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Time allowed: 1.25 hours. . ©K
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This exam contains 4 questions. .
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Calculators and communication devices are not allowed in the examination room.
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1. (5+2 pts.) Let T : R3 æ R2 be the linear transformation defined by T (x, y, z) = (x, y).

(1) Find N (T ); R(T ); bases for N (T ), R(T ); nullity(T ) and rank(T ). Is T one-to-one? Is
T onto? Explain.

(2) Let U : R3 æ R2 be a linear transformation with U((1, 1, 0)) = (1, 1), U((0, 1, 1)) = (0, 1)
and U((1, 0, 2)) = (1, 0). Is U a one-to-one transformation? Explain.

2. (5+2 pts.)

(1) Let T : P1(R) æ P2(R) be a linear defined by T (f(x)) = x f(x). a : Find a matrix
representation A for T . b : If h(x) = 3x ≠ 2, evaluate T (h(x)) using A.

(2) Let — = { (1, 1), (1, ≠1) } and “ = { (2, 4), (3, 1) } be bases for R2. What is the matrix Q

that changes “-coordinates into —-coordinates.

3. (5 pts.) Let T be the linear operator on P2(R) with

A = [T ]— =

S

WU
1 1 1
0 1 0
0 1 2

T

XV ,

where — =
)
1, x, x2

*
. If the characteristic polynomial of A is given by fA(⁄) = (⁄ ≠ 1)2(⁄ ≠ 2),

find an ordered basis – for P2(R) consisting of eigenvectors of T so that [T ]– is a diagonal
matrix.

4. (3+3 pts.)

(1) Let U be a linear operator on a vector space V over a field F, and let ⁄ be an eigenvalue
of U. Show that the eigenspace E⁄ is a subspace of V.

(2) Let T be an operator on P1(R) defined by T (a + bx) = 2a + (a + b)x. Compute A = [T ]—,
where — = { 1 + x, 1 ≠ x }. Without computing the eigenvectors, determine whether — is a
basis of eigenvectors of T .


