- **1.** (2+3 pts.) Let **T** be the linear operator on $\mathbb{P}_2(\mathbb{R})$ defined by **T** (f) = f + f(2)x.
 - (a) Show that the eigenvalues for \mathbf{T} are 1 and 3.
 - (b) Is **T** diagonalizable? Explain your answer.
- 2. (2+2+1 pts.) Let T be the linear operator on $\mathbb{P}_1(\mathbb{R})$ defined by $\mathbf{T}(a+bx) = 2b+(a+b)x$.
 - (a) Find all eigenvalues for **T**.
 - (b) Find all eigenvectors for **T**.
 - (c) Find a basis γ for **T** so that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.

3. (2+3 pts.)

- (a) Let \mathbb{V} be an inner product space. Show that if $\langle u, v \rangle = \langle u, w \rangle$ for all $u \in \mathbb{V}$, then v = w.
- (b) Let $\mathbb{V} = \mathbb{C}^3$ with the standard inner product on \mathbb{V} . Evaluate $\langle x, y \rangle$ and verify the Cauchy-Schwarz Inequality for x = (1, i, 1 + i) and y = (1 i, 1, 2i).
- 4. (2+1+2 pts.) Let $\mathbb{V} = \mathbb{P}_1(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Let $\alpha = \{1, 1+x\}$ be a subset in \mathbb{V} .
 - (a) Apply the Gram-Schmidt process on α to construct an orthogonal basis β for $\mathbb{P}_1(\mathbb{R})$.
 - (b) Normalize the vectors in β to obtain an orthonormal basis γ for $\mathbb{P}_1(\mathbb{R})$.
 - (c) Compute the Fourier coefficients of h(x) = a + bx relative to γ to write h(x) as a linear combination of the vectors in γ .

5. (2+2+2 pts.)

- (a) Let \mathbb{V} be an inner product space. Show that if $S = \{x_1, x_2, \dots, x_n\}$ is an orthogonal subset of \mathbb{V} consisting of nonzero vectors, then S is linearly independent.
- (b) Show that if \mathbb{V} is a real inner product space, then x + y is orthogonal to x y for any $x, y \in \mathbb{V}$ with ||x|| = ||y||.
- (c) Decide whether $\langle (a, b), (c, d) \rangle = ac bd$ is an inner product on \mathbb{R}^2 .