Kuwait University

Faculty of Science

Department of Mathematics

Math 261 Abstract Algebra I
 Fall 2021/2022

Second Exam

Sunday, Jan 09, 2022

Duration 90 minutes (This exam contains 5 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

1. (10 pts.) Let $\mathbb{U}_{n}=\{[k]: 1 \leq k<n$ and $\operatorname{gcd}(k, n)=1\}$.
(a) Use the Euclidean algorithm to find the inverse of [21] as the least nonnegative integer in \mathbb{U}_{100}.
(b) Find the order of \mathbb{U}_{100}.
2. ($\mathbf{1 0} \mathbf{~ p t s .) ~ L e t ~} G$ be a group.
(a) Show that if G is cyclic, then G is abelian.
(b) Show that if $a \in G$ is a generator for G, then a^{-1} is a generator for G as well.
3. ($\mathbf{1 0} \mathbf{p t s}$.) Let H be a subgroup of a group G and let $a \in G$. Then
(a) Show that $a H=H$ if and only if $a \in H$.
(b) If $H=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \times\langle[1]\rangle$ and $G=S_{3} \times \mathbb{Z}_{2}$, compute all left cosets of H in G and find its index.
4. ($\mathbf{1 0} \mathbf{~ p t s .) ~ L e t ~} G$ be a group.
(a) Show that if $H \leq G$ with index 2 , then $a H a^{-1}=H$ for any $a \in G$.
(b) Use Fermat's Little Theorem to find the least nonnegative integer x so that $5^{2022} \equiv x(\bmod 11)$.
(c) Suppose that G is a non-abelian group of order 10 . Show that G has an element of order 5 .
5. (10 pts .)
(a) Let $\theta: G \rightarrow H$ be a group homomorphism mapping. Show that $\theta\left(e_{G}\right)=e_{H}$ and $\theta\left(a^{-1}\right)=\theta(a)^{-1}$ for each $a \in G$.
(b) Show that the group of integers \mathbb{Z} is isomorphic to the multiplicative group $M=\left\{2^{m}: m \in \mathbb{Z}\right\}$.
