

Kuwait University Faculty of Science Department of Mathematics

Math 403 Advanced Linear Algebra Spring 2021/2022

First Exam Wednesday, Apr 25, 2022

Name					
ID Number					

<u>**Duration**</u> 75 minutes (This exam contains 4 questions).

Section No.	Instructor Name		
1	Dr. Abdullah Alazemi		

Give full justification for your answers and state clearly any theorems you use. Calculators and communication devices are not allowed in the examination room.

Question 1	
Question 2	
Question 3	
Question 4	
Total	50

- 1. (5+4+3 pts.) Let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{T}(x, y) = (x, x y)$.
 - (a) Show that **T** is a linear transformation.
 - (b) Find $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$.
 - (c) Is **T** invertible? Exaplin.
- **2.** (5+4+3 pts.) Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be a linear defined by $\mathbf{T}(f(x)) = x f(x)$.
 - (a) Find a matrix representation A for \mathbf{T} .
 - (b) Use A, from part (a), to evaluate $\mathbf{T}(5x-1)$.
 - (c) Find a basis for $\mathcal{R}(\mathbf{T})$.
- **3.** (7+6 pts.) Let β and γ be the standard ordered bases for $\mathbb{P}_1(\mathbb{R})$ and \mathbb{R}^2 , respectively. Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{R}^2$ and $\mathbf{U} : \mathbb{R}^2 \to \mathbb{P}_1(\mathbb{R})$ be two linear transformations defined by

$$\mathbf{T}(a+bx) = (a, a-b)$$
 and $\mathbf{U}(a, b) = b + ax$.

- (a) Show that \mathbf{T} is invertible and determine \mathbf{T}^{-1} .
- (b) Use any matrix representations for **T** and **U** to find a matrix representation for **UT**.
- 4. (7+6 pts.) Let $\beta = \{1 2x, 1 x\}$ and $\gamma = \{-1, 1 x\}$ be two ordered bases for $\mathbb{P}_1(\mathbb{R})$, and let **T** be a linear operator on $\mathbb{P}_1(\mathbb{R})$ given by $\mathbf{T}(a + bx) = b + ax$.
 - (a) Find the change of coordinate matrix Q, that changes γ -coordinates into β -coordinates, and use it to evaluate $[1 + 3x]_{\gamma}$.
 - (b) Use Q to find $[\mathbf{T}]_{\gamma}$.