1. $\left(\mathbf{2}+\mathbf{2}+\mathbf{1}\right.$ pts.) Let $\mathbb{W}=\left\{a+b x+c x^{2} \in \mathbb{P}_{2}(\mathbb{R}): a+b=c\right\}$.
(a) Show that \mathbb{W} is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.
(b) Find a basis for \mathbb{W}.
(c) What is the dimension of \mathbb{W} ?
2. $(2+3$ pts. $)$
(a) If $\beta=\{x, y\}$ is a basis for a vector space \mathbb{H}, show that $\gamma=\{a x, x+y\}$ is also a basis for \mathbb{H} for any nonzero scalar a.
(b) Show that if \mathbb{W}_{1} and \mathbb{W}_{2} are two subspaces of a vector space \mathbb{V}, then so is $\mathbb{W}_{1} \cap \mathbb{W}_{2}$.
3. $(2+3$ pts. $)$
(a) Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear for which $\mathbf{T}(x+1)=x^{2}-1$ and $\mathbf{T}(x-1)=x^{2}+x$. Evaluate $\mathbf{T}(5 x-1)$.
(b) Let $\mathbf{L}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow M_{2 x 2}(\mathbb{R})$ be a linear defined by

$$
\mathbf{L}(f(x))=\left(\begin{array}{cc}
f(2)-f(1) & 1 \\
0 & f(0)
\end{array}\right)
$$

Find a basis for the range of \mathbf{L}.
4. $(\mathbf{2}+\mathbf{2}+\mathbf{1} \mathbf{p t s}$. $)$ Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be a linear defined by $\mathbf{T}(a+b x)=(a+b, 3 b-a)$.
(a) Find a matrix representation for \mathbf{T}.
(b) Determine whether \mathbf{T} is one-to-one and onto.
(c) Evaluate $\mathbf{T}(3 x+1)$.
5. $(\mathbf{2}+\mathbf{3}$ pts. $)$ Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear defined by

$$
\mathbf{T}(x, y)=(x, x+2 y) .
$$

Let $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,2),(1,-1)\}$ be two ordered bases for \mathbb{R}^{2}.
(a) Find the change of coordinate matrix \mathbf{Q}, that changes γ-coordinates into β-coordinates.
(b) Evaluate $[\mathbf{T}]_{\gamma}$.

