

KUWAIT UNIVERSITY

Kuwait University Faculty of Science Department of Mathematics

Math 250 Foundations of Mathematics Spring 2022/2023

Final Exam Monday, May 15, 2023

Name					
ID Number					

 $\underline{\mathbf{Duration}}\ \mathbf{2}$ hours (This exam contains 6 questions).

Section No.	Instructor Name			
1	Dr. Abdullah Alazemi			

Give full reasons for your answer and State clearly any Theorem you use.

40

1. (4 pts.) Let $A = (3,4) \cup [5,6)$. Without using the horizontal line test, show that $A \approx (0,1)$ and find its cardinality.

2. (4 pts.) Let $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n$ for all $n \in \mathbb{N}$. Show that a_{3n+1} is an odd number for all natural number n.

3. (4 **pts.**) Show that A is a countable set, where

$$A = \bigg\{ \frac{1}{2k+3} : k \in \mathbb{N} \bigg\}.$$

- 4. (8 pts.)
 - (a) Let $f : A \to \mathbb{N}$ be a function defined by f((m, n)) = m, where $A = \{(m, n) \in \mathbb{N} \times \mathbb{R} : n = m\pi\}$. Show that f is a bijection.
 - (b) Let $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function given by g(a, b) = a + b for all $a, b \in \mathbb{N}$. Decide whether g is one-to-one and onto \mathbb{N} .

- 5. (8 pts.)
 - (a) Let A, B and C be three nonempty sets. Let $f : A \to B, g : B \to C$ and $h : B \to C$ be any three functions with $g \circ f = h \circ f$. Show that if f is **onto** B, then g = h.
 - (b) Let A be a set so that $f : \mathbb{N} \to A$ is a bijection. For any element $x \notin A$, use the one-to-one function $g : \mathbb{N} \to A \cup \{x\}$ defined by

$$g(n) = \begin{cases} x & \text{if } n = 1\\ f(n-1) & \text{if } n > 1 \end{cases},$$

to show that $A \cup \{x\}$ is countable.

- **6.** (10 pts.) Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection defined by $f((m, n)) = 2^{m-1}(2n-1)$.
 - (a) Show that if $A \approx C$ and $B \approx D$, then $A \times B \approx C \times D$.
 - (b) Show that if A and B are two denumerable sets, then $A \times B$ is denumerable as well.
 - (c) Find the inverse image of $Y = \{5, 8\}$.

• (2 pts.) Bonus Question:

Let \mathcal{R} be some relation on a nonempty set A, and let \mathcal{S} be a transitive relation containing \mathcal{R} . Show that $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{S}$.