Kuwait University
Faculty of Science

Department of Mathematics

Advanced Linear Algebra 0410-363
 Final Exam

Sunday, May 19, 2019
Spring 2018/19

Section No. رق الشعبة 01 A	Instructor Name
الستاذ المقرر Alazemi	

Instructions to students
Time allowed: 2 hours.
This exam contains 6 main questions.
ممنوع دخول الآلات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.

Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Total	

1. $(\mathbf{3}+\mathbf{3}$ pts. $)$ Let \mathbb{V} be an inner product space over a field \mathbf{F}. Show that:
(a) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$, for any $x, y, z \in \mathbb{V}$.
(b) For $x=(1, i), y=(2, i)$ in \mathbb{C}^{2}, define $\langle x, y\rangle=x A y^{*}$, where $A=\left[\begin{array}{cc}1 & i \\ -i & 2\end{array}\right]$. Compute $\langle x, y\rangle$.
2. $(4+2$ pts. $)$ Let β be a basis for a finite-dimensional inner product space \mathbb{V}.
(a) Show that if $\langle x, z\rangle=0$ for all $z \in \beta$, then $x=0$.
(b) Show that if $\langle x, z\rangle=\langle y, z\rangle$ for all $z \in \beta$, then $x=y$.
3. $(3+3$ pts.)
(a) Let \mathbf{T} be the linear operator on \mathbb{C}^{2} defined by $\mathbf{T}(a, b)=(a i+b, a-b)$. Evaluate \mathbf{T}^{*} at $x=(1, i)$.
(b) Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define the operator $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{V}$ by $\mathbf{T}(x)=\langle x, y\rangle z$ for all $x \in \mathbb{V}$. Evaluate $\mathbf{T}^{*}(x)$.
4. $(\mathbf{3}+\mathbf{3}+\mathbf{4} \mathbf{p t s}$.) Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} over a field \mathbf{F}. Then:
(a) If \mathbf{T} is normal and λ_{1} and λ_{2} are two distinct eigenvalues of \mathbf{T} with corresponding eigenvectors x_{1} and x_{2}, respectively, then x_{1} and x_{2} are orthogonal.
(b) If \mathbf{T} is self-adjoint, then every eigenvalue of \mathbf{T} is real.
(c) If $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}_{V}$ and β is an orthonormal basis for \mathbb{V}, then $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V}.
5. (6 pts.) Let $\mathbb{V}=\mathbb{P}_{1}(\mathbb{R})$ with an inner product defined by $\langle f(x), g(x)\rangle=\int_{0}^{1} f(x) g(x) d x$. Use the Gram-Schmidt process to replace the standard ordered basis $S=\{1, x\}$ by an orthonormal basis for $\mathbb{P}_{1}(\mathbb{R})$. Represent $h(x)=1+2 x$ as a linear combination of the vectors of the obtained orthonormal basis for $\mathbb{P}_{1}(\mathbb{R})$.
6. (6 pts.) Let \mathbf{T} be an operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathbf{T}(f)=f^{\prime}$, where $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for \mathbb{V}.
