$. Decide whether g is one-to-one and onto \mathbb{N}.

5. (8 pts.)

(a) Let A, B and C be three nonempty sets. Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: B \rightarrow C$ be any three functions with $g \circ f=h \circ f$. Show that if f is onto B, then $g=h$.
(b) Let A be a set so that $f: \mathbb{N} \rightarrow A$ is a bijection. For any element $x \notin A$, use the one-to-one function $g: \mathbb{N} \rightarrow A \cup\{x\}$ defined by

$$
g(n)=\left\{\begin{array}{ll}
x & \text { if } n=1 \\
f(n-1) & \text { if } n>1
\end{array},\right.
$$

to show that $A \cup\{x\}$ is countable.
6. (10 pts.) Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijection defined by $f((m, n))=2^{m-1}(2 n-1)$.
(a) Show that if $A \approx C$ and $B \approx D$, then $A \times B \approx C \times D$.
(b) Show that if A and B are two denumerable sets, then $A \times B$ is denumerable as well.
(c) Find the inverse image of $Y=\{5,8\}$.

- (2 pts.) Bonus Question:

Let \mathcal{R} be some relation on a nonempty set A, and let \mathcal{S} be a transitive relation containing \mathcal{R}. Show that $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{S}$.

