Kuwait University

Faculty of Science

Department of Mathematics

Math 261
 Abstract Algebra I
 Fall 2021/2022

First Exam
Wednesday, Dec 1, 2021

Duration 90 minutes (This exam contains 5 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

1. (10 pts.) Let S_{n} denote the symmetric group on $\{1,2, \ldots, n\}$ for positive integer n.
(a) Compute $\left(\begin{array}{llllll}1 & 5\end{array}\right)(2 \quad 5 \quad 3)(4 \quad 6)(2 \quad 3 \quad 5)(4 \quad 6)$.
(b) Find x in

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) x\left(\begin{array}{lll}
4 & 6 & 5
\end{array}\right)=\left(\begin{array}{lll}
4 & 5 & 6
\end{array}\right)
$$

(c) Show that S_{n} is non-abelian for $n \geq 3$.
2. (10 pts.) Let G be a group with the identity e.
(a) Show that the inverse of each element in G is unique.
(b) Show that if $x^{2}=e$ for every $x \in G$, then G must be abelian.
3. (10 pts.) Let G be a permutation group on a set S and let $T \subseteq S$.
(a) Show that $G_{(T)}$, the setwise stabilizer of T, is a subgroup of G.
(b) If $S=\{1,2, \ldots, 10\}$ and $T=\{2,3,5\}$, find $G_{(T)}$ and its order.
4. (12 pts.)
(a) Show that if x is an odd integer, then $x^{2} \equiv 1(\bmod 8)$.
(b) Let H be a subgroup of a group G. For $a, b \in G$, let $a \sim b$ if and only if $a b^{-1} \in H$.

Show that \sim is an equivalence relation on G.
5. (8 pts.) Let $\mathcal{B}(X)$ denote the family of all subsets of a nonempty set X. For any $A, B \in \mathcal{B}(X)$, define the operation \triangle by

$$
A \triangle B=(A-B) \cup(B-A)
$$

Assuming that \triangle is an associative operation on $\mathcal{B}(X)$, show that $\mathcal{B}(X)$ is an abelian group with the operation \triangle.

