Kuwait University
Faculty of Science

Department of Mathematics

Advanced Linear Algebra 0410-363
 First Exam
 Monday, March 18, 2019
 Spring 2018/19

Section No. رق الشعبة	Instructor Name أستاذ المقر
01 A	Dr. Abdullah Alazemi

Instructions to students

Time allowed: 1.25 hours.
This exam contains 4 questions.

ممنوع دخول الآلات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.

Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. $(3+3$ pts. $)$
(a) Show that the set \mathbb{W} of all symmetric matrices is a subspace of $M_{n \times n}(\mathbb{F})$, for a field \mathbb{F}.
(b) Let $\mathbb{W}=\left\{\left(\begin{array}{cc}a & a-b \\ a+b & b\end{array}\right): a, b \in \mathbb{R}\right\}$.

Show that \mathbb{W} is a subspace of $M_{2 \times 2}(\mathbb{R})$. Find a basis for \mathbb{W} and find its dimension.
2. $(3+3$ pts. $)$
(a) Let x and y be distinct vectors of a vector space \mathbb{V}. Show that if $\beta=\{x, y\}$ is a basis for \mathbb{V} and a is a nonzero scalar, then $\gamma=\{x+y, a x\}$ is also a basis for \mathbb{V}.
(b) Let $\beta=\left\{1+x, 1-x, x^{2}\right\}$ be an ordered basis for $\mathbb{P}_{2}(\mathbb{R})$. Find $\left[3+5 x+x^{2}\right]_{\beta}$.
3. $(3+3$ pts. $)$
(a) Let $\mathbb{W}=\left\{f(x) \in \mathbb{P}_{2}(\mathbb{R}): f(0)=f^{\prime}(0)\right.$ and $\left.f(1)=f^{\prime}(1)\right\}$. Find a basis for \mathbb{W}.
(b) Let $\mathbb{W}=\{(x, y, x-2 y): x, y \in \mathbb{R}\}$ be a subset of \mathbb{R}^{3}. Show that \mathbb{W} is a subspace for \mathbb{R}^{3}.
4. $(3+4 \mathrm{pts}$.
(a) Show that $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{P}_{1}(\mathbb{R})$, defined by $\mathbf{T}(a, b)=a+b x$ is linear.
(b) Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear for which $\mathbf{T}(t+1)=t^{2}-t$ and $\mathbf{T}(t-1)=t^{2}+1$. What is $\mathbf{T}(5 t+1)$? Explain.

