

Kuwait University Faculty of Science Department of Mathematics

Math 250 Foundations of Mathematics Summer 2022/2023

Final Exam July 22, 2023

Name						Serial Number
ID Number						

Duration 2 hours (This exam contains 5 questions).

Section No.	Instructor Name
1	Dr. Abdullah Alazemi

Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	40

1. (6 pts.)

- (a) Prove or disprove: For any two sets A and B, if $A \times B = \phi$, then A or B is the emptyset.
- (b) Let \mathcal{R} be a relation on \mathbb{N} so that $a\mathcal{R}b \Leftrightarrow a \mid b$ for all $a, b \in \mathbb{N}$. Determine if \mathcal{R} is an antisymmetric relation on \mathbb{N} .

- 2. (7 pts.)
 - (a) Let \mathcal{R} be some relation on a nonempty set A, and let \mathcal{S} be a transitive relation containing \mathcal{R} . Show that $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{S}$.
 - (b) Let $f: A \to B$ and $g: B \to C$ be two functions for some nonempty sets A, B, and C. Without assuming that $g \circ f$ is a function, show that if $(x, z_1), (x, z_2) \in g \circ f$, then $z_1 = z_2$, where $x \in A$ and $z_1, z_2 \in C$.

- **3.** (8 pts.) Let $\theta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection defined by $\theta((m, n)) = 2^{m-1}(2n-1)$. You may use the fact: $A \approx C$ and $B \approx D$ implies $A \times B \approx C \times D$.
 - (a) Show that if A and B are two denumerable sets, then $A \times B$ is a countable set.
 - (b) What is the cardinality of $A \times B$?
 - (c) Find the inverse image $\theta^{-1}(Y)$, where $Y = \{3, 12\}$.

- 4. (9 pts.)
 - (a) Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function given by f(a, b) = a + b for all $a, b \in \mathbb{N}$. Decide whether f is one-to-one and onto \mathbb{N} .
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(a, b) = (a + b, a b). Is f a bijection? Explain.

5. (10 pts.)

(a) Let $a, b, c, d \in \mathbb{R}$ so that a < b and c < d. Let f denote the relation from (a, b) to (c, d) defined for any $x \in (a, b)$ by

$$f(x) = \frac{d-c}{b-a}(x-a) + c.$$

Determine if f is onto function.

(b) Let $A = (1,2) \cup [5,7)$. Provide a function g that can be used to show that $A \approx (0,1)$. Do not prove that g is a bijection.

.