

Kuwait University Faculty of Science Department of Mathematics

Abstract Algebra II

0410-262 Second Exam

Monday, November 12, 2018 Fall 2018/19

Instructions to students

Time allowed: 1.25 hours.

This exam contains 4 questions.

ممنوع دخول الألات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.

Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

تعليمات للطالب

وقت الإختبار: ساعة وربع. يحتوي هذا الإختبار على 4 أسئلة. **1.** (2+1 pts.) Let f(x) = 2 + 2x and $g(x) = 2 + 3x - x^2$ in $\mathbb{Z}_5[x]$.

- (a) Compute: f(x) g(x) in $\mathbb{Z}_5[x]$.
- (b) Compute: $10(f^2(x) g(x))$ in $\mathbb{Z}_5[x]$.
- **2.** (3+2+1 pts. each) In $\mathbb{Z}_5[x]$:
 - (a) Divide $f(x) = 2x^4 + x^2 x + 1$ by g(x) = 2x 1.
 - (b) Use the Remainder Theorem to determine the remainder when $h(x) = 2x^5 3x^3 + 2x + 1$ is divided by x 2.
 - (c) Is -3 a root for h(x) from part (b)? Explain.

3. (3+2+2 pts.)

- (a) Determine whether $f(x) = x^3 + x + 1$ is irreducible over \mathbb{Z}_3 . If f(x) is reducible, then express it as a product of irreducible polynomials in $\mathbb{Z}_3[x]$.
- (b) Use Eisenstein's Irreducibility Criterion to show that $f(x) = x^2 + 8x 2$ is irreducible over \mathbb{Q} .
- (c) Show that for a prime $p, f(x) = x^p + a \in \mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.

4. (3 pts. each)

- (a) Show that if F is a field, then F has no ideals other than (0) and F.
- (b) If R is a commutative ring and $a \in R$, show that $I_a = \{x \in R : ax = 0\}$ is an ideal of R.
- (c) Let $\theta: R \to S$ be a ring homomorphism. Show that if ker $\theta = \{0_R\}$, then θ is one-to-one.