1. $(2+2+4$ pts. $)$

(a) Let \mathbb{W} be the set of all nonsingular matrices in $M_{n \times n}(\mathbb{R})$. Decide whether \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{R})$.
(b) Let $\mathbb{W}=\left\{a+b x+c x^{2}: a=b=c\right\}$. Show that \mathbb{W} is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.
(c) Let \mathbf{T} be the linear operator on \mathbb{R}^{2} defined by $\mathbf{T}(x, y)=(2 x+y, x-y)$. Find $\mathcal{N}(\mathbf{T}), \mathcal{R}(\mathbf{T})$, $\operatorname{nullity}(\mathbf{T}), \operatorname{rank}(\mathbf{T})$, Decide whether \mathbf{T} is a bijection.

2. $(2+3+3$ pts. $)$

(a) Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 4 & 1 & 3\end{array}\right]$. Assume that $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{1}(\mathbb{R})$ is the linear defined by A using the standard ordered basis β and γ for $\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{P}_{1}(\mathbb{R})$, respectively. Evaluate $\mathbf{T}(g(x))$, where $g(x)=2 x^{2}-3 x+1$.
(b) Let \mathbf{T} be the operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathbf{T}(f(x))=f^{\prime}(x)$. Is \mathbf{T} diagonalizable? Explain.
(c) Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} so that for all $x, y \in \mathbb{V}$, $\langle\mathbf{T}(x), \mathbf{T}(y)\rangle=\langle x, y\rangle$. Show that if β is an orthonormal basis for \mathbb{V}, then so is $\mathbf{T}(\beta)$.
3. $(4+4$ pts. $)$
(a) Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{V}$ by $\mathbf{T}(x)=\langle x, y\rangle z$ for all $x \in \mathbb{V}$. Show that \mathbf{T} is linear, and evaluate $\mathbf{T}^{*}(x)$.
(b) Let \mathbf{T} be the linear operator on \mathbb{C}^{2} defined by $\mathbf{T}(x, y)=(2 x i+3 y, x-y)$. Evaluate $\mathbf{T}^{*}(1, i)$.
4. $(4+4$ pts. $)$
(a) Let $\mathbb{W}=\{(x+y, x, x+2 y): x, y \in \mathbb{R}\}$ be a set in \mathbb{R}^{3}. Show that \mathbb{W} is a subspace of \mathbb{R}^{3} and find an orthonormal basis for \mathbb{W}.
(b) Let \mathbb{V} be an inner product space, and let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an orthonormal basis for \mathbb{V}. Show that $y=\sum_{i=1}^{n}\left\langle y, x_{i}\right\rangle x_{i}$, for any $y \in \mathbb{V}$.
5. (5+5 pts.)
(a) Let \mathbf{T} be the linear operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathbf{T}(f)=f^{\prime}$, where $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for $\mathbb{P}_{1}(\mathbb{R})$.
(b) Let $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Show that A is orthogonally equivalent to a diagonal matrix, and find a diagonal matrix D such that $P^{t} A P=D$, for some orthogonal matrix P. [You do not need to compute $P]$.

