Kuwait University
Faculty of Science
Department of Mathematics

Math 403
 Advanced Linear Algebra Spring 2021/2022

First Exam
Wednesday, Apr 25, 2022

Name										
ID Number										

Duration 75 minutes (This exam contains 4 questions).

Section No.	Instructor Name
$\mathbf{1}$	Dr. Abdullah Alazemi

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	

1. $\left(\mathbf{5}+\mathbf{4}+\mathbf{3}\right.$ pts.) Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathbf{T}(x, y)=(x, x-y)$.
(a) Show that \mathbf{T} is a linear transformation.
(b) Find $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$.
(c) Is \mathbf{T} invertible? Exaplin.
2. $(5+4+3$ pts. $)$ Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear defined by $\mathbf{T}(f(x))=x f(x)$.
(a) Find a matrix representation A for \mathbf{T}.
(b) Use A, from part (a), to evaluate $\mathbf{T}(5 x-1)$.
(c) Find a basis for $\mathcal{R}(\mathbf{T})$.
3. $\left(\mathbf{7}+\mathbf{6}\right.$ pts.) Let β and γ be the standard ordered bases for $\mathbb{P}_{1}(\mathbb{R})$ and \mathbb{R}^{2}, respectively.

Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ and $\mathbf{U}: \mathbb{R}^{2} \rightarrow \mathbb{P}_{1}(\mathbb{R})$ be two linear transformations defined by

$$
\mathbf{T}(a+b x)=(a, a-b) \quad \text { and } \quad \mathbf{U}(a, b)=b+a x
$$

(a) Show that \mathbf{T} is invertible and determine \mathbf{T}^{-1}.
(b) Use any matrix representations for \mathbf{T} and \mathbf{U} to find a matrix representation for $\mathbf{U T}$.
4. $\left(\mathbf{7}+\mathbf{6}\right.$ pts.) Let $\beta=\{1-2 x, 1-x\}$ and $\gamma=\{-1,1-x\}$ be two ordered bases for $\mathbb{P}_{1}(\mathbb{R})$, and let \mathbf{T} be a linear operator on $\mathbb{P}_{1}(\mathbb{R})$ given by $\mathbf{T}(a+b x)=b+a x$.
(a) Find the change of coordinate matrix Q, that changes γ-coordinates into β-coordinates, and use it to evaluate $[1+3 x]_{\gamma}$.
(b) Use Q to find $[\mathbf{T}]_{\gamma}$.

