Abstract Algebra 0410-262 Final Exam

Thursday, December 20, 2018
Fall 2018/19

Section No. رق الشعبة	Instructor Name أستاذ المقر
01 A	Dr. Abdullah Alazemi

Instructions to students
Time allowed: 2 hours.

ممنوع دخول الآلات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.
Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Total	

Good Luck

1. (3 pts. each)
(a) Show that if A is an abelian group with addition as the operation, and an operation $*$ is defined on A by $a * b=0$ for all $a, b \in A$, then $(A,+, *)$ is a commutative ring.
(b) Show that the integral domain $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a field.
(c) Prove that if R and S are isomorphic rings and R is commutative, then S is commutative as well.
2. $(3+2+2+2$ pts. $)$
(a) [The Remainder Theorem]: Show that if $f(x) \in F[x]$ and $c \in F$ (F is a field), then the remainder in the division of $f(x)$ by $x-c$ is $f(c)$.
(b) Use the remainder theorem to compute the remainder when dividing $f(x)=x^{3}-x^{2}+x+3$ by $x-4$ in $\mathbb{Z}_{5}[x]$.
(c) Is -1 a root for $f(x)=x^{3}-x^{2}+x+3$.
(d) $f(x)=x^{3}-x^{2}+x+3$ irreducible over \mathbb{Z}_{5} ? Why?
3. (3 pts. each)
(a) Express $f(x)=x^{3}+x$ as a product of irreducible polynomials in $\mathbb{Z}_{5}[x]$.
(b) Let $\theta: R \rightarrow S$ be a ring homomorphism. Assuming that $\operatorname{ker} \theta$ is a subring of R, show that $\operatorname{ker} \theta$ is an ideal of R.
(c) Let θ be a homomorphism of a ring R with unity e onto a nonzero ring S. Let u be a unit in R. Show that $\theta(u)$ is a unit in S.
4. (3 pts. each) Let I and J be two ideals of a ring R, and let $I+J$ be the subring of R defined by $I+J=\{a+b: a \in I$ and $b \in J\}$.
(a) Show that $I+J$ is an ideal of R containing each of I and J.
(b) Show that if $J \subseteq I$, then $I / J=\{i+J: i \in I\}$ is an ideal of R / J.
5. $(3+1+3+3$ pts. each $)$
(a) Find all $c \in \mathbb{Z}_{3}$ such that $\mathbb{Z}_{3}[x] /\left(x^{2}+c\right)$ is a field.
(b) Find all $c \in \mathbb{Z}_{3}$ such that $\left(x^{2}+c\right)$ is a maximal ideal of $\mathbb{Z}_{3}[x]$.
(c) Let $\alpha \in \mathbb{Q}[x] /\left(x^{2}-7\right)$ be a root of the irreducible polynomial $x^{2}-7 \in \mathbb{Q}[x]$. Express $(1+\alpha)^{2}$ in the form $a+b \alpha$ with $a, b \in \mathbb{Q}$.
(d) Let $\mathbb{Z}_{2}(\alpha)=\{0,1, \alpha, \alpha+1\}$ be a field isomorphic to the field $\mathbb{Z}_{2}[x] / x^{2}+x+1$, where α is a root of $x^{2}+x+1$. Construct the multiplication table of $\mathbb{Z}_{2}(\alpha)$.
