

Kuwait University Faculty of Science Department of Mathematics

Math 261 Abstract Algebra I Fall 2021/2022

Final Exam Monday, Jan 24, 2022

Name					
ID Number					

<u>Duration</u> 2 hours [11:00 am - 01:00 pm] (This exam contains 5 questions).

Section No.	Instructor Name			
1	Dr. Abdullah Alazemi			

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	40

- 1. (3+3+2 pts.) Let $GL_n(\mathbb{R}) = \{ \text{ all } n \times n \text{ nonsingular matrices with real entries} \}$ be a group with the operation of matrix multiplication.
 - (a) Show that $SL_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) : |A| = 1 \}$ is a subgroup of $GL_n(\mathbb{R})$.
 - (b) Show that $\theta : GL_n(\mathbb{R}) \to \mathbb{R}^*$ defined by $\theta(A) = |A|$ for each $A \in GL_n(\mathbb{R})$ is a homomorphism onto \mathbb{R}^* .
 - (c) Use the Fundamental Homomorphism Theorem to show that $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ is isomorphic to \mathbb{R}^* .
- 2. (3+3+2 pts.)
 - (a) Find the centralizer of $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$, denoted as C(X).
 - (b) Let φ denote the Euler phi-function. Compute $\varphi(21)$.
 - (c) Simplify $([1], (1 \ 2 \ 3)^{-1})^{-1}([1], e)([0], (1 \ 3 \ 2))$ in $\mathbb{Z}_4 \times S_4$.

3. (4 pts. each)

•

- (a) Let G and H be two groups with a homomorphism $\theta : G \to H$. Show that the subgroup ker θ is normal in G.
- (b) Let G be a group with a normal subgroup N. Show that the mapping $\theta : G \to G/N$ defined by $\theta(a) = aN$ for each $a \in G$ is a homomorphism of G onto G/N, and ker $\theta = N$.
- **4.** (4 pts. each) Let a be a fixed element in a group G. Define $\gamma_a: G \to G$ by $\gamma_a(x) = a x a^{-1}$. Then
 - (a) Show that γ_a is an isomorphism.
 - (b) Show that if $a, b \in G$, then $\gamma_a \gamma_b = \gamma_{ab}$.
- 5. (4 pts. each) Let G be a nonabelian group and let Z(G) denote the center of G.
 - (a) Show that the factor group G/Z(G) is not cyclic.
 - (b) Show that if |G| = pq where p and q are primes, then Z(G) is trivial.