Kuwait University
Faculty of Science

Department of Mathematics

Abstract Algebra II
 0410-262
 Second Exam

Monday, November 12, 2018
Fall 2018/19

Section No. أستاذ المقرر الشعبة	

Instructions to students

Time allowed: 1.25 hours.
This exam contains 4 questions.

ممنوع دخول الآلات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.

Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. (2+1 pts.) Let $f(x)=2+2 x$ and $g(x)=2+3 x-x^{2}$ in $\mathbb{Z}_{5}[x]$.
(a) Compute: $f(x) g(x)$ in $\mathbb{Z}_{5}[x]$.
(b) Compute: $10\left(f^{2}(x)-g(x)\right)$ in $\mathbb{Z}_{5}[x]$.
2. $\left(\mathbf{3}+\mathbf{2}+\mathbf{1}\right.$ pts. each) $\operatorname{In} \mathbb{Z}_{5}[x]$:
(a) Divide $f(x)=2 x^{4}+x^{2}-x+1$ by $g(x)=2 x-1$.
(b) Use the Remainder Theorem to determine the remainder when $h(x)=2 x^{5}-3 x^{3}+2 x+1$ is divided by $x-2$.
(c) Is -3 a root for $h(x)$ from part (b)? Explain.
3. $(3+2+2$ pts.)
(a) Determine whether $f(x)=x^{3}+x+1$ is irreducible over \mathbb{Z}_{3}. If $f(x)$ is reducible, then express it as a product of irreducible polynomials in $\mathbb{Z}_{3}[x]$.
(b) Use Eisenstein's Irreducibility Criterion to show that $f(x)=x^{2}+8 x-2$ is irreducible over \mathbb{Q}.
(c) Show that for a prime $p, f(x)=x^{p}+a \in \mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.

4. (3 pts. each)

(a) Show that if F is a field, then F has no ideals other than (0) and F.
(b) If R is a commutative ring and $a \in R$, show that $I_{a}=\{x \in R: a x=0\}$ is an ideal of R.
(c) Let $\theta: R \rightarrow S$ be a ring homomorphism. Show that if $\operatorname{ker} \theta=\left\{0_{R}\right\}$, then θ is one-to-one.

