Kuwait University
Faculty of Science

Department of Mathematics

Advanced Linear Algebra 0410-363
 Second Exam

Monday, April 22, 2019
Spring 2018/2019

Section No. رقّ الشعبة	Instructor Name أستاذ المقر
1A	Dr. Abdullah Alazemi

Instructions to students

Time allowed: 1.25 hours.
This exam contains 4 questions.

ممنوع دخول الآلات الحاسبة أو أي وسيلة للإتصال داخل قاعة الإختبار.

Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. (5+2 pts.) Let $\mathcal{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\mathcal{T}(x, y, z)=(x, y)$.
(1) Find $\mathcal{N}(\mathcal{T}) ; \mathcal{R}(\mathcal{T})$; bases for $\mathcal{N}(\mathcal{T}), \mathcal{R}(\mathcal{T})$; $\operatorname{nullity}(\mathcal{T})$ and $\operatorname{rank}(\mathcal{T})$. Is \mathcal{T} one-to-one? Is \mathcal{T} onto? Explain.
(2) Let $\mathbf{U}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation with $\mathbf{U}((1,1,0))=(1,1), \mathbf{U}((0,1,1))=(0,1)$ and $\mathbf{U}((1,0,2))=(1,0)$. Is \mathbf{U} a one-to-one transformation? Explain.
2. $(5+2$ pts. $)$
(1) Let $\mathcal{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear defined by $\mathbf{T}(f(x))=x f(x)$. (a): Find a matrix representation A for \mathcal{T}. (b): If $h(x)=3 x-2$, evaluate $\mathcal{T}(h(x))$ using A.
(2) Let $\beta=\{(1,1),(1,-1)\}$ and $\gamma=\{(2,4),(3,1)\}$ be bases for \mathbb{R}^{2}. What is the matrix Q that changes γ-coordinates into β-coordinates.
3. (5 pts.) Let \mathcal{T} be the linear operator on $\mathbb{P}_{2}(\mathbb{R})$ with

$$
A=[\mathcal{T}]_{\beta}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right],
$$

where $\beta=\left\{1, x, x^{2}\right\}$. If the characteristic polynomial of A is given by $f_{A}(\lambda)=(\lambda-1)^{2}(\lambda-2)$, find an ordered basis α for $\mathbb{P}_{2}(\mathbb{R})$ consisting of eigenvectors of \mathcal{T} so that $[\mathcal{T}]_{\alpha}$ is a diagonal matrix.
4. $(3+3$ pts. $)$
(1) Let \mathbf{U} be a linear operator on a vector space \mathbb{V} over a field \mathbf{F}, and let λ be an eigenvalue of \mathbf{U}. Show that the eigenspace E_{λ} is a subspace of \mathbb{V}.
(2) Let \mathcal{T} be an operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathcal{T}(a+b x)=2 a+(a+b) x$. Compute $A=[\mathcal{T}]_{\beta}$, where $\beta=\{1+x, 1-x\}$. Without computing the eigenvectors, determine whether β is a basis of eigenvectors of \mathcal{T}.

