1. (2+2+4 pts.)

- (a) Let \mathbb{W} be the set of all nonsingular matrices in $M_{n \times n}(\mathbb{R})$. Decide whether \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{R})$.
- (b) Let $\mathbb{W} = \{ a + bx + cx^2 : a = b = c \}$. Show that \mathbb{W} is a subspace of $\mathbb{P}_2(\mathbb{R})$.
- (c) Let **T** be the linear operator on \mathbb{R}^2 defined by $\mathbf{T}(x, y) = (2x + y, x y)$. Find $\mathcal{N}(\mathbf{T})$, $\mathcal{R}(\mathbf{T})$, nullity(**T**), rank(**T**), Decide whether **T** is a bijection.

2. (2+3+3 pts.)

- (a) Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$. Assume that $\mathbf{T} : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_1(\mathbb{R})$ is the linear defined by A using the standard ordered basis β and γ for $\mathbb{P}_2(\mathbb{R})$ and $\mathbb{P}_1(\mathbb{R})$, respectively. Evaluate $\mathbf{T}(g(x))$, where $g(x) = 2x^2 3x + 1$.
- (b) Let **T** be the operator on $\mathbb{P}_1(\mathbb{R})$ defined by $\mathbf{T}(f(x)) = f'(x)$. Is **T** diagonalizable? Explain.
- (c) Let **T** be a linear operator on a finite-dimensional inner product space \mathbb{V} so that for all $x, y \in \mathbb{V}$, $\langle \mathbf{T}(x), \mathbf{T}(y) \rangle = \langle x, y \rangle$. Show that if β is an orthonormal basis for \mathbb{V} , then so is $\mathbf{T}(\beta)$.

- 3. (4+4 pts.)
 - (a) Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define $\mathbf{T} : \mathbb{V} \to \mathbb{V}$ by $\mathbf{T}(x) = \langle x, y \rangle z$ for all $x \in \mathbb{V}$. Show that \mathbf{T} is linear, and evaluate $\mathbf{T}^*(x)$.
 - (b) Let **T** be the linear operator on \mathbb{C}^2 defined by $\mathbf{T}(x, y) = (2xi + 3y, x y)$. Evaluate $\mathbf{T}^*(1, i)$.

- 4. (4+4 pts.)
 - (a) Let $\mathbb{W} = \{ (x + y, x, x + 2y) : x, y \in \mathbb{R} \}$ be a set in \mathbb{R}^3 . Show that \mathbb{W} is a subspace of \mathbb{R}^3 and find an orthonormal basis for \mathbb{W} .
 - (b) Let \mathbb{V} be an inner product space, and let $S = \{x_1, x_2, \cdots, x_n\}$ be an orthonormal basis for \mathbb{V} . Show that $y = \sum_{i=1}^n \langle y, x_i \rangle x_i$, for any $y \in \mathbb{V}$.

- 5. (5+5 pts.)
 - (a) Let **T** be the linear operator on $\mathbb{P}_1(\mathbb{R})$ defined by $\mathbf{T}(f) = f'$, where $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for $\mathbb{P}_1(\mathbb{R})$.
 - (b) Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Show that A is orthogonally equivalent to a diagonal matrix, and find a diagonal matrix D such that $P^tAP = D$, for some orthogonal matrix P. [You do not need to compute P].