

Kuwait University Faculty of Science Department of Mathematics

Math 261 Abstract Algebra I Fall 2021/2022

First Exam

Wednesday, Dec 1, 2021

Name					
ID Number					

 $\underline{\mathbf{Duration}}\ \mathbf{90}$ minutes (This exam contains 5 questions).

Section No.	Instructor Name		
1	Dr. Abdullah Alazemi		

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	50

- **1.** (10 pts.) Let S_n denote the symmetric group on $\{1, 2, ..., n\}$ for positive integer n.
 - (a) Compute $(1 \ 5)(2 \ 5 \ 3)(4 \ 6)(2 \ 3 \ 5)(4 \ 6)$.
 - (b) Find x in

$$(1 \ 2 \ 3) x (4 \ 6 \ 5) = (4 \ 5 \ 6)$$

- (c) Show that S_n is non-abelian for $n \ge 3$.
- **2.** (10 pts.) Let G be a group with the identity e.
 - (a) Show that the inverse of each element in G is unique.
 - (b) Show that if $x^2 = e$ for every $x \in G$, then G must be abelian.
- **3.** (10 pts.) Let G be a permutation group on a set S and let $T \subseteq S$.
 - (a) Show that $G_{(T)}$, the setwise stabilizer of T, is a subgroup of G.
 - (b) If $S = \{1, 2, \dots, 10\}$ and $T = \{2, 3, 5\}$, find $G_{(T)}$ and its order.
- 4. (12 pts.)
 - (a) Show that if x is an odd integer, then $x^2 \equiv 1 \pmod{8}$.
 - (b) Let H be a subgroup of a group G. For $a, b \in G$, let $a \sim b$ if and only if $ab^{-1} \in H$. Show that \sim is an equivalence relation on G.
- 5. (8 pts.) Let $\mathcal{B}(X)$ denote the family of all subsets of a nonempty set X. For any $A, B \in \mathcal{B}(X)$, define the operation \triangle by

$$A \bigtriangleup B = (A - B) \cup (B - A).$$

Assuming that \triangle is an associative operation on $\mathcal{B}(X)$, show that $\mathcal{B}(X)$ is an abelian group with the operation \triangle .