Advanced Linear Algebra 0410-363 Final Exam Sunday, May 19, 2019 Spring 2018/19 | Student Name | | | | | | إسم الطالب | |-------------------|--|--|--|--|--|---------------------------------| | Student ID Number | | | | | | الرقم الجامعي للطالب | | | | | | | | الرقم التسلسلي
Serial Number | | Section No. وقم الشعبة | أستاذ المقرر Instructor Name | | | | | | |------------------------|------------------------------|--|--|--|--|--| | 01 A | Dr. Abdullah Alazemi | | | | | | Instructions to students تعليمات للطالب Time allowed: 2 hours. وقت الإختبار: ساعتين. This exam contains 6 main questions. يحتوي هذا الإختبار على 6 أسئلة رئيسية. Calculators and communication devices are not allowed in the examination room. | Question 1 | | |------------|--| | Question 2 | | | Question 3 | | | Question 4 | | | Question 5 | | | Question 6 | | | Total | | - 1. (3+3 pts.) Let \mathbb{V} be an inner product space over a field \mathbf{F} . Show that: - (a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$, for any $x, y, z \in \mathbb{V}$. - (b) For x = (1, i), y = (2, i) in \mathbb{C}^2 , define $\langle x, y \rangle = x A y^*$, where $A = \begin{bmatrix} 1 & i \\ -i & 2 \end{bmatrix}$. Compute $\langle x, y \rangle$. - **2.** (4+2 pts.) Let β be a basis for a finite-dimensional inner product space \mathbb{V} . - (a) Show that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then x = 0. - (b) Show that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then x = y. - 3. (3+3 pts.) - (a) Let **T** be the linear operator on \mathbb{C}^2 defined by $\mathbf{T}(a,b) = (ai + b, a b)$. Evaluate \mathbf{T}^* at x = (1,i). - (b) Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define the operator $\mathbf{T} : \mathbb{V} \to \mathbb{V}$ by $\mathbf{T}(x) = \langle x, y \rangle z$ for all $x \in \mathbb{V}$. Evaluate $\mathbf{T}^*(x)$. - **4.** (3+3+4 pts.) Let **T** be a linear operator on a finite-dimensional inner product space \mathbb{V} over a field **F**. Then: - (a) If **T** is normal and λ_1 and λ_2 are two distinct eigenvalues of **T** with corresponding eigenvectors x_1 and x_2 , respectively, then x_1 and x_2 are orthogonal. - (b) If T is self-adjoint, then every eigenvalue of T is real. - (c) If $\mathbf{TT}^* = \mathbf{T}^*\mathbf{T} = \mathbf{I}_V$ and β is an orthonormal basis for \mathbb{V} , then $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V} . - **5.** (6 **pts.**) Let $\mathbb{V} = \mathbb{P}_1(\mathbb{R})$ with an inner product defined by $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) \, dx$. Use the Gram-Schmidt process to replace the standard ordered basis $S = \{1, x\}$ by an orthonormal basis for $\mathbb{P}_1(\mathbb{R})$. Represent h(x) = 1 + 2x as a linear combination of the vectors of the obtained orthonormal basis for $\mathbb{P}_1(\mathbb{R})$. - **6.** (6 **pts.**) Let **T** be an operator on $\mathbb{P}_1(\mathbb{R})$ defined by $\mathbf{T}(f) = f'$, where $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for \mathbb{V} .