

Math 261 Abstract Algebra I

Fall 2021/2022

Second Exam Sunday, Jan 09, 2022

Name					
ID Number					

<u>Duration</u> 90 minutes (This exam contains 5 questions).

Section No.	Instructor Name			
1	Dr. Abdullah Alazemi			

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	50

- **1.** (10 pts.) Let $\mathbb{U}_n = \{ [k] : 1 \le k < n \text{ and } gcd(k, n) = 1 \}.$
 - (a) Use the Euclidean algorithm to find the inverse of [21] as the least nonnegative integer in \mathbb{U}_{100} .
 - (b) Find the order of \mathbb{U}_{100} .
- **2.** (10 pts.) Let G be a group.
 - (a) Show that if G is cyclic, then G is abelian.
 - (b) Show that if $a \in G$ is a generator for G, then a^{-1} is a generator for G as well.
- **3.** (10 pts.) Let H be a subgroup of a group G and let $a \in G$. Then
 - (a) Show that aH = H if and only if $a \in H$.
 - (b) If $H = \langle (1 \ 2 \ 3) \rangle \times \langle [1] \rangle$ and $G = S_3 \times \mathbb{Z}_2$, compute all left cosets of H in G and find its index.
- **4.** (10 pts.) Let G be a group.
 - (a) Show that if $H \leq G$ with index 2, then $aHa^{-1} = H$ for any $a \in G$.
 - (b) Use Fermat's Little Theorem to find the least nonnegative integer x so that $5^{2022} \equiv x \pmod{11}$.
 - (c) Suppose that G is a non-abelian group of order 10. Show that G has an element of order 5.
- 5. (10 pts.)
 - (a) Let $\theta: G \to H$ be a group homomorphism mapping. Show that $\theta(e_G) = e_H$ and $\theta(a^{-1}) = \theta(a)^{-1}$ for each $a \in G$.
 - (b) Show that the group of integers \mathbb{Z} is isomorphic to the multiplicative group $M = \{ 2^m : m \in \mathbb{Z} \}$.