1. $\left(\mathbf{2}+\mathbf{3}\right.$ pts.) Let \mathbf{T} be the linear operator on $\mathbb{P}_{2}(\mathbb{R})$ defined by $\mathbf{T}(f)=f+f(2) x$.
(a) Show that the eigenvalues for \mathbf{T} are 1 and 3.
(b) Is T diagonalizable? Explain your answer.
2. $(\mathbf{2}+\mathbf{2}+\mathbf{1} \mathbf{p t s}$.$) Let \mathbf{T}$ be the linear operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathbf{T}(a+b x)=2 b+(a+b) x$.
(a) Find all eigenvalues for \mathbf{T}.
(b) Find all eigenvectors for \mathbf{T}.
(c) Find a basis γ for \mathbf{T} so that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.
3. $(2+3$ pts. $)$
(a) Let \mathbb{V} be an inner product space. Show that if $\langle u, v\rangle=\langle u, w\rangle$ for all $u \in \mathbb{V}$, then $v=w$.
(b) Let $\mathbb{V}=\mathbb{C}^{3}$ with the standard inner product on \mathbb{V}. Evaluate $\langle x, y\rangle$ and verify the Cauchy-Schwarz Inequality for $x=(1, i, 1+i)$ and $y=(1-i, 1,2 i)$.
4. $(\mathbf{2 + 1 + 2} \mathbf{p t s}$. $)$ Let $\mathbb{V}=\mathbb{P}_{1}(\mathbb{R})$ with inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Let $\alpha=$ $\{1,1+x\}$ be a subset in \mathbb{V}.
(a) Apply the Gram-Schmidt process on α to construct an orthogonal basis β for $\mathbb{P}_{1}(\mathbb{R})$.
(b) Normalize the vectors in β to obtain an orthonormal basis γ for $\mathbb{P}_{1}(\mathbb{R})$.
(c) Compute the Fourier coefficients of $h(x)=a+b x$ relative to γ to write $h(x)$ as a linear combination of the vectors in γ.
5. $(2+2+2$ pts. $)$
(a) Let \mathbb{V} be an inner product space. Show that if $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is an orthogonal subset of \mathbb{V} consisting of nonzero vectors, then S is linearly independent.
(b) Show that if \mathbb{V} is a real inner product space, then $x+y$ is orthogonal to $x-y$ for any $x, y \in \mathbb{V}$ with $\|x\|=\|y\|$.
(c) Decide whether $\langle(a, b),(c, d)\rangle=a c-b d$ is an inner product on \mathbb{R}^{2}.
