Kuwait University
Faculty of Science
Department of Mathematics

Abstract Algebra I
 0410-261
 Final (On-Line) Exam

Monday, September 28, 2020
Spring 2019/2020

Duration 2 hours [11:00-13:00] (This exam contains 5 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full reasons for your answer and State clearly any Theorem you use.
You are not allowed to open books/notes or any similar resources during the exam.

Good Luck

1. $(\mathbf{2}+\mathbf{3}+\mathbf{3}$ pts. $)$ Let G be a group of a finite order.
(a) Show that G has a unique identity.
(b) Show that if H and K are two subgroups of G, then $|H \cap K|$ divides $|G|$.
(c) Show that if G is a non-abelian group of order 10 , then G hsa an element of order 5 .
2. $(2+3$ pts. $)$
(a) List the isomorphism class representatives of abelian groups of order 100.
(b) Let G and H be two gourps. Show that if $\theta: G \rightarrow H$ is a group homomorphism with $\operatorname{ker}(\theta)=\left\{e_{G}\right\}$, then θ is one-to-one.
3. $(\mathbf{2}+\mathbf{3} \mathbf{p t s}$. $)$ Let H be a subgroup of a finite group G with $[G: H]=2$
(a) Show that H is a normal subgroup of G.
(b) Compute the order of the quotient group G / H.
4. ($\mathbf{3}$ pts. each) Let G and H be two isomorphic groups.
(a) Show that if $\theta: G \rightarrow H$ is an isomorphism then $\theta(G) \leq H$.
(b) Show that if G is abelian, then H is abelian as well.
(c) Show that if $f: G \rightarrow H$ is an isomorphism and B is a normal subgroup of H, then the subgroup $A=f^{-1}(B)$ of G is also normal in G.
(d) Show that if $|G|=p^{2}$ (p is prime number), then G has at least one subgroup of order p.
5. (3 pts. each) Let $G L_{n}(\mathbb{R})=\{$ all $n \times n$ nonsingular matrices with real entries $\}$ be a group with the operation of matrix multiplication.
(a) Show that $S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}):|A|=1\right\}$ is a subgroup of $G L_{n}(\mathbb{R})$.
(b) Find the centralizer of $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ in $G L_{2}(\mathbb{R})$, denoted as $C(X)$.
(c) Show that $\theta: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ defined by $\theta(A)=|A|$ for each $A \in G L_{n}(\mathbb{R})$ is a homomorphism onto \mathbb{R}^{*}.
(d) Use the Fundamental Homomorphism Theorem to show that $G L_{n}(\mathbb{R}) / S L_{n}(\mathbb{R})$ is isomorphic to \mathbb{R}^{*}.
