1. $(3+2$ pts. $)$
(a) Let $\mathcal{A}=\left\{A_{i}: i \in \mathcal{I}\right\}$ be an indexed family of sets. Show that $\widetilde{\bigcup_{i \in \mathcal{I}} A_{i}}=\bigcap_{i \in \mathcal{I}} \widetilde{A_{i}}$.
(b) Let $\mathcal{U}=\mathbb{N}$ and $\mathcal{I}=\mathbb{N}$. Define $A_{i}=\mathbb{N}-\{1,2, \cdots, i\}$ for all $i \in \mathcal{I}$. Find: $\bigcup_{i \in \mathcal{I}} \widetilde{A_{i}}$.

Solution:

2. $(3+2$ pts. $)$

(a) Show that for all $n \in \mathbb{N}$,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2} .
$$

(b) Express the terms of $\left(2 x-4 y z^{2}\right)^{5}$ for $x, y, z \in \mathbb{R}$.

Solution:

3. $(3+3+2$ pts.)

(a) Let A, B and C be sets. Let $\mathcal{R} \subseteq A \times B, \mathcal{S} \subseteq B \times C$. Show that $(\mathcal{S} \circ \mathcal{R})^{-1}=\mathcal{R}^{-1} \circ \mathcal{S}^{-1}$.
(b) Let $m \neq 0$ be a fixed integer. Show that the relation \equiv_{m} is an equivalence relation on \mathbb{Z}.
(c) Let \mathcal{R} be a relation on a nonempty set A. Prove that $\mathcal{R} \cup \mathcal{R}^{-1}$ is symmetric.

Solution:

4. $(\mathbf{3 + 2 + 2}$ pts.) Let A and B be two nonempty sets and $f: A \rightarrow B$ is a bijection mapping.
(a) Show that f^{-1} is a function from B to A.
(b) Show that f^{-1} is one-to-one.
(c) Show that f^{-1} is a bijection from B to A.

Solution:

