1. (4 pts.) Let P and Q be two propositional forms. Show that $P \Rightarrow Q$ is equivalent to its contrapositive, but it is not equivalent to its converse.

2. (2.5+2.5 pts.)

- (a) Let P(x) be an open sentence with a variable $x \in \mathcal{U}$ for some universe \mathcal{U} . Show that the nagation of " $(\exists x)[P(x)]$ " is equivalent to " $(\forall x)[\sim P(x)]$ "
- (b) Find a denial for " $(\forall x)(\exists y) \Big[\Big((x \le y 1) \lor (x = y) \Big) \land (x > 1) \Big]$ "

3. (2+3+3 pts.)

- (a) Let $a, b \in \mathbb{Z}$. Use a contrapositive proof to show that if ab-odd, then a-odd and b-odd.
- (b) Show that the set of primes in \mathbb{N} is infinite.
- (c) Let $A = \{ 9^n : n \in \mathbb{Z} \}$ and $B = \{ 3^n : n \in \mathbb{Z} \}$. Show that $A \subsetneqq B$.

4. (2+3+3 pts.)

- (a) Let $A = \{1, \{2\}, 3\}$. Compute the power set of $A, \mathcal{P}(A)$.
- (b) Show that if A and B are two sets, then $\widetilde{A \cap B} = \widetilde{A} \cup \widetilde{B}$.
- (c) Suppose that A and B are two nonempty sets. Show that if $A B = \phi$ then $A \cap B = A$.