1. (2+2+1 pts.) Let $\mathbb{W} = \{ a + bx + cx^2 \in \mathbb{P}_2(\mathbb{R}) : a + b = c \}.$

- (a) Show that \mathbb{W} is a subspace of $\mathbb{P}_2(\mathbb{R})$.
- (b) Find a basis for \mathbb{W} .
- (c) What is the dimension of \mathbb{W} ?

2. (2+3 pts.)

- (a) If $\beta = \{x, y\}$ is a basis for a vector space \mathbb{H} , show that $\gamma = \{ax, x + y\}$ is also a basis for \mathbb{H} for any nonzero scalar a.
- (b) Show that if \mathbb{W}_1 and \mathbb{W}_2 are two subspaces of a vector space \mathbb{V} , then so is $\mathbb{W}_1 \cap \mathbb{W}_2$.

3. (2+3 pts.)

- (a) Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be a linear for which $\mathbf{T}(x+1) = x^2 1$ and $\mathbf{T}(x-1) = x^2 + x$. Evaluate $\mathbf{T}(5x-1)$.
- (b) Let $\mathbf{L} : \mathbb{P}_2(\mathbb{R}) \to M_{2x2}(\mathbb{R})$ be a linear defined by

$$\mathbf{L}(f(x)) = \begin{pmatrix} f(2) - f(1) & 1\\ 0 & f(0) \end{pmatrix}.$$

Find a basis for the range of **L**.

- 4. (2+2+1 pts.) Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{R}^2$ be a linear defined by $\mathbf{T}(a+bx) = (a+b, 3b-a)$.
 - (a) Find a matrix representation for **T**.
 - (b) Determine whether **T** is one-to-one and onto.
 - (c) Evaluate $\mathbf{T}(3x+1)$.
- 5. (2+3 pts.) Let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear defined by

$$\mathbf{T}(x,y) = (x, x + 2y).$$

Let $\beta = \{ (1,0), (0,1) \}$ and $\gamma = \{ (1,2), (1,-1) \}$ be two ordered bases for \mathbb{R}^2 .

- (a) Find the change of coordinate matrix \mathbf{Q} , that changes γ -coordinates into β -coordinates.
- (b) Evaluate $[\mathbf{T}]_{\gamma}$.