

## Advanced Linear Algebra 0410-363 Final Exam

Sunday, May 19, 2019 Spring 2018/19

| Student Name      |  |  |  |  |  | إسم الطالب                      |
|-------------------|--|--|--|--|--|---------------------------------|
| Student ID Number |  |  |  |  |  | الرقم الجامعي للطالب            |
|                   |  |  |  |  |  | الرقم التسلسلي<br>Serial Number |

| Section No. وقم الشعبة | أستاذ المقرر Instructor Name |  |  |  |  |  |
|------------------------|------------------------------|--|--|--|--|--|
| 01 A                   | Dr. Abdullah Alazemi         |  |  |  |  |  |

Instructions to students

تعليمات للطالب

Time allowed: 2 hours.

وقت الإختبار: ساعتين.

This exam contains 6 main questions.

يحتوي هذا الإختبار على 6 أسئلة رئيسية.

Calculators and communication devices are not allowed in the examination room.

| Question 1 |  |
|------------|--|
| Question 2 |  |
| Question 3 |  |
| Question 4 |  |
| Question 5 |  |
| Question 6 |  |
| Total      |  |

- 1. (3+3 pts.) Let  $\mathbb{V}$  be an inner product space over a field  $\mathbf{F}$ . Show that:
  - (a)  $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ , for any  $x, y, z \in \mathbb{V}$ .
  - (b) For x = (1, i), y = (2, i) in  $\mathbb{C}^2$ , define  $\langle x, y \rangle = x A y^*$ , where  $A = \begin{bmatrix} 1 & i \\ -i & 2 \end{bmatrix}$ . Compute  $\langle x, y \rangle$ .
- **2.** (4+2 pts.) Let  $\beta$  be a basis for a finite-dimensional inner product space  $\mathbb{V}$ .
  - (a) Show that if  $\langle x, z \rangle = 0$  for all  $z \in \beta$ , then x = 0.
  - (b) Show that if  $\langle x, z \rangle = \langle y, z \rangle$  for all  $z \in \beta$ , then x = y.
- 3. (3+3 pts.)
  - (a) Let **T** be the linear operator on  $\mathbb{C}^2$  defined by  $\mathbf{T}(a,b) = (ai + b, a b)$ . Evaluate  $\mathbf{T}^*$  at x = (1,i).
  - (b) Let  $\mathbb{V}$  be an inner product space, and let  $y, z \in \mathbb{V}$ . Define the operator  $\mathbf{T} : \mathbb{V} \to \mathbb{V}$  by  $\mathbf{T}(x) = \langle x, y \rangle z$  for all  $x \in \mathbb{V}$ . Evaluate  $\mathbf{T}^*(x)$ .
- **4.** (3+3+4 pts.) Let **T** be a linear operator on a finite-dimensional inner product space  $\mathbb{V}$  over a field **F**. Then:
  - (a) If **T** is normal and  $\lambda_1$  and  $\lambda_2$  are two distinct eigenvalues of **T** with corresponding eigenvectors  $x_1$  and  $x_2$ , respectively, then  $x_1$  and  $x_2$  are orthogonal.
  - (b) If T is self-adjoint, then every eigenvalue of T is real.
  - (c) If  $\mathbf{TT}^* = \mathbf{T}^*\mathbf{T} = \mathbf{I}_V$  and  $\beta$  is an orthonormal basis for  $\mathbb{V}$ , then  $\mathbf{T}(\beta)$  is an orthonormal basis for  $\mathbb{V}$ .
- **5.** (6 **pts.**) Let  $\mathbb{V} = \mathbb{P}_1(\mathbb{R})$  with an inner product defined by  $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) \, dx$ . Use the Gram-Schmidt process to replace the standard ordered basis  $S = \{1, x\}$  by an orthonormal basis for  $\mathbb{P}_1(\mathbb{R})$ . Represent h(x) = 1 + 2x as a linear combination of the vectors of the obtained orthonormal basis for  $\mathbb{P}_1(\mathbb{R})$ .
- **6.** (6 **pts.**) Let **T** be an operator on  $\mathbb{P}_1(\mathbb{R})$  defined by  $\mathbf{T}(f) = f'$ , where  $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ . Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for  $\mathbb{V}$ .