Kuwait University
Faculty of Science

Department of Mathematics

Math 250
 Foundations of Mathematics
 Summer 2022/2023
 Final Exam
 July 22, 2023

Name									Serial Number	
ID Number										

Duration 2 hours (This exam contains 5 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

1. (6 pts.)
(a) Prove or disprove: For any two sets A and B, if $A \times B=\phi$, then A or B is the emptyset.
(b) Let \mathcal{R} be a relation on \mathbb{N} so that $a \mathcal{R} b \Leftrightarrow a \mid b$ for all $a, b \in \mathbb{N}$. Determine if \mathcal{R} is an antisymmetric relation on \mathbb{N}.
2. (7 pts.)
(a) Let \mathcal{R} be some relation on a nonempty set A, and let \mathcal{S} be a transitive relation containing \mathcal{R}. Show that $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{S}$.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions for some nonempty sets A, B, and C. Without assuming that $g \circ f$ is a function, show that if $\left(x, z_{1}\right),\left(x, z_{2}\right) \in g \circ f$, then $z_{1}=z_{2}$, where $x \in A$ and $z_{1}, z_{2} \in C$.
3. (8 pts.) Let $\theta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijection defined by $\theta((m, n))=2^{m-1}(2 n-1)$. You may use the fact: $A \approx C$ and $B \approx D$ implies $A \times B \approx C \times D$.
(a) Show that if A and B are two denumerable sets, then $A \times B$ is a countable set.
(b) What is the cardinality of $A \times B$?
(c) Find the inverse image $\theta^{-1}(Y)$, where $Y=\{3,12\}$.
4. (9 pts.)
(a) Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function given by $f(a, b)=a+b$ for all $a, b \in \mathbb{N}$. Decide whether f is one-to-one and onto \mathbb{N}.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(a, b)=(a+b, a-b)$. Is f a bijection? Explain.
5. (10 pts.)
(a) Let $a, b, c, d \in \mathbb{R}$ so that $a<b$ and $c<d$. Let f denote the relation from (a, b) to (c, d) defined for any $x \in(a, b)$ by

$$
f(x)=\frac{d-c}{b-a}(x-a)+c
$$

Determine if f is onto function.
(b) Let $A=(1,2) \cup[5,7)$. Provide a function g that can be used to show that $A \approx(0,1)$. Do not prove that g is a bijection.

