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Time allowed: 1.25 hours. . ©K
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This exam contains 4 questions. .
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Calculators and communication devices are not allowed in the examination room.
Give full reasons for your answer. State clearly any Theorem you use.
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1. (2+2 pts.) Let R be a ring with the zero 0.

(a) Show that for all a œ R, we have 0a = 0.

(b) Show that a2 ≠ b2 = (a + b)(a ≠ b) for all a, b œ R if and only if R is commutative.

2. (1+2+3 pts.)

(a) Find all zero divisors in Z6.

(b) Solve the equation x2 ≠ 4 = 0 in Z5.

(c) Let p be a prime. Show that in the ring Zp, we have (a+b)p = ap +bp for all a, b œ Zp.

3. (3+4 pts.) Let R be a ring.

(a) The center of R is defined by Z(R) = { x œ R : ax = xa for all a œ R }. Show that
Z(R) is a subring of R.

(b) Prove that if C denotes any collection of subrings R, then the intersection of all of
the rings in C is also a subring of R. What about the union of subrings of R?

4. (2+2+4 pts.)

(a) Show that a division ring contains exactly two idempotent elements.

(b) Let R =
Ó

a + b
Ô

2 : a, b œ Q
Ô

and S =
Ó

a + b
Ô

3 : a, b œ Q
Ô

be two subfields of R.
Verify that ◊ : R æ S defined by ◊

1
a + b

Ô
2

2
= a+b

Ô
3 is not a ring homomorphism.

(c) Suppose that R and S are two isomorphic rings and that R is an integral domain.
Show that S is integral domain by showing that S is commutative ring with no zero
divisors and with a unity.


