Kuwait University

Faculty of Science
Department of Mathematics
جامعة الكويت KUWAIT UNIVERSITY

Math 261
 Abstract Algebra I
 Summer 2022/2023

First Exam
June 15, 2023

Duration 60 minutes (This exam contains 4 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full reasons for your answer and State clearly any Theorem you use.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. ($\mathbf{1 0} \mathbf{~ p t s .) ~ W h i c h ~ o f ~ t h e ~ f o l l o w i n g ~ e q u a t i o n s ~ d e f i n e ~ o p e r a t i o n s ~ o n ~ t h e ~ s e t ~ o f ~ i n t e g e r s ? ~ O f ~ t h o s e ~ t h a t ~}$ do, which are associative? Which are commutative? Which have identity element?
(a) $a * b=\frac{a+b}{2}$.
(b) $a * b=a b+1$.
(c) $a * b=a$.
2. ($\mathbf{1 0} \mathbf{p t s}$.) Consider S_{6}, the symmetric group on $\{1,2, \ldots, 6\}$, in what follows.
(a) Solve for x in

$$
\left(\begin{array}{lll}
1 & 6 & 4
\end{array}\right)\left(\begin{array}{lllll}
2 & 3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 6 & 4
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 5
\end{array}\right) x .
$$

(b) Find the cyclic decomposition of $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{-1}\left(\begin{array}{lll}4 & 5 & 6\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$.
(c) Decide whether $\alpha=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{lll}2 & 4 & 6\end{array}\right)$ is an even or an odd permutation.
3. ($\mathbf{1 0} \mathbf{~ p t s .)}$ Let G be a group with a binary operation $*$ with the identity e.
(a) Show that the inverse of each element in G is unique.
(b) Let H be a nonempty subset of G such that $a, b \in H$ implies $a b^{-1} \in H$. Show that H is a subgroup of H.
4. (10 pts.)
(a) Let $G=\left\{A \in M_{2 \times 2}: \operatorname{det} A=1\right\}$. Show that G with the operation of matrix multiplication is a group.
(b) Let $H=\{1,-1\}$. Show that H is a subgroup of $\left(\mathbb{R}^{*}, \cdot\right)$ and find its order.

