1. (4 pts.) Let P and Q be two propositional forms. Show that $P \Rightarrow Q$ is equivalent to its contrapositive, but it is not equivalent to its converse.

Solution:

(a) Let $P(x)$ be an open sentence with a variable $x \in \mathcal{U}$ for some universe \mathcal{U}. Show that the nagation of " $(\exists x)[P(x)] "$ is equivalent to $"(\forall x)[\sim P(x)] "$
(b) Find a denial for " $(\forall x)(\exists y)[((x \leq y-1) \vee(x=y)) \wedge(x>1)] "$

Solution:

3. $(2+3+3$ pts. $)$

(a) Let $a, b \in \mathbb{Z}$. Use a contrapositive proof to show that if $a b$-odd, then a-odd and b-odd.
(b) Show that the set of primes in \mathbb{N} is infinite.
(c) Let $A=\left\{9^{n}: n \in \mathbb{Z}\right\}$ and $B=\left\{3^{n}: n \in \mathbb{Z}\right\}$. Show that $A \varsubsetneqq B$.

Solution:

4. $(2+3+3$ pts. $)$

(a) Let $A=\{1,\{2\}, 3\}$. Compute the power set of $A, \mathcal{P}(A)$.
(b) Show that if A and B are two sets, then $\widetilde{A \cap B}=\widetilde{A} \cup \widetilde{B}$.
(c) Suppose that A and B are two nonempty sets. Show that if $A-B=\phi$ then $A \cap B=A$.

Solution:

