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Chapter

|

Logic and Proofs

Section 1.1: Propositions and Connectives

Definition 1.1.1

A proposition P is a sentence which is either true T or false F. That is, the truth values of

propositions are T or F.

Example 1.1.1

Consider the following sentences:

e Propositions:

—

a) 1 is a rational number. [T].

b) 2+4=1. [F].

e Not propositions:

¢) How are you doing? [not a proposition].
d) z* = 36. [where is z coming from?].
e) This sentence is false. [depends on the given sentence!].

The previous propositions studied in a and b are called simple propositions. Compound propo-

sitions can be formed by connectives with simple propositions. For example,

Compound proposition: 1+ 2 =5 "and” the sun is made of an orange.

Definition 1.1.2

Let P and Q be two propositions. Then,

1. the conjunction of P and Q, denoted by P A Q, is the proposition "P and Q”. P A Q

is true exactly when both P and Q are true.
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2. the disjunction of P and Q, denoted by P V Q, is the proposition "P or Q”. PV Q is
true exactly when at least one of P or Q is true.
3. the negation of P, denoted by ~ P, is the proposition "not P”. ~ P is true exactly

when P is false.

Example 1.1.2

Let P be "Kuwait is an island” and let Q be ”"Sea water contains salt”. Discuss PAQ, PV Q,
and ~ P.

Solution:

It is clear the P is false and Q is true. Thus,

1. P A Q: Kuwait is an island and sea water contains salt. [F].
2. P Vv Q: Kuwait is an island or sea water contains salt. [T].
3. ~ P: It is not the case that Kuwait is an island. [T].

P Q PAQ PvQ ~P ~Q
T T T T F F
T F F T F T
F T F T T F
F F F F T T

Definition 1.1.3

A propositional form is an expression involving finitely many propositions connected by

connectives such as A, V, and ~.

Example 1.1.3

Let P, Q, and R be propositions. Write down the truth table of the propositional form
(PAQV(PV(~R)).

Solution:




1.1. Propositions and Connectives

P Q R ~R PAQ PV(~R) (PAQV(PV(~R))
T T T F T T T
T T F T T T T
T F T F F T T
T F F T F T T
F T T F F F F
F T F T F T T
F F T F F F F
F F F T F T T

Definition 1.1.4

Two propositional forms P and Q are called equivalent if and only if their truth tables are

identical. In that case, we write P = Q.

Definition 1.1.5

A denial of a proposition P is any proposition equivalent to ~ P.

7

A proposition P has only one negation

~roro Poand ~~~r~n~ P are all examples of denials. Note that ~ (~ P) is simply P.

~ P”) but it has many denials. For instance, ~ P,

Example 1.1.4

Let P be "m is an irrational number”. Find the negation of P, and give some examples of

denials of P.

Solution:

e negation ~ P: It is not the case that « is irrational.

e denials of P: a. 7 is rational. b. 7 is the quotient of two integers r/s. c¢. 7 has a finite

decimal expansion.

Note that since P is true, all of its denials are false.
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Definition 1.1.6

A propositional form is called a tautology if it is true for all possible truth values of its

components. It is called a contradiction if it is the negation of a tautology.

Example 1.1.5

Show that ((P VQ)V((~P)A(~ Q))) is a tautology for any propositions P and Q.

Solution:

P Q ~P ~Q PvQ (~P)A(~Q) (PVQV(~P)A(~Q)
T T F F T F T
T F F T T F T
F T T F T F T
F F T T F T T

Moreover, it can be seen that the negation of ((P VQ)V((~P)A(~ Q))) is a contradiction.

[ Remark 1.1.1

The negation of a tautology is a contradiction, and the negation of a contradiction is a

tautology.
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Section 1.2: Conditionals and Biconditionals

Definition 1.2.1

Given two propositions P and Q, the conditional sentence P = Q (reads "P implies Q")
is the proposition ”if P, then Q”. In that case, P is called antecedent and Q is called

consequent.

| Remark 1.2.1 |

~ )

The proposition P = Q is true whenever P is false or Q is true. In general, P = Q is
equivalent to (~ P) VvV Q.

Example 1.2.1

Consider the following propositions:

a) if 7z is an odd integer”, then "z + 1 is an even integer”. [T].
b) if "2+ 1 =07, then "1 +1 = 0" T).
¢) if "1 —1 =0, then "2 +9 = 1", [F].

Definition 1.2.2

For propositions P and Q, the converse of P = Q is Q = P, and the contrapositive of
P=Qis (~Q)=(~P).

Theorem 1.2.1

For any propositions P and Q, we have

(1) P = Q is equivalent to (~ Q) = (~ P), and (i) P = Q is not equivalent to Q = P.

We prove both results in the following truth table.
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P Q ~P ~Q P=Q Q=P ~Q=~P
T T F F T T T
T F F T F T F
F T T F T F T
F F T T T T T

Definition 1.2.3

Let P and Q be two propositions. The biconditional sentence P < Q is "P if and only if
(iff.) Q" P < Q is true exactly when both P and Q have the same truth value.

[ Remark 1.2.2

The following phrases are translated as P = Q for any propositions P and Q:
o if P, then Q. e if a > 5, then a > 3.
e P implies Q. e ¢ > 5 implies a > 3.
e P is sufficient for Q. e a > 5 is sufficient for a > 3.
e P only if Q. ea>5onlyifa>3
e Q, if P. ea>3 ifa>5.
e Q whenever P. e a > 3 whenever a > 5.
e () is necessary for P. e a > 3 is necessary for a > 5.
e QQ, when P. e a > 3, when a > 5.

[ Remark 1.2.3 ]

Moreover, the following phrases are translated as P < Q for any propositions P and Q:

e P if and only if Q. o |z] =2iff 22 =4.
e P if, but only if, Q. o |z| = 2 if, but only if, 22 = 4.
e P is equivalent to Q. e |z| = 2 is equivalent to 2% = 4.

e P is necessary and sufficient for Q. e |z| = 2 is necessary and sufficient for 22 = 4.
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Theorem 1.2.2

Let P, Q, and R be propositions. Then,

a. P=Q = (~P)vaQ.

b. P&Q = P=QA(Q=P).
c. ~FPAQ) = (~P)V(~Q)

d ~(PVQ = (~P)A(~Q)

e. ~P=Q = PA(~Q)

f. ~(PAQ) = P=(~Q)

g. PAQVR) = (PAQ)V(PAR).
h. PvVv(QAR) = (PvQ A(PVR)

b.

P Q PeQ P=Q Q=P P=QAr(Q=P)

T T T T T T

T F F F T F

F T F T F F

F F T T T T

o

P Q R QVR PA(QVR) PAQ PAR (PVvQ)V(PVR)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F
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Section 1.3: Quantifiers

* NOTATIONS:

e N=1{1,2,3,---} is the set of natural numbers.

o Z={--,-2,-1,0,1,2,---} is the set of integer numbers.
e Q={%:p,q€Zand q# 0} is the set of rational numbers.
e R is the set of real numbers.

The sentence x > 5 is not a proposition, unless we assign a value to x. It is an open sentence. In
general, an open sentence with n variables is denoted by P(xy, 2, -+ ,x,). For example, the open
sentence P(x1,xs,23): "x1 equals to x5 4+ x3” is an open sentence. On the other hand, P(7,3,4) and

P(7,2,3) are propositions with true and false values, respectively.

Definition 1.3.1

The set of objects for which an open sentence is true is called the truth set, and is denoted
by T.

On the other hand, the set from where the objects can be taken from is called the universe,
and is denoted by . In particular, two open sentences are said to be equivalent for a particular

universe if and only if their truth sets are equal.

Example 1.3.1

Let Y = N. Then, P(z) : x + 3 > 7 is equivalent to Q(z) : x > 4, since T = {5,6,7,---} for
both P and Q.
Also, P(x) : 2* = 4 is equivalent to Q(x) : x = 2. However, if U was the set of all integers,

then P(z) : 2 = 4 with truth set {—2,2} is not equivalent to Q(z) : * = 2 with truth set

{2},

Definition 1.3.2

Let P(z) be an open sentence with variable x € Y. Then,

a) The sentence ”(Vz)P(x)” reads as "for all x, P(x)”. It is true iff T = U for P(x). "V”

is called the universal quantifiers.
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b) The sentence ”(3z)P(x)” reads as "there exists x such that P(z)”. It is true iff 7 # ()
(the empty set). "3 is called the existential quantifiers.
¢) The sentence ”(Jlz)P(x)” reads as "there exists a unique x such that P(x)”. It is true

iff 7 contains only one element. 73! is called the unique existential quantifiers.

Example 1.3.2

Let U = R. Decide the truth value and the truth set for each of the following.

Solution:

Consider the following table where we different sentences along with its truth value as true

or false and the corresponding truth set.

sentence TorF T

a. (Vx)(z > 3) F 3, 00).

b. (Vz)(|x| > 0) F R\ {0}.

c. Vz)(z —1<x) T R.

d. (Fz)(x > 3) T [3,00).

e. (3z)(|z| =0) T {0}.

f. (Fz)(|z| = 2) F {-2,2}.

g. (Fr)(2? = —4) F 0.

h. (32)3Fy)2z+y=0Az—y=1) T {z=39=-3}
i. Az)3y)2r+y=0Vr—y=1) F (z,y) € {(0,0),(1,0),(372), }
i (Vo) (Vy)(2* + y* > 0) F R\ (0,0).

Definition 1.3.3

Two quantified sentences are equivalent for a particular universe U iff they have the same truth

set in U. Two quantified sentences are equivalent iff they are equivalent in every universe.

For instance, (Vz)(P(z) A Q(z)) is equivalent to (Vz)(Q(z) A P(z)) and (Vx)[P(x) = Q(z)] is
equivalent to (Vz)[~ Q(z) =~ P(z)].
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Theorem 1.3.1

Let P(x) be an open sentence with a variable x € U for some Y. Then,

a. ~ (Vz)[P(z)] is equivalent to (3z)[~ P(z)].
b. ~ (Jx)[P(x)] is equivalent to (Vz)[~ P(z)].

(a.) The sentence ~ (Vz)[P(x)] is true iff (Vz)[P(z)] is false iff the truth set for P(z) is not

the entire universe, i.e. T # U iff there exists an x € U such that P(z) is false iff (3z)[~ P(z)]
Is true.

(b.) The sentence ~ (3z)[P(x)] is true iff (3z)[P(x)] is false iff the truth set of P(z) is empty
iff (Vz)[~ P(z)] is true.

| Remark 1.3.1 |

~ )

Let P(z) be an open sentence with a variable x € U for some U. Then,

(32)P(2) = (32)[P(2) A (V) [P(y) = = = y]].

Example 1.3.3

Find a denial (or the negation) for ”(Vx)[P(x) = Q(z)]”.

Solution:

Using Theorem 1.3.1 and Theorem 1.2.2 (part e), we conclude

~ (V2)[P(2) = Q(2)] = ()~ (P(z) = Q(2))] = (Bx)[P(x) A (~ Q(x))].

Example 1.3.4

Find a denial (or the negation) for ”(3lz)P(x)".

Solution:
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Using Remark 1.3.1 and Theorem 1.2.2, we conclude

~@2)P) = ~ (F2)[P@) A (W)Py) =z =y
= (va)[~ (P@) A (W) [P(y) => 7 = 9])]
= (Vo)[ ~P@)V ~ (W)[P(y) = = = |
= (v;c)[ ~P(@)V(3y) ~[Ply) =z = H
= (V2)[~ P(2) V (3)[Py)A ~ (x = y)]]
= (vx)[ ~P(x) vV (Iy)[P(y) Nz # yﬂ
Example 1.3.5
Find a denial (or the negation) for
(v2) @) 3) (@ > ) A (y > 2))A ~ Gw) (¢ +y <w < z2)]: (1.3.1)

Solution:

Using Theorem1.3.1 and Theorem 1.2.2; we conclude

~ Equation(1.3.5)

~ (¥2)(32) @) [((& > 2) A (y > 2))A ~ (Fw) (2 +y < w < 22|
(3z)(Y2)(Vy) ~ [((z > 2) A (y > 2))A ~ Bu)(z+y < w < 22)]
= (3z)(Vx)(Vy) [((a: > 2) A (y > z)) =~ (Jw) (:v +y<w< xz)]
3) (V) (W) [((& > 2) A (y > 2)) = (Fw)(z+y < w < 22)).

Example 1.3.6

Let U = R. Decide the truth value and the truth set for each of the following.

Solution:
sentence TorF T
a. (Vy)(3x)[x +y = 0] T for any y, x = —y is a solution.
b. (3x)(Vy)[z +y = 0] F given x = 0 not all y € R is a solution.
c. (Fz)(Fy)[=?* + y* = 10] T for x € R there is y = v/10 — 22 € R.
d. (Vy)(3z)(Vz)[zy = 2] T for any y € R, z =0 for any z € R.
e. (Vy)(3lz)[z = T for any y € R, # = 4? is a solution.




12 Chapter 1. Logic and Proofs

Section 1.4: Mathematical Proofs

Definition 1.4.1

A proof is a justification of the truth of a given statement called theorem, proposition, claim,

or lemma.

| Remark 1.4.1

Tools of proofs: We may use any of the following:

e Axioms: Initial statements which are assumed to be true.
e Theorems: Some previously proved statement can be use.
e Assumptions: Assumed fact about the problem at hand.

e Tautologies: Examples follow:

a. PV (~ P (Excluded Middle).

b.(P=Q)e (~Q=~P) ... (Contrapositive).

c. PVIQVR) & (PVQVR } ............................... (Associativity).
PAQAR)= (PAQ)AR

d. PAQVR) & (PAQV(PAR) } ........................ (Distributivity).
PV(QAR)< (PVQ) A(PVR)

e. P Qe [(P=QAQ=P)] oo (Biconditional).

fE~A~P=2Q) < (PA~Q) (Denial of Implication).
~PAQ e VPV~ Q) L (De Morgan’s Laws).
~(PVvQ) e (~PA~Q)

h Pe[~P=(QA~Q)] ..o (Contradiction).

L (P=QAQ=R)]<P=R) ..o, (Transitivity).

JFIPAP=Q)=Q .o (Modus Ponens).

In what follows, we consdier different types of proof.
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1.4.1 Type 1: Direct Proof

Direct proof P = Q: Assume P, then --- --- . Therefore, Q.

Example 1.4.1

Let n be an integer. Show that if n is odd, then n + 1 is even.

Solution:

Assume that n = 2k 4 1 for some integer k. Then, n+1 = (2k+1)+ 1. Thatisn+1 =
2k +2 =2(k+1). Therefore, n + 1 is even.

Example 1.4.2

Assume that sin(z) is an odd funtion, i.e. sin(—z) = —sin(z). Show that f(x) = sin*(x) for

any x € R is an even function, i.e. f(—x)= f(x).

Solution:

f(=x) = (sin(—x))? = (—sin(x))? = sin(x) = f(z). Therefore, f(z) is an even function.

Theorem 1.4.1

Suppose that a, b, and ¢ are integers. If a divides b and b divides ¢, then a divides c.

Since a divides b (a | b), then there is an integer k such that b = ka. Also, since b | ¢ there is

an integer h such that ¢ = hb. Thus, ¢ = hb = h(ka) = (hk)a, and therefore a | c.

Theorem 1.4.2

Let a,b,c € Z. If a |band a | ¢, then a | b+ c.

Since a | b, Ik € Z such that b = ka, and since a | ¢, 3h € Z such that ¢ = ha. Thus,

b+c=ka+ha=(k+h)a.

Therefore, a | b=+ c.
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1.4.2 Type 2: Proof By Contradiction

Contradiction to proof P: Suppose ~ P, then ------ . Thus Q. Then, ------ . Therefore, ~ Q,
contradiction.

This technique uses the tautology P < [~ P = (QA ~ Q)].

Example 1.4.3

The equation 2 + 2 — 1 = 0 has at most one real root.

Solution:

Let f(x) = 2® +x — 1. Suppose that f(z) has two real roots a and b, then f(a) = f(b) = 0. f
is continuouse on [a, b] and is differentiable on (a, b) since it is a polynomial. Then, by Rolle’s
Theorem, there is a ¢ € (a,b) such that f’(c) = 0. But f'(c) = 3c*+ 1 # 0 for all ¢ € R. This

is a contradiction. Therefore, f has at most one real root.

| Remark 1.4.2 |

e Any square integer has an even number of 2’s as prime factors.

e All natural number greater than 1 has a prime divisor ¢ > 1.

Example 1.4.4

Prove that v/2 is an irrational number.

Solution:

Recall the fact that any square integer number has an even number of 2’s as prime factors.
Suppose that v/2 is rational number. Then, v/2 = g for some p,q € Z. Thus, 2 = 1;—2 or
p?> = 2¢%. Since p? and ¢? are both square numbers, p? contains an even number of 2’s as
prime factors (might be 0 times for odd numbers) and ¢* contains an even number of 2’s as
prime factors. But then 2¢? has an odd number of 2’s as prime factors and thus p? has an
odd number of 2’s as prime factors because p? = 2¢%. This is a contradiction. Thus, v/2 is an

irrational number.




1.4. Mathematical Proofs 15

Theorem 1.4.3

The set of primes in N is infinite.

Suppose that the set of primes W = {p1,ps, -+ ,px} is finite for some k& € N. Let n =
pipe -+ pr + 1 € N. (fact) All natural number has a prime divisor ¢ > 1. So, ¢ | n, and since
q is a prime, then ¢ € W and q | p1p2 - - - pr (because ¢ = p; for some 1 < i < k). Also, ¢q | n.
Therefore, ¢ | (n — p1pa - -+ px), but n— p1pa---pp = 1. Thus ¢ = 1, Contradition. Thus W is

infinite.

1.4.3 Type 3: Contrapositive Proofs

Contraposition to show P = Q: Suppose ~ Q, then ------ . Thus ~ P.
Therefore, P = Q. This technique uses the tautology (P = Q) < (~ Q =~ P).

Example 1.4.5

Let m € Z. If m? is odd, then m is odd.

Solution:

Assume that m is even. Then m = 2k for some k € Z and m? = 4k? = 2(2k?) which is even.

By contraposition, the result is proved.

Example 1.4.6

Let z,y € R such that x < 2y. Show that if 72y < 322 + 232, then 3z < y.

Solution:

Assume that x < 2y. By contraposition, assume that 3z > y. Then, 2y—z > 0 and 3z—y > 0,
but
2y —2)Br—y) =Toy — 322 — 2> >0 = Tay > 32° + 2~

Therefore, if 7oy < 322 + 2y%, then 3z < y.
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1.4.4 Type 4: Two-Directions Proofs

Two directions to show P < Q: By any method, (i) Show that P = Q. (i) Show that
Q = P. Therefore, P & Q.

Theorem 1.4.4

Let a be a prime number, and let b and ¢ be positive integers. Prove that a | bc if and only if

alboralec

We show the result by two direction: » = 7 and » < 7.

» = " Assume that a | be. By Fundamental Theorem of Arithmetic, b and ¢ can be written
uniquely as products of primes. Assume b = p1ps---pr and ¢ = ¢1qo - - - g5 for some h, k € N.
But then bc = p1pa - Prq1q2 - - - qn. Since a | be and a is a prime, a is one of the prime factors.
If a = p; for some 1 < i < k, then a | b or if a = ¢; for some 1 < i < h, then a | ¢. Thus,
either a | bor a|c.

» <=": Assume that a | b or a | c. Thus,

Case 1: a | b then b = ka for some k € Z and hence be = (ka)c = (kc)a. Thus a | be.

Case 2: a | ¢ then ¢ = ha for some h € Z and hence bc = b(ha) = (bh)a. Thus a | be.

In either cases, a | bc.

1.4.5 Type 5: Proofs By Cases (Exhaustion)

Contradiction to show (P; V Py) = Q: By any method, (i) Show that P; = Q and (i) show
that Py = Q. Using the tautology [(P1 VPy) = Q] & [(P1 = Q) A (P2 = Q)].

Example 1.4.7

Show that for any x,y € Z, if either = or y is even, then zy is even.

Solution:

We have two cases:
Case 1: Assume z-even. Then = = 2k for some k € Z. That is xy = 2(ky) which is even.

Case 2: Assume y-even. Then y = 2h for some h € Z. That is zy = 2(zh) which is even.
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Thus, in both cases, xy is even.

Example 1.4.8

Let z,y € Z. If z and y are both odd, then zy is odd.

Solution:

a. Direct Proof: Assume x and y are odd integers. Then, there are m and n in Z such
that t =2m+1and y = 2n+ 1. Thus, zy = 2m+1)(2n+1) =4dmn+2m+2n+1 =
2(2mn 4+ m + n) + 1. Therefore, zy is odd as well.

bl. Proof by Contradiction: Assume that zy is even. Thus 2 | xy which implies that 2 | =

or 2 | y (since 2 is a prime number) which is a contradiction both ways since both of x
and y are odd.

b2. Another Proof by Contradiction: Assume that xy is even. Since x and y are odd, there

are m and n in Z such that x = 2m+1 and y = 2n+ 1. Thus, zy = 2m+1)(2n+1) =
dmn 4+ 2m + 2n 4+ 1 = 2(2mn + m + n) + 1 which is odd, contradiction. Therefore, zy
is odd.

c. Proof by Contraposition: We use ~ (zy is odd) =~ (x is odd and y is odd) which is

equivalent to (xy is even) = [(x is even) or (y is even)].
Assume that zy is even. Thus, 2 | zy. Since 2 is a prime number, we have either 2 | x
or 2 | y. Thus, either x is even or y is even. Therefore, if  and y are odd, then xy is

odd.

Exercise 1.4.1

Let a,b € Z. Use a contrapositive proof to show that if ab-odd, then a - odd and b-odd.
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Section 1.6: Proofs Involving Quantifiers

1.6.1 Type 1: Proof of (J2)P(x)

e Direct proof: Name or construct an element = € & which has the property P(x).
e Proof by contradiction: Suppose ~ (Jz)P(x). Then (Vz)(~ P(x)) ... ... ... . Therefore,
Q(z)A ~ Q(x), contradiction. Hence, ~ (Jz)P(x) is false, then (Jz)P(x) is true.

Example 1.6.1

Show that there is an even prime number.

Solution:

2 is a prime even number.

Example 1.6.2

Let U = R. Show that (Fz)[x® 4+ 32* + 2z — 1 = 0].

Solution:

Using direct proof: z = —1 is a solution. On the other hand, using a proof by contradiction:
Assume ~ (3z)[z3 + 322 + 2 — 1 = 0] = (Va)[23 + 322 + © — 1 # 0]. Therefore, either:

Case 1: (Vx)[z® + 322 + 2z — 1 > 0] which is false for if z = —10, or

Case 2: (V)[z® + 322 + x — 1 < 0] which is false for if z = 10.

Therefore, (3z)[z* + 32> + 2 — 1 =0].

1.6.2 Type 2: Proof of (Vz)P(x)

e Direct proof: Let z € U be arbitrary, then ... .... Hence, P(z) is true. Since x was arbitrary

chosen, (Vz)P(z) is true.




1.6. Proofs Involving Quantifiers

Example 1.6.3

Let U = Z. Show that (Vz), if z is even, then z* is even.

Solution:

Assume that = € Z so that 2 = 2k for some integer k. Then 22 = (2k)* = 2(2k?) which is

even.

Example 1.6.4

+4q

Show that for all rational numbers p and ¢, - is rational.

Solution:

Assume that p = i and ¢ = ¥ where x,y,u,v € Z with y,v # 0. Then,

ptqg 1 $+u _lfav+yu\  zv+yu
2 2\y v /) 2 ywo ) 2yv

which is rational.

1.6.3 Type 3: Proof of (3lz)P(z)

1. Prove that (3z)P(x) by any method.
2. Assume that z,y € U such that P(z) and P(y) are true ... ... . Thus, x = y. Therefore,
(Fz)P(x).

Example 1.6.5

Prove that every nonzero real number has a unique multiplicative inverse.

Solution:

Let x be any nonzero real number. We want to show that xy = 1 for exactly one real number

y. Let y = %, then y is a real number. Since x # 0, then xy = = = 1. Thus, = has a

1
xX
multiplicative inverse.

Assume that y and z are two real numbers such that zy = zz = 1. Since z # 0, xy = xz

implies that y = z. Therefore, every nonzero real number has a unique multiplicative inverse.
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Exercise 1.6.1

Prove that every nonsingular matrix has a unique inverse.
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2 Set Theory

Section 2.1: Basic Notations of Set Theory

Definition 2.1.1

A set is a collection of objects called elements. Sets are usually denoted by capital letters

A, B,C,--- while elements are usually denoted by small letters a, b, c, - - -.

If a is an element of a set A, then we write a € A. Otherwise, we write a € A.

The empty set ¢ := {x : x # x}. That is, ¢ is a set with no elements.

A set B is a subset of A, denoted by B C A, if and only if every elements of B is also
an element of A. That is, Vb € B = b € A.
A set B is called a proper subset of set A, if B C A and B # ¢, but B # A. In this

case, we write B C A.

Two subsets A and B are equal , denoted by A = B, if and only of A C B and B C A.

If a set A contains n elements, we say that | A| = n.

Theorem 2.1.1

For any sets A, B, and C', we have:

1) ¢ C A,
2) AC A, and
3) if AC Band B C C, then A C C.

The first two results are trivial so we leave those. For part 3) let a be any element of A. Since

ACB,a€ B. But since BCC,a€C. Thus,ifa € A= a€C. Thus, A C C.
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Definition 2.1.2

Let A be a set. The power set of A is the set whose elements are all the subsets of A and is
denoted by P(A). Thus,
P(A)={B:BC A}

Example 2.1.1

Let A = {a,b,c}. Find P(A).

Solution:

P(A) = {¢,{a}, {b}, {c}, {a, b}, {a, c}, {b, ¢}, A}.

[ Remark 2.1.1

Let A be any given set. Then,

a. Theorem: If | A| = n, then | P(A)| = 2.
b. AZ P(A), but A€ P(A).

Example 2.1.2

Let A = {1,{1,3},{2,3}}. Find P(A).

Solution:

P(A) ={o {11 {{ 13} 1 {{23} L {L{1,3} {1, {23} },{{1,3},{23}},A}.

Note that, 1 € A, while 2 ¢ A and 3 ¢ A. Also, {1} & A where {2,3} € A and {{2,3}} C A
hence {{2,3}} € P(A). Moreover, 1 & P(A), {1} € P(A), and {{1}} C P(A). Also,
¢ C A, ¢ € P(A) and {¢} C P(A). Finally, {1,3} & P(A), but {{1,3}} € P(A4) and
{{{1,3}}} € P(A).
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Theorem 2.1.2

Let A and B be two sets. Then, A C B if and only if P(A) C P(B).

» = " Assume that A C B. Let X € P(A). Then, X C A C B. That is, X € P(B). Thus,
P(A) C P(B).
» <= " Assume that P(A) C P(B). Since A € P(A) C P(B), we have A € P(B) = A C B.

Let A={9":n€Z}and B={3":n¢cZ}. Showthat AG B.

Let A={9":ne€Q}and B={3":n € Q}. Show that A = B.

Find P(¢), P(P(¢)), and P(P(P(s))).
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Section 2.2: Set Operations

Definition 2.2.1
Let A and B be two sets. Then,
AUB
. Union: AUB={x:x¢€ Aorx € B}.
" What is the meaning of z ¢ AU B?
ANB
) intersection: ANB={z:x € A and x € B}.
" What is the meaning of z ¢ AN B?
A—-B
5 Difference: A— B={z:2 € Aand = ¢ B}.
" What is the meaning of © € A — B?
A=U-A
Complement: If I/ is the universal, then Uu
4. _
A={z: 2 g A} ={x:z €U — A}. @
ANB=¢
U
5. Disjoint: A and B are called disjoint if ANB = ¢. @

Theorem 2.2.1

Let A, B, and C be sets. Then,

1. ACAUB.
2. ANB C A.
3. AN¢ = 6.
4. AU¢ = A.
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O N

10.
11.
12.
13.
14.
15.
16.
17.
18.

Proof of (13): Using the fact "P A (QVR)=(PAQ)V (P AR)” as follows.

(AUB)UC
(AnB)NC.
(ANB)U(ANC).

ANA=A.
AUA = A.
AUB=BUA.
ANB=BnNA.
A—¢=A.
¢—A=¢.
AU(BUC) =
AN(BNC) =
AN(BUC) =
Au(BNC) =

(AUB)N(AUC).

A C Bif and only if AUB = B.
A C Bif and only if AN B = A.
if AC B,then AUC C BUC.
if AC B,then ANC C BNC.

z € AN

(BUC) if ze€eAandze BUC
if z€Aand(xe€Borxzel)
if (r€eAandzeB)or(zeAdandze)
it rxeAnNBorzeANC
if ze(ANB)U(ANC).

Proof of (15): » = ”: Assume that A C B. By part (1), B C AU B so we only show that
AUB CB. Let x € AUB, then x € A C Bor z € B. In both cases, x € B. Thus,
AUB C B. Therefore, B=AUB.

» <=7 Assume that AU B = B. By part (1) AC AU B = B. Thus, A C B.

Proof of (18): Assume that A C B. Let z € ANC, thenx € AC Band z € C. Thus, z € B
and x € C, which implies that x € B N C. Therefore, ANC C BNC.

25




26 Chapter 2. Set Theory

Theorem 2.2.2

Let A and B be two subsets of the universe ¢/. Then:

1. A= A.
2. AUA=U
3. AnNA=¢

......................................... (De Morgan’s Laws).

Proof of (2): If z € AUAthenz € ACU or z € A=U — A. In either cases, z € Y. Thus,
AuAcu.

Assume now that © € Y. Thus, z € Aor z € U — A = A which implies z € AU A. Thus
U C AU A. Therefore, U = AU A.

Proof of (5): Using a contrapositive proof as follows:

ACB iff (Vx)(re A=z€B)
if (Vz)(z¢gB=x¢A)
iff (Vz)(ze B=uzecA
iff BCA

Proof of (7.b): Recall that ~ (P A Q) =~ PV ~ Q:

—_—

reANB iff £ ANB
if ~(zreAandzeB)
it x£Aorx¢gB
if zedorzeB
if zeAUB.
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Example 2.2.1

Let U = {1,2,3,4,5,6,7,8} be the universe and let A = {1,5,7}, B = {2,5,8}, and C' =
{3,4,5,6,7} Answer Each of the following:

1. AnB = {5}.

2. BUC ={2,3,4,5,6,7,8}.

3. (ANB)U(ANC)={5}uU{5,7} = {5,7}.

4. A—C ={1}.

5. (AUC) = (BNC)={1,3,4,5,6,7} — {5} = {1,3,4,6,7}.
6. A=U—A=1{2,3,4,6,8}).

7. ANB=1{2,3,4,6,81 N {1,3,4,6,7} = {3,4,6}.

Example 2.2.2

Let AC BUC and AN B = ¢. Show that A C C.

Solution:

Let z € A. Since AC BUC,x € Borx € C. If x € B, then x € AN B, contradiction.
Thus, x € C and therefore, A C C.

Example 2.2.3

Show that P(AN B) = P(A) N P(B).

Solution:

Let X e PANB)it XCANB
I XCAand X CB
iff X € P(A) and X € P(B)
iff X € P(A)NP(B).




28 Chapter 2. Set Theory

Example 2.2.4

Show that P(A)UP(B) CP(AUB). Is P(A) UP(B) = P(AU B) in general? Explain.

Solution:

X € P(A) or X € P(B)
XCAor XCB
XCAUB

X e P(AUB).

Let X € P(A) UP(B)

R

In general, P(AU B) € P(A) UP(B) and thus P(A) UP(B) # P(AU B).
For instance, consider A = {a} and B = {b}. Then AU B = {a,b}, P(A) = {¢,{a}} and
P(B) = {¢,{b}}. Therefore,

P(AU B) = {¢,{a},{b},{a,b}} # P(A) UP(B) = {¢,{a}, {b}}.

.

[ Remark 2.2.1 l

It AC B, then P(A) UP(B) = P(AUB).

Suppose that A, B, and C are three nonempty sets. Show that if A C B, then A—C C B—C.

Suppose that A, and B are two nonempty sets. Show that A — B=¢ iff AN B = A.
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Section 2.3: Extended Set Operations

Definition 2.3.1

Let Z be a nonempty set. Suppose that for each i € Z, there is a corresponding set A;. Then,
the family of sets A = {A; : i € Z} is called an indexed family of sets. Each i € Z is called

an index and 7 is called an indexing set. Then

1. The union over A is defined by
UAi={z:GA4ecA)zcA)}={z:(3A)[Aic ANz € A]}.
i€T
2. the intersection over A is defined by
NAi={z: VA eA)zcAl}={z: (VA)[Ac A=z € A}
i€T
3. The indexed family A of sets is said to be pairwise disjoint if and only if for all 7 and

Jin Z, either A; = A; or A; N A; = ¢.

Example 2.3.1

Let Z={1,2,3}, and define 4; = {4,i+ 1} for each i € Z. Find | JA; and (") A..

i€ €L

Solution:

Note that A; = {1,2}, Ay = {2,3}, and A3 = {3,4}. Thus, [J4 = {1,2,3,4}, and
i€T
A = ¢.

1€T

Example 2.3.2

For each i € N, let A; = {j € N:j <i}. Find UAi and ﬂAi.

1€eN 1€N

Solution:

Note that A; = {1}, Ay = {1,2}, ---, A, = {1,2,--- ,n} and so on. Thus, | JA; = N while
ieN
MNA: = {1}.

1€N
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Theorem 2.3.1

Let A={A, :i €I} be an indexed family of sets. Then,

1. Foreach k € 7, A, C UAi.

1€T

2. For each k € 7, ﬂAi C A,

i€T
a. Udi = N
3. B 08 00550000050 50505558 000558 0050555000950 ¢ (De Morgan’s Laws).
b. N4 = JA4.
1€l €T

Proof of (1): Let x € Aj. Since Ay, € A, x € UAi' Thus, A, C UAZ-.

i€T i€T
Proof of (2): Let x € ﬂAi. Then, z € A; for every i € Z. Since k € Z, x € Ag. Thus,
i€T
(4 C Ax.
ieT

Proof of (3.a):

xED\ZZ-

i€

T ¢ UAi
=

x¢g Ay foralli el
xGEforalliEI

z € (A

1€T

N

Proof of (3.b): A similar proof as that in part (3.a) can be shown in this part as well. However,
we use a different style as follows: Using A; = A, together with part (3.a) of this theorem, we

get o
N4 = N& = U = U

i€l 1€ i€T €T

Example 2.3.3

Let T = {1,2,3,4} so that A, = {1,2,7}, Ay = {3,4,8), A5 = {1,4,8), and A, = {1,3,4,7}.
IfU ={1,2,3,--- ,10}, answer each of the following:

a. | JAi=1{1,2,3,4,7,8}.

1€
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1€

c. UZZ: mzu.
1€ €L

d. N4 = UL = {5,6,9,10}.
1€ €L

e. Is A={A;:i€ T} apairwise disjoint? Explain. Answer: No, A3 N Ay = {1,4} # ¢.
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Example 2.3.4

Let Y = N and Z = N. Define A;, =N —{1,2,--- i} for all i € Z. Find:
a. A = {11,12,13,-- }.

b. |JAi={2,3,4,5,}.

1€T

C. r1/4i:: ¢.

1€T

Example 2.3.5

fU=R,let A, = [—%,2 + %) for all n € N. Find:

a. UAn:[_173) = Al-
neN

b. (4. =10,2].
neN

c. NA,= A, =R—[-1,3).
neN neN

d JA4.= NA. =R-[0,2].
neN neN

Example 2.3.6

Let U = R and define S, = (—a, a) for all @ € N. Find

a. USa:]R.

a€eN
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b. ()S.=(—1,1).

a€eN

Let A= {A;:i € Z} bean indexed family of sets for a nonempty set Z. Show that if B C A;

for every i € Z, then B C () A;.

i€T

Exercise 2.3.2

For each natural number n > 3, let A, = [%,2 + %}, and A = {A,:n >3} Find ﬂ A,

n>3

and | J A,.

n>3
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Section 2.4: Proof by Induction

Definition 2.4.1: Principle of Mathematical Induction (PMI)

If S is a subset of N so that:

1. 1 €S, and
2. foralln e N,ifne S, thenn+1¢€ S5,

then S = N.

2.4.1 Proof of (Vn € N)P(n) using PMI

e Basic Step: Show that P(1) is true.
e Induction Step: Show that for all n € N, if P(n) is true, then P(n + 1) is true.

e Conclusion: By step 1 and step 2 and using the PMI, P(n) is true for all n € N.

Example 2.4.1

Show that for all n € N,

1
1+2+3+---+n=@.
Solution:
For n =1, clearly 1 = @ is true. Assume that for some n € N, we have
1
1+2+3+~~+n=@.
Now, we want toshowthat1+2+3+~~~+n+(n+1):("+1)2ﬂ.
use our assumption ( n 1)
n(n
1+24+3+---+n+(n+1)=—F—+(n+1)

n(n+1) N 2(n+1)
n(n? 1)+ 2(n 1 1)
2

(n+1)(n+2)
7 :
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Example 2.4.2

Show that for all n € N, > (2i — 1) = n?.

=1

Solution:
For n = 1, 2(1) — 1 = 1 = 12, which is true. Assume that for some n € N, we have
n n+1

> (2i — 1) =n? We want to show that > (2i—1) = (n+1)% Thus,

i=1 i=1

%1(2@—1):i(zz‘—1)+2(n+1)—1:n2+2n+1=(n+1)2.

i=1 i=1

Example 2.4.3

Show that for all n € N, n + 3 < 5n?.

Solution:

For n = 1 we have 1 +3 = 4 < 5 which is true. So, assume that for n, n + 3 < 5n? is true.

For n + 1, we want to show that (n+ 1) +3 < 5(n + 1)*> = 5n® 4+ 10n + 5. Then,
(n+1)+3=n+3)+1<5n?+1<5n>+(10n+4)+1=>5(n+1)>%

Therefore, for all n € N, n + 3 < 5n?.

Definition 2.4.2

For n € N, define 0! = landn! =n-(n—1)-(n—2)----2-1. Then, the bionomial

coefficient ”n choose k”, where 0 < k < n, is

(n)z n! nn—1)(n—-2)(n—3)---(n—k+2)(n—k+1)
: .

3 I(n— k)| !

Moreover, the bionomial expansion of any a,b € R is given by

(a+b)" = zn: (Z) a® k.

k=0




2.4.  Proof by Induction

[ Remark 2.4.1: Pascal’s Triangle ]
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Let a,b € R. Then, the coefficients of the bionomial expansion (a + b)" can be computed by

the Pascal’s Triangle for each n.

n =70 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1

n=2>5 1 5) 10 10 5 1
Example 2.4.4

3 5 7

Show that for all n € N, % + % + 1—7; is an integer.

Solution:

3 5 7 53 35 7
%+%+£: i +1§ T m is an integer iff 15 | 5n + 3n° + 7n iff 3k € N such that

5n3 + 3n® + Tn = 15k.
For n = 1, we have 5 + 3 + 7 = 15 which is true. So assume that there k£ € N such that

5n% 4+ 3n° + Tn = 15k. Then, we want to show that
5(n+1)*+3(n+1°+7(n+1)=15h (2.4.1)
for some h € N. Thus, using the Pascal’s Triangle we get

Eqn.(2.4.1) =5(n® +3n* +3n + 1) + 3(n° +5n* + 10n® + 10n* +5n 4+ 1) + Tn + 7

= (51 + 3n° + Tn) +(15)n® + (15)n + 5+ (15)n*

=15k

+n3—|—n2+@n+3+7

:15k:+15[n2+n+n4+2n3+2n2+n—1—1]

3 n5

7
Thus 15 | 5(n + 1) +3(n +1)> + 7(n + 1) and % + = + 1—7; is an integer for all n € N.
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Example 2.4.5

Express the terms of (2z — 4yz?)° for z,y,z € R.

Solution:
Let a = 2x, b = —4yz?, and n = 5. Using the bionomial expansion form, we get
2z —4y2?)® = (21)° + 5(22)*(—4y2?) + 10(2z)3(—4y2z*)? + 10(27)?(—4y2?)?

+5(22) (—4yz?)* + (—4y2?)°.

Definition 2.4.3: Generalized Principle of Mathematical Induction (GPMI)

Let k be a natural number. If S is a subset of N so that:

1. k€ S, and
2. foralln e Nwithn >k, ifne S, thenn+1¢€ S,

then S contains all natural number greater than or equal to k.

Example 2.4.6

Show that for all n > 5, n2 —n — 20 > 0.

Solution:

For n = 5, we have 25 — 5 — 20 = 0 > 0 which is true. Assume that for some n > 5,

n? —n —20 > 0 is true. For n + 1, we have

(n+1)?=(n+1)=20=n*+2+1-n-1-20=(n"—n—20)+ 2n, >0.
positive

Thus, n? —n — 20 > 0 for all n > 5.

Example 2.4.7

Let n € N. Show that (n + 1)! > 2"%3 for all n > 5.

Solution:

For n = 5, we have 6! = 720 > 2% = 256 which is true. Assume that for some n > 5,

(n+1)! > 27%3 is true.
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For n + 1, we want to show that (n + 2)! > 2" for all n +1 > 5. Since n + 2 > 2 for all

n >4, we get
(n+2)!=n+2)(n+1)! > (n+2)2" > 2.2m3 = ontd,

Thus, (n+ 1)! > 2"*3 for all n > 5.

Exercise 2.4.1

Show that for all n € N, the polynomial x — y divides the polynomial 2™ — y".

Exercise 2.4.2

n(n+1)(2n + 1)‘

Show that for allm € N, 12422 + 32 4 ... +n? = :

Exercise 2.4.3

Show that for all n € N, 3 | n® + 5n.

Exercise 2.4.4

Let € R with > —1. Show that (1 + )" > 1+ nz for all n € N.

Exercise 2.4.5

(2n)!
nl2n

Show that for all natural numbers n, [J(2i —1) =
i=1




38

Chapter 2. Set Theory



Chapter

3

Relations

Section 3.1: Cartesian Products and Relations

Definition 3.1.1

Let A and B be two sets. An ordered pair is (a,b) # {a,b} for a € A and b € B. We say
that (a,b) = (¢,d) if and only if a = ¢ and b = d.

Definition 3.1.2

Let A and B be two sets. The (Cartesian or cross) product of A and B, denoted by A x B,
is defined by
Ax B={(a,b):a€ Aand b€ B}.

Moreover, if (a,b) € A x B, then a € A and b € B. If (a,b) ¢ A x B, then either a ¢ A or
bd B.

[ Remark 3.1.1

Let A and B be two given sets. Then,

1. if A has m elements and B has n elements, then A x B has mn elements.

2. In general, A x B # B x A.

Example 3.1.1

Let A={1,2,3} and B = {a,b}. Find A x B and B x A.

Solution:

Note that, in general A x B # B x A as this example shows.

AxB = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}, and
BxA = {(a,1),(a,2),(a,3),(b,1),(b2),(b3)}.
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Example 3.1.2

Let A=[0,1] and B= {1} U[2,3). Find A x B.

Solution:
B
3][----|
Ax B={(a,b):a€ Aandbe B} :
1 ———x-=9
,—.—>A

Theorem 3.1.1

If A and B are nonempty set, then A x B=B x Aiff A= B.

» = 7: Assume that A # ¢, B# ¢ and A x B= B x A. Let a € A, then there is b € B such
that (a,b) € A x B = B x A which implies that a € B Thus, A C B.

Let b € B, then there is a € A such that (b,a) € B x A = A x B which implies that b € A.
Thus, B C A and therefore A = B.

»<e=""ifA=B,then Ax B=AxA=DB x A.

Theorem 3.1.2

Let A, B,C, and D be sets. Then

a. Ax (BUC) = (AxB)UAx()
| b. (AUB)xC = (AxC)U(BxC)
c. Ax(BNCO) (AxB)N(AxC)
d. (ANB)xC = (AxC)Nn(BxC)
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2. (Ax B)N(C' x D)= (ANC) x (BN D).

3. (Ax B)U(C x D) C (AUC) x (BUD).

Proof of (1.a):

(x,y) e Ax(BUC) iff z€AANyeBUC
if r€eAAN(yeBvyel)
it reAANyeB)V (reANyel)
it ((z,y) € AxB)V ((z,y) € AxC)
iff (x,y) e (Ax B)V(Ax(O).

Proof of (2):

(,y) e(AxB)N(CxD) iff (reAANyeB)AN(xeC ANyeD)
if reANzelC)N(yeBANyeD)
if (x€e ANC) A (ye BnD)
iff (x,y) e (ANC)x(BND).

Proof of (3): Let (z,y) € (A x B) U (C x D), then (z,y) € A x B or (z,y) € C x D.
Case(i): (v,y) € A x B implies that x € A and y € B. Then, z € AUC and y € BU D.
Thus, (z,y) € (AUC) x (BUD,).

Case(i1): (z,y) € C'x D implies that x € C'and y € D. Then again x € AUC andy € BUD.
Thus, (z,y) € (AUC) x (BU D).

Therefore, (A x B)U(C x D) C (AUuC) x (BUD,).
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[ Remark 3.1.2

Note that (A x B)U (C x D) # (AUC) x (BU D): For instance, Let A = B = {0}, and
C =D = {1}. Then, (0,1) € (AUC) x (BUD) while (0,1) ¢ (A x B)U(C x D). Therefore,
(AUC) x (BUD) Z (Ax B)U (C x D).
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Definition 3.1.3

Let A and B be sets. A relation R from A to B is a subset of A x B. In this case, we write
aRb for (a,b) € R and say that "a is related to b”. Also, aRb means that (a,b) € R C Ax B.

Moreover, if A = B, then subsets of A x A are called relations on A.

Definition 3.1.4

If R € A x B is a relation, then the domain of R is Dom(R) = {a € A : (a,b) € R}.
Moreover, the range of R is Rng(R) ={b € B: (a,b) € R}.

Example 3.1.3

Let A= {1,2,{3},4} and B = {a,b,c,d}. Find the domain and range of R, where

R =1{(1,¢),({3},a),(1,d),(2,d)} C A x B.

Solution:

The Dom(R) = {1,2,{3}} € A and the Rng(R) = {a,¢,d} C B. Note that Dom(R) # A
and Rng(R) # B.

Example 3.1.4

Let A={1,3,5,7} and B = {2,6}. Let R C A x B defined by R = {(a,b) € A x B :a < b}.

Find R along with its domain and range.

Solution:

R = {(17 2)7 (1’ 6>’ (37 6)7 (57 6)}

Dom(R) = {1,3,5} \g

Rng(R) = {2,6}. AN
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Example 3.1.5

Let R = {(z,y) € R x R:y = 2%+ 3}. Find the domain and the range of the relation R.

Solution:

Domain: z € Dom(R) iff Jy € R with y = 2® + 3 which is true for all x € R. Thus,
Dom(R) = R. Range: y € Rng(R) iff 3z € R with y = 2? + 3 and since z? > 0, we have
y > 3. Therefore, Rng(R) = [3,00).

Definition 3.1.5

For any set A, the relation Z, is the identity relation on A and is defined by
Zs={(a,a):aec A},

with Dom(Z4) = A = Rng(Z4).

Definition 3.1.6

For any sets A and B, if R C A x B is a relation, then the inverse relation is
R ={(b,a): (a,b) € R} C B x A,

with Dom(R ™) = Rng(R) and Rng(R™!) = Dom(R).

Definition 3.1.7

Let R C A x B be a relation and let S C B x C be a relation. The composition relation
S o R is defined by

SoR={(a,c): (I € B)((a,b) € R and (b,c) € S)} C Ax C.

Moreover, Dom(S o R) C Dom(R).
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Example 3.1.6
Let A= {a,b,c}, B=1{1,2,3,4}, and C = {x,y, z,w}. Let

R ={(a,1),(b,2),(c,2),(c,3),(c,;4)} C Ax B, and

S ={Q1,w),(2,%),(2,2),(3,9),(4,y)} € BxC.
Find R7!, and So R.
Solution:

R = {(1,a),(2,0),(2,¢),(3,0),(4,0)} € B x A
SoR = A{(a,w),(bx),(b2),(c,x),(cz2),(c,y)} CAxC.

Example 3.1.7

Let R ={(z,y) ERxR:z <y} Find R™%.

Solution:

Note that

(z,y) e R™H iff  (y,2) €R
ift y<ax
ift *>uy.

Thatis R"!' ={(z,y) eRxR:z >y}
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Example 3.1.8

and RoS.

Solution:

SoR={(z,y): (Fz€eR)((z,2) e Rand (z,y) € S)}
{(x,y):(HzeR)(z:x_landy:Z2)}
={(@y):(FzeR)(y=(z-1?)}

{(z,y): (FTz€R)((z,2) € Sand (z,y) € R) }
:{(a:,y):(EIZGR)(ZZJE2 andy:z—l)}
{(x,y) : (EIZGR)(y:atl—l)}

Let R ={(r,y) ERxR:y=x—1}andlet S = {(z,y) eRxR:y=2%}. Find SoR

Theorem 3.1.3

Let A,B,C,and D be sets. Let RCAx B,S§C BxC,and T CC x D. Then,
L. (R°H1T=R.
2. To(SoR)=(ToS)oR

3. (SoR) =R 1oSh

Proof of part(2): Let a € A and d € D so that

(a,d) € To(SoR) iff (JceC)|(a,c)€SoR and (c,d) € T|
iff (3ceC)[(3be B)((a,b) € Rand (b,c) €S) and (c,d) € T]|
iff (3c€C)(3be B)[(a,b) € R and (b,c) € S and (c,d) € T]|
iff (3 € B)[(a,b) € R and (Ic € C)((b,c) € S and (c,d) € T)]
iff (3b€ B)|(a,b) € R and (b,d) € T 0 S]
iff (a,d) € (ToS)o
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Proof of part (3): Let a € A and ¢ € C so that

(c,a) € (SoR)™ iff (a,c) €SoR

iff (3b€ B)|(a,b) € R and (b,c) € §]
iff (3be B)[(b,a) € R and (c,b) € §7']
iff (EIbGB)[(c b) € S~ and (b,a) € R™]
iff (c,a) e R ‘PoS™L

Example 3.1.9

Let A =[2,4] and B = (1,3) U {4}. Let R be the relation on A x R with 2Ry iff x € A and
let S be the relation on R x B with xSy iff y € B. Find RNS and RUS.

Solution:

By Theorem 3.1.2 part(2), RNS = (AXR)N(Rx B) = (ANR) x (RNB) = A x B. Therefore,
RNS=AxB={(a,b):a € Aand b € B}. On the other hand, RUS = {(a,b) e R x R :
a € Aorbe B}

5+ 51
4+ >~ 3
3+ --- - B - - R
277 [ ] 2-
1+ --- ik e EE R
1 — 1 1 : —+—

1 2 3 4 5 1 3 5

RNS RUS

Let A and B be two nonempty sets. Show that if A x B C B x C', then A C C.

Let R C Ax B and § C B x C be two relations. Show that Dom(S o R) C Dom(R).
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Section 3.2: Equivalence Relations

Definition 3.2.1

Let A be a set and R be a relation on A. Then R is called an equivalence relation if and

only if:

1. R is reflexive on A: (Vz € A) zRx.
2. R is symmetric on A: (Vz,y € A) if 2Ry, then yRzx.
3. R is transitive on A: (Vz,y,z € A) if 2Ry and yRz, then 2R z.

Example 3.2.1

Let A = {1,2,3,4} and Ry = {(1,2),(2,3),(1,3)}, R, = {(1,1),(1,2)}, Rs = {(3,4)},
Rs={(1,2),(2,1)}, and R5 = {(1,1),(2,2),(3,3),(4,4)}. Decide which relation is reflexive,

symmetric, transitive.

Solution:

R is reflexive. Ry, and R5 are symmetric. Rq, Ra, R3, and Ry are transitive. Therefore, Rs

is an equivalence relation on A.

Example 3.2.2

Let R = {(z,y) : zy > 0} be a relation on Z. Discuss whether R reflexive, symmetric,

transitive, and equivalence relation.

Solution:

Clearly, xRz for all x € Z except for x = 0, thus R is not reflexive. If xRy, then xy > 0 or
yx > 0 which imples that yRx. Thus, R is symmetric. If 2Ry and yRz, then zy > 0 and
yz > 0. Considering the cases of y € Z — {0}, we have

1. case 1: y > 0, then z > 0 and z > 0 which implies that xz > 0 and thus 2Rz.

2. case 1: y < 0, then x < 0 and z < 0 which implies that xz > 0 and thus zRz.

In either cases, R is transitive on Z. Note that R is not reflexive and thus it is not an

equivalence relation on Z.




48

Chapter 3. Relations

Example 3.2.3

Let R be the relation on Z given by xRy iff x — y is even. Show that R is an equivalence

relation on Z.

Solution:

Reflexive: Since x — x = 0 is even, 2’Rx for all z € Z. Thus, R is reflexive.

Symmetric: Assume that 2Ry, then there is k € Z such that x —y = 2k. Thus, y—x = 2(—k)

which implies that yRz. Thus, R is symmetric.

Transitive: Let xRy and yRz. Then, there are h, k € Z such that x —y = 2h and y — z = 2k.

Adding these two equations, we get x — z = 2(h + k) which is even. Therefore, xRz and R
Is transitive.

Therefore, R is an equivalence relation on Z.

Definition 3.2.2

Let R be an equivalence relation on a set A. For x € A, define the equivalence class of x
determined by R as
z/R={y e A: 2Ry},

which reads "the class of x modulo R” or "x mod R. The set of all equivalence classes is

called A modulo R and is defined by

A/R={x/R:z e A}

Example 3.2.4

Let R = {(1,1),(2,2),(3,3),(1,2),(2,1)} be an equivalence relation on A = {1,2,3}. Find:

e 1/R={1,2}.
e 2/R ={1,2}.
e 3/R ={3}.

A/R = {{1,2},{3}}.
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Example 3.2.5

Let R be a relation on N so that Ry < 2 | z +y. Show that R is an equivalence relation

on N. Calculate all the equivalence classes of R.

Solution:

reflexive: Since x + z = 2z, 2 | x + = and thus 2Rz. So, R is reflexive.

symmetric: if 2Ry, then 2 | x +y. Thus, 2 | y+ 2 as well and yRx. Therefore, R is
symmetric.

transitive: Assume that 2Ry and yRz. Then 2 | x +y and 2 | y + 2. Thus, 2 | x + z + 2y.
But because 2 | 2y, we have 2 | z + z. Thus, 2Rz and R is transitive.

Therefore, R is an equivalence relation on N.

Forz e N, z/R={yeN:2|z+y}. Thus,
1={1,3,5,7,9,---}=3=5=---, and 2={2,4,6,8,10,---} =2=4="--.
Therefore, N =1U 2.

Theorem 3.2.1

Let R be an equivalence relation on a nonempty set A. For all z,y € A,

1. x/RC Aand x € /R # ¢.
2. xRy iff. /R =y/R.
3. Ry iff. z/RNy/R = ¢.

1. Clearly, /R C A by the definition. SinceR is reflexive, z R x and hence x € x/R.

2. » = 7. Suppose x Ry. Then y Rz (since R is symmetric). To show that /R = y/R,
we first show that /R C y/R: Let z € /R = xR z and y Rx. Hence, y R z. Hence,
z/R C y/R. The proof of y/R C x/R is similar.

» <=7 Suppose /R = y/R. Then x € /R = y/R. That is x Ry.

3. » = 7: Suppose zRy. We proof by contradiction: Assume that there is z € z/RNy/R.
Then, z € /R and z € y/R and hence £ R z and zRy. Thus, 2 Ry, contradiction.

» <= " Suppose /R Ny/R = ¢. Then, x € x/R. Thus, z € y/R and hence zRy.
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Definition 3.2.3

Let m # 0 be a fixed integer. Then "=,,” denotes the relation on Z and is defined by
(mzy modmormzmy)©m|x—y,

which reads "z is congruent to y modulo m”. Thatisz={y € Z:z =, y & m | z —y},

and the set of equivalence classes for =,, is Z mod m (denoted Z,,) and is defined by

Zm=1{0,1,2,--- ,m—1}.

Example 3.2.6

Find all the equivalence classes of Zs.

Solution:

Note that Z3 = {0,1,2}, where T ={y € Z: 2 =y mod 3 or 3 | z — y}. Therefore,

O6:0/53:{"',_97_67_3707376797'”}7
.T:l/EgZ{"',_8,_57_271;477710;"'}7
.QZQ/E?,:{"'7_77_47_17275587117..'}’

Therefore, Zs = {0, 1, 2}.

Theorem 3.2.2

Let m # 0 be a fixed integer. The relation =,, is an equivalence relation on Z. Moreover, Z,,

has m distinct elements: Z,, = {0,1,--- ,m — 1}.

We only show that =,, is an equivalence relation. reflexive: Since x —x = 0 which is divisible
by m, x =,, x. Thus =,, is reflexive.

symmetric: Assume that z =, y, then m | x — y which implies that m | y — x. Thus, y =,
and =,, is symmetric.

transitive: Assume that x =, y and y =, 2z, then m | x —y and m | y — z. Thus, m |
(x —y) + (y — z) which implies m | x — z. Therefore, =, z and =, is transitive. That

shows that =,, is an equivalence relation on Z.
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Let m # 0. For z,y € Z: Show that z =, y if and only if T = 7.

Let R be a relation on the set A. Prove that R UR ™! is symmetric.

Let R be a relation on N so that xRy iff 3 | x +y. Determine whether R an equivalence

relation. Explain.

Exercise 3.2.4

Let R be a relation on N so that xRy iff 3 | = + 2y. Show that R is an equivalence relation

on N. Find the equivalence class of 1.

Let R be a relation on R so that z Ry iff x = y or xy = 1. Show that R is an equivalence

1

relation on R. Find the equivalence classes for 2; 0; and —¢
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Section 3.3: Partitions

Definition 3.3.1

Let A be a set and A be a family of subsets of A. A is called a partition of A if and only if:
1. if X € A, then X # ¢.
2. if X, Y € A, then either X =Y or X NY = ¢.

3. Ux=A

XeA

Example 3.3.1

1. The set of even natural numbers and odd natural numbers is a partition of N.

2. Let Ay = {0} and A; = {—i,i} for all i € N. Then A = {Ag, Ay, A2, A3,---} is a
partition of Z.

3. The set {0/ =3,1/ =3,2/ =3} is a partition of Z.

4. The set {{ male students, female students }} is a partition for the set of all students in

Kuwait University.

5. The collection { B; : i € Z }, where B; = [i,i + 1) is a partition of R.

Theorem 3.3.1

Let A # ¢ and let R be an equivalence relation on A. Then, the family A/R = {z/R : x € A}

is a partition of A.

Do it your self!
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Section 3.4: Ordering Relations

Definition 3.4.1

A relation R on a set A is called antisymmetric if for all x,y € A, if 2Ry and yRx, then

T =y.

Definition 3.4.2

A relation R on a set A is called a partial order (or partial ordering) for A if R is reflexive,

antisymmetric, and transitive. In that case, A is called a partially ordered set or a poset.

Example 3.4.1

Show that ”C” is a partial order relation on P(A) for any set A.

Solution:

reflexive: if X € P(A), then X C A and hence X C X and hence zRx.
antisymmetric: Let XY € P(A) with XRY and YRX. Then, X C YV and YV C X.

Therefore, X =Y and R is antisymmetric.

transitive: Assume that X,Y,Z € P(A) with X CY and Y € Z. Then X C Z and hence
XRZ.

Therefore, R is a partial order relation on P(A).

Example 3.4.2

Let R be a relation on N so that aRb < a | b for all a,b € N. Show that R is a partial order
on N.

Solution:

reflexive: Since a = 1-a for all @ € N, then a | a and aRa. Hence, R is reflexive.
antisymmetric: Assume that @ | b and b | a. Then, there are h,k € N such that b = ha
and a = kb. Thus, b = ha = h(kb) = (hk)b. Then, hk = 1 which implies that h = k = 1.

Therefore, a = b and ‘R is antisymmetric.

transitive: Assume that a | b and b | ¢. Then, Theorem 1.4.1 implies that a | ¢. Thus, aRe
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and R is transitive. Therefore, R is a partial order on N.

Example 3.4.3

Let R be a relation on N so that aRb iff 2 | a + b with a < b for all a,b € N. Show that N is

a poset with respect to R.

Solution:

reflexive: Since 2 | a + a = 2a with a < a, aRa and R is reflexive.

antisymmetric: Assume that aRb and bRa. Then, 2 | a +b with a < b and 2 | b+ a with

b < a. Thus, a < b < a which implies that a = b. Thus, R is antisymmetric.
transitive: Assume that aRb and bRec. Then, 2 | a + b with a < b and 2 | b+ ¢ with b < ¢.
Therefore, by Theorem 1.4.1, 2 | a 4+ 2b + ¢ which implies that 2 | a + ¢ with a < b < ¢. Thus,

aRc and R is transitive. Therefore, N is a poset with respect to R.

3.4.1 Upper and Lower Bounds

Definition 3.4.3

Let R be a partial order for A and let B be any subset of A. Then,
e a € A is an upper bound for B if for every b € B, bRa. Also, a is called a "least
upper bound” or "supremum for B, denoted by sup(B), if:

1. a is an upper bound for B, and

2. aRzx for every upper bound x for B.

e o € Ais alower bound for B if for every b € B, aRb. Also, a is called a "greatest

upper bound” or "infimum for B, denoted by inf(B), if:

1. a is a lower bound for B, and

2. 2Ra for every lower bound z for B.

Theorem 3.4.1

If R is a partial order for a set A and B C A, then if the least upper bound (or greatest lower

bound) for B exists, then it is unique.
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Assume that x and y are both least upper bound for B. Since x is an upper bound and y
is the least upper bound, thus yRx. Similarly, since y is an upper bound and x is the least

upper bound, thus zRy. Since R is antisymmetric, Ry and yRzx, implies x = y.

Example 3.4.4

Let A =[0,6) C R be a poset with respect to ”<”, and let B = {%, 3,5} and C' = {1, %, %, .
be two subsets of A. Find sup(B), inf(B), sup(C), and inf(C).

Solution:

sup(B): Note that 5,5.1,5.35,5.9, and so on are all considered upper bounds for B since for

example b < 5 for all b € B. Then, sup(B) = 5 since 5 < z for all upper bounds for B.
M : 0, %, i, % and so on are all considered lower bounds for B since for example i < b for
all b € B. Then, inf(B) = 1 since 1 < z for all lower bounds z for B.

sup(C): The set of upper bounds for C' consists of {1,2,1.5,3,5,5.5, - } while the sup(C) =
1.

inf(C): The set of upper bounds for C' consists of {0} and the inf(C) = 0.

Note that, if A= (0,6), then C' would has no inf(C).

Example 3.4.5

Let A = {1,2,3,4,5,6} and consider P(A) with the partial ordering "C”. Let B =
{{1,2},{1,2,3},{1,2,6}}. Find sup(B) and inf(B).

Solution:

Upper bound for B are like {1,2,3,6}, {1,2,3,4,6}, {1,2,3,5,6}, and A it self. Therefore,
sup(B) = {1,2,3,6} = |J X. On the other hand, ¢, {1}, {2}, and {1,2} are all lower

XeB
bounds for B while the inf(B) = {1,2} = [ X.

XeB
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Exercise 3.4.1

Let R be a relation on N so that 2Ry iff y = 2¥x for some integer k£ > 0. Show that N is a

poset with respect to R.




Chapter

Functions

Section 4.1: Functions as Relations

Definition 4.1.1

A function f from A to B is a relation from A to B that satisfies

1. Dom(f) = A,
2. if (z,y) € f and (z,z) € f, then y = 2.

Moreover, if A = B, we say that f is a function on A.

[ Remark 4.1.1: Notations

A function (mapping) f from A to B is denoted by f: A — B. The domain of f is A and
the codomain of f is B.

If (x,y) € f, then y = f(x) where we say that y is the image of = and that z is the preimage
of y. The range of f is a subset of B and is defined as

Rng(f) ={ye B:3r € Awithy = f(x)}.

Example 4.1.1

Let A = {1,2,3} and B = {a,b,c}. Let Ry = {(1,a),(2,0),(2,¢),(3,0)}, Ry =
{(1,a),(2,¢),(3,b)}, and R3 = {(1,a),(2,¢)} be three relations on A x B. Decide whether
R1, Ro, and Rz a function.

Solution:

R, is clearly not a function since (2, ) and (2, ¢) both are in Ry where b # c. R, satisfies the
conditions of Definition 4.1.1 and so it is a function from A to B.

R is not a function from A to B; however, it is a function from {1, 2} to {a,c}.

57
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Example 4.1.2

Let S = {(z,y) € R x R: 22 + y? = 1} be a relation on R. Is § a function? Explain.

Solution:

Note that for z = 0, we have y = —1 or y = 1 and so S is not a function. Another reason is

that for v =5, y> = —24 ¢ R.

Example 4.1.3

Let f = {(x,y) € Z x Z : y = x*}. Determine whether f a function on Z.

Solution:

f:7Z — Z is a function with Rng(f) = {0,1,4,9,16,---}. That is f(x) = 22 is a function
from Z to Z.

* Constant Function: f: R — R such that f(z) = c (c is a constant) for all z € R.

Example 4.1.4

Let f={(x,y) €e RxR:y=2x+5}. Show that f is a function from R to R.

Solution:

We first show that Dom(f) = R. Clearly, Dom(f) C R by the definition of f. Next, let
x € R. Then there is y = 22 + 5 € R and hence (z,y) € f. That is x € Dom(f).
Now assume that (z,y), (z,2) € f, we want to show that y = z. But since y = 2x 4+ 5 and

2z = 2x + 5, we have y = z. Therefore, f is a function from R to R.

Theorem 4.1.1

Two functions f and g are equal iff (i) Dom(f) = Dom(g), and (ii) for all x € Dom(f),
f(@) = g(x).

» = 7. Assume that f = g. Proof of (i): If x € Dom(f), then (z,y) € f = g for some y and

hence z € Dom(g). Thus, Dom(f) C Dom(g). Similarly, if z € Dom(g), then (z,y) € g = f
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for some y and hence x € Dom(f). Thus, Dom(g) € Dom(f). Therefore, Dom(f) = Dom(g).
Proof of (i7): Let x € Dom(f). Then for some y, (x,y) € f = g. Thus, f(z) =y = g(x).

» <= 7 Assume that Dom(f) = Dom(g) and that for all z € Dom(f), f(z) = g(x). Suppose
that (z,y) € f, then there is y such that y = f(z) and x € Dom(f) = Dom(g). Thus,
y = f(z) = g(x) which implies that (x,y) € g and hence f C g. Now suppose that
Then there is y such that y = g(z) = f(z) for « € Dom(f). Thus, y = f(x) and

—~

r,y) €9.
r,y) € f.

—~

Hence g C f. Therefore, f = g.
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Section 4.2: Constructions of Functions

Definition 4.2.1

Let f: A— B and g: B — C be two given functions. The composition function go f is
defined by go f : A — C where (go f)(x) = g(f(z)) for every x € A. Note that fog # go f,
while (f og)oh = fo(goh) for any three (appropriate) functions f, g, and h.

Example 4.2.1

Let f(z) =sin(x) and g(x) =22 + 1 for x € R. Find fogand go f.

Solution:

For any = € R, we have
L (fog)(@) = f(g(x) = f(2 + 1) = sin(2a +1).

2. (g0 f)(x) = g(f(x)) = glsin(x)) = 2sin(z) + 1.

Definition 4.2.2

Let f: A— B andlet D C A. The "restriction of f to D”, denoted by f|p, is a function

with domain D and is defined as

flo ={(z,y) : (z,y) € f and = € D}.

In that case, we say that f is an extension of f|p.

Example 4.2.2

Let f : A — B be a function where A = {1,2,3,4}, B = {a,b,c}, and f =
{(1,a),(2,a),(3,b),(4,¢)}. Find f|a, fluy, and f[{2,43-

Solution:

Clearly, fla = £, flgy = {(1,@)}, and flpp. = {(2,a), (4,)}.
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| Remark 4.2.1

b=

Let f: A— B and g: C' — D be two functions. Then,
1. fNgisa function with Dom(fNg) ={xr € ANC: f(x) =y = g(z) € BN D}.

2. f ANC = ¢, then f U g is a function with domain AU B.

Example 4.2.3

Let f ={(1,2),(3,5),(4,2)} and g = {(1, 2), (3,6), (5,—10)}. Find fNg and fUg and decide

whether either of those relation is a function.

Solution:

Clearly, fisa function from A = {1, 3,4} to B = {2,5} while g is a function from C' = {1, 3,5}
to D ={2,6,—10}. So,

e fNg={(1,2)} which is clearly a function from Dom(f N g) = {1} to {2}.

e fUg=1{(1,2),(3,5),(4,2),(3,6),(5,—10)} which is not a function (by the definition)

since 3 maps to two different values, namely 5 and 6.
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Definition 4.3.1

A function f: A — B is onto (surjective mapping) B iff Rng(f) = B. Also, f is called a

surjection. In that case, we write f : A oo, B,

[ Remark 4.3.1

>

Since Rng(f) C B is always true, f is a surjection iff B C Rng(f). Thus,

f: A2 B« (Vbe B)(3a € A)(f(a) =b).

Example 4.3.1

Let f(z) =2 + 2 and g(x) = 2* + 1 for all z € R. Determine whether f and g are onto R.

Solution:

e fisonto: Let y € R (in the range of f), then there exists x € R such that y = x +2 or
x=y—2. Thus, f(z) = f(y —2) = (y —2) + 2 =y. Thus, f is onto R.

e gis not onto: Let y € R, then y = 2% + 1 so o = &+/y — 1. So, y must be greater than

or equal to 1. If we choose y = 0, then x ¢ R and hence ¢ is not onto R.

Example 4.3.2

Let f: N x N — N be a function defined by f(m,n) = 2™"1(2n — 1). Show that f is onto N.

Solution:

We show that N C Rng(f). That is, for all s € N, there exists (m,n) € N x N such that

f(m,n) = s. We consider the following two cases of s.

(i) if s is even: s can be written as 2%t, where k > 1 and ¢ is odd. Since ¢ is odd, ¢t = 2n —1

t+1

5~ for some n € N. Choosing m = k + 1, we have

orn =
f(m,n) =2""12n - 1) = 2Ft = s.

Thus, N C Rng(f).
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(i1) if sis odd: s = 2n—1 for some n € N. Choosing m = 1, we have f(m,n) =2°(2n—1) =
s. Thus, N C Rng(f).

Therefore, f is onto N.

Theorem 4.3.1

Let A, B, and C be three sets. Then,

onto onto onto

1.Iff:A— Bandg: B — C, then go f : A — (. That is, the composite of

surjective functions is a surjection.

2. Iff:A—>B,g:B—>C,andgof:AmC’,thengisontoC.

1. We show that for every ¢ € C, ¢ € Rng(go f). Since g is onto C, there exists b € B
such that g(b) = ¢. but since f is onto B, there exists a € A such that f(a) =b. Thus,

(g0 f)(a) =g(f(a)) = g(b) = c. Thus, ¢ € Rng(g o f).

2. We show that again C' C Rng(g o f). Let ¢ € C. Since go f is onto C, there exists a € A
such that (go f)(a) = ¢. Let b = f(a) € B. Then, (go f)(a) = g(f(a)) = g(b) = c.
Thus, there exists b € B such that ¢g(b) = ¢ and hence ¢ is onto.

Definition 4.3.2

A function f : A — B is said to be "one-to-one” (injective mapping) iff (a;,b) € f
and (ag,b) € f imply that a; = ay. Also, f is called an injection. In that case, we write

f:A5L B

[ Remark 4.3.2

A function f: A =L B is one-to-one if and only if

fla1) = f(a2) = a1 =ay orequivalently a; # as = f(a1) # f(az).
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Example 4.3.3

Let f: R — R given by f(x) = 5z — 1. Show that f is one-to-one.

Solution:

Assume that f(a) = f(b), then 5a — 1 = 5b — 1 = 5a = 5b = a = b. Thus, f is 1-1.

Example 4.3.4

Determine whether f : R — R is one-to-one, where f(x) =

241

Solution:

Assume that f(a) = f(b), then

1

Tl g ==l =P 2a=1b

Therefore, f is not 1-1. For instance, f(1) = f(—1) while 1 # —1.

Example 4.3.5

Let f: N x N — N defined by f(m,n) =2""1(2n — 1). Show that f is one-to-one.

Solution:

Assume that f(a,b) = f(x,y) for (a,b), (x,y) € N x N. Then, 2°71(2b — 1) = 27712y — 1).

Consider the following cases:

1oifa>z: 227120 — 1) =271 (2y — 1) = 2°7%(2b — 1) = (2y — 1) which is impossible.
—_—— ———

even odd

2. ifa<z: 27120 - 1) =212y — 1) = (20 — 1) = 2°7%(2y — 1) which is impossible.
——— —_—

odd even

3ifa=ax 20712 —1) =272y —1) = (2b—1) = 2y — 1) =>b=1y.

Thus, the only possible case is the third case which suggests that (a,b) = (z,y). Therefore,

fis 1-1.
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Theorem 4.3.2

Let A, B, and C be three sets. Then,
1. Iff:Ai:#Bandg:BiC,thengof:Ai:gC.

2. 1f f:A—Bandg:B—C,and go f: A5 C, then f: A 4 B.

1. Assume that (go f)(z) = (go f)(y) for some z,y € A. Then, g(f(z)) = g(f(y)). Since,
gis 1-1, f(z) = f(y), and since f is 1-1 as well, x = y. Therefore, go f is 1-1.

2. Assume that f(z) = f(y) for z,y € A. Then g(f(x)) = g(f(y)) implies that (go f)(x) =
(go f)(y). Since go fis 1-1, x = y. Thus, f is 1-1.

[ Remark 4.3.3

HoORIZONTAL LINE TEST: Let f: A — B be a given function. Then,

1. fis onto B iff for all b € B, the horizontal line y = b intersects the graph of f at least

once.

2. f is one-to-one iff for all b € B, the horizontal line y = b intersects the graph of f at

most once.

Example 4.3.6

Let f: R — Rand g: R — R be two function. Use the Horizontal line test to decide whether

f(x) = 2* and g(x) = 2® are onto, one-to-one, or neither.

Solution:

We apply the horizontal line test on both f and g. In f, we see that on one place the line
crosses the curve in two points, so f is not one-to-one, and it does not cross the curve in
another place so it is not onto. However, in g, the line crosses the curve exactly once in any

place, so it is one-to-one and onto.
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fis not 1-1 /

f is not onto /

f is neither onto nor 1-1 g is onto and 1-1

Definition 4.3.3

Let f : A — B be a function. If the inverse relation f~! of f is a function, then we say
that f~! is the inverse function of f. In particular, if f~! is a function, then f~!': B — A

is defined by
7 =A{(y,2): (=,y9) € f}.

Example 4.3.7

Let f ={(1,2),(4,2)} be a function. Decide whether f~! is a function.

Solution:

No. Since f~! = {(2,1),(2,4)} where 2 is mapped to two distinct elements.

Theorem 4.3.3

Let f:A— Bandg: B — A. Then, g = f'iff fog=Igand gof = I4, where [, : A — A

is the identity function defined by I4(z) = z for all x € A.

Example 4.3.8

—1
Let f(z) =2z + 1 and let g(z) = QCT Show that g = f~!.

Solution:
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Forall z € R, (fog)(z) = f(9(z)) = f(51) =252 +1 =2 —1+41 =z = Iz. Therefore,

g=f"

Theorem 4.3.4

Let f: A — B be a function. Then,

1. f~!is a function from Rng(f) to A iff f is one-to-one.

2. If f~!is a function, then f~! is one-to-one.

1. » = 7: Assume that f~! is a function. Let f(z) = f(y) = z, then (x,2), (y,2) € f.

Thus, (z,2),(z,y) € f~!. Since f~! is a function, z = y. Therefore, f is 1-1.
» < 7 Assume that f is 1-1. Let (x,y),(z,2) € f~' (we need to show that y = 2).
Then, (y,x), (z,2) € f. Since f is 1-1, y = 2. Thus, f~! is a function. By Definition
3.1.6, Dom(f~') = Rng(f) and Rng(f~') = Dom(f).

2. Assume that f~!is a function. Let f~'(z) = f~'(y) = 2, then (z,2),(y,2) € fL.

Thus, (z,7),(2,y) € f and since f is a function, x = y. Therefore, f~! is 1-1.

Definition 4.3.4

A function f : A — B is called a 1-1 corresponding or a bijection if it is both 1-1 and

onto B. In that case, we write f: A L B

onto

Theorem 4.3.5

Letf:A%Bandg:Bi)C. Then,

onto

1. gof: A % C' is a bijection.
2. f~1:B L:) A is a bijection.

1. By Theorem 4.3.1 and Theorem 4.3.2, if f and g are one-to-one and onto, the composite

function g o f is also one-to-one and onto.

2. By Theorem 4.3.4, if f is one-to-one, then f~! is a function and hence it is a one-to-one
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function. To show that f~! is onto A, let a € A. Then, f(a) =b € B. Thus, (a,b) € f
and hence (b,a) € f~! and therefore f~!(b) = a.
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Definition 4.4.1

Let f: A— B. If X C A, the image of X or image set of X is
f(X)={y e B:y= f(x) for some x € X}.

I[f Y C B, then the inverse image of Y is

fAY)={z € A: f(z) =y for some y € Y}.

Example 4.4.1

Let f : R — R be defined by f(z) = 2z +2. Find f ({1,4}), f([1,2]), f (N), f~* ({2, 3}), and
F7H((2,4).

Solution:

flx) =2z +2

e f({1,4}) = {4,10}.
e f([1,2]) = [4,6].
o f(N)={4,6,8,10,12,---}.

o /71({2,3}) ={0,1}.

~
v ocaa,

o f71 (12,4]) = [0,1].
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Example 4.4.2

Let f(z) = 2% be a function from R to R. Find f ([1,2]), f ([0,1]), f ({2}), f ([-2,—1] U[1,2]),
and f~1([1,4]).

Solution:

f(z) = 2?

S f([172]) = [174]'
o f([0,1]) = [0,1].
o f({2}) =r({2,-2}) ={4}.

o f([-2,—1]U[L,2]) =[1,4].

o f71([1,4]) =[-2,-1]U[1,2].

f([=2,-1]U[1,2]) and f~1([1,4])

Example 4.4.3

Let f : R — R be defined by f(z) = 2% If X = [-2,—1] and YV = [1,2], find f(X NY),
SX)NfY), f(XUY), and f(X)U f(Y).

Solution:

Note that X NY = ¢. Thus, f(X NY) = ¢. However, f(X) = [1,4] = f(Y) and thus
f(X)N f(Y) =[1,4]. Therefore, f(X NY) # f(X)N f(Y).
On the other hand, f(X UY) =[1,4] = f(X) U f(Y).

Theorem 4.4.1

Let f: A— Bandlet {X;:i€Z}C Aand {Y;:i€ I} C B. Then,

LfO]&)Qﬂf@ﬂ

1€T 1€T

. (U Xi> _Ufx).

1€ i€T
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Proof:

Proof of (1): Let b € f (ﬂ Xi>, then b = f(a) for some a € (] X;. Thus, a € X; for every
i€T i€
i € I so that b= f(a). Hence, for every i € Z, b € f(X;). Therefore, b € () f (X:).

i€T

Proof of (2):

Lethf(U Xi> & b:f(a)forsomeaGUXi
ieT ieT
< b= f(a) for some a € X; for some i €
< be f(X;) for somei € T
s belJf(X).
i€T
Proof of (3):
Let a € f! (ﬂ Y;) & a= fY(b) for some b € MY
ieT ieT
& a= f'(b) for some b € Y] for every i € T
& ac fNY) foreveryieT
& ac() (M)
i€

Example 4.4.4

Let f : Nx N — N be defined by f(m,n) = 2" '(2n — 1), and let Y = {3,10}. Find the

inverse image of Y.

Solution:

By Theorem 4.4.1, f~1(Y) = f~ ({3} U {10}) = f~*({3}) U f({10}). Then,

e f71({3}) = (m,n) such that 3 = f(m,n) = 2" '(2n — 1). Since 2 { 3, 2™~ ! = 1.
Then m — 1 = 0 or m = 1. In that case, 3 = 2n — 1 and hence n = 2. Therefore,

f({3Y) = (m,n) = (1,2).
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e f71({10}) = (m,n) such that 10 = f(m,n) = 2™"1(2n — 1). After factoring 10, we get
10 = 2! - 5. Thus, 2 | 10 and hence 2™~! = 2!, Then, m —1 =1 and so m = 2. As a
result of that, 10 = 2271(2n —1). Thus, 10 = 2(2n — 1) which implies n = 3. Therefore,
f7H{10}) = (2,3).

Therefore, f~1({3,10}) = {(1,2),(2,3)}.

Example 4.4.5

Let f: A— Bandlet X,Y C A. Show that f is 1-1 if and only if f(X)N f(Y) = f(X NY).

Solution:

» = 7 Assume that f is 1-1. By Theorem 4.4.1, we have f(X NY) C f(X)N f(Y). So, we
only show that f(X)N f(Y) C f(XNY). Assume that b € f(X)N f(Y), then b € f(X) and
be f(Y). Thus, b = f(a;) for some a; € X and b = f(ay) for some ay € Y. Since f is 1-1,
b= f(a1) = f(ag) implies a; = ay =: a. Thus, b = f(a) for some a € X NY. Therefore,
be f(XNY)and hence f(X)N f(Y) C f(XNY). Thereforem f(X)N f(Y)=f(XNY).

» <" Let z,y € A with x # y. Then, {z} N{y} = ¢. Thus, f({z} N{y}) = ¢ which implies
that f({z}) N f({y}) = ¢

That is, {f(z)} N{f(y)} = ¢ and hence f(z) # f(y). Therefore, f is 1-1.

Example 4.4.6

Let f: A =% B. Prove that if X C A, then f(A — X) = f(A) — f(X).

Solution:

» C 7 Let y € f(A— X)), then there exists x € A— X such that y = f(x). That is, z € A and
x ¢ X. Thus, f(z) € f(A) and f(z) ¢ f(X) (since f is 1-1). Therefore, f(z) € f(A) — f(X)
and hence y € f(A) — f(X).

» D7 Lety € f(A) — f(X). Then, y € f(A) and y ¢ f(X). Thus, there exists x € A such
that y = f(z) and « ¢ X (since if z € X, then f(z) € f(X) which is not the case). Thus,
r € A— X and thus f(x) € f(A — X) which implies y € f(A — X).
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Exercise 4.4.1

Let f : R — R be defined by f(z) = 2z Find f({-2,2}); f([1,2]); f([-1,2]); and
f7H({4,16}).

Exercise 4.4.2

Let f: A — B be a function and let Y C B. Show that f (f~*(Y)) C Y. If moreover f is
onto B, then f(f~1(Y)) =Y.
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Chapter

5 Cardinality

Section 5.1: Equivalent Sets; Finite Sets

Definition 5.1.1

Two sets A and B are equivalent, denoted by A ~ B, if and only if there exists a bijection

f:A— B. Otherwise, A % B.

Example 5.1.1

Let A={1,2,3} and B = {a, b, c}. Show that A ~ B.

Solution:

To show that A ~ B, we have to find a bijection f : A — B. Let f : A — B defined by
f(1) =a, f(2) =b, and f(3) = c. Thus, f is a bijection from A to B and hence A ~ B.

Theorem 5.1.1: The Pigeonhole Principle

Let h,k e N. If f : N, — N; and h > k, then f is not a one-to-one function.

Example 5.1.2

Let A={1,2,3,4} and B = {a,b,c}. Is A~ B? Explain.

Solution:

The answer is NO. By the Pigeonhole Principle, there is no one-to-one function from A to B,

and hence A % B.

Example 5.1.3

Let a,b,c,d € R with a < b and ¢ < d. Show that the open intervals (a,b) ~ (¢, d).

Solution:

75
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Let f: (a,b) — (c,d) defined by

You should show that f is a bijection to get the desired result.

Theorem 5.1.2

The relation "a” is an equivalence relation on the class of all sets.

Reflexive: Clearly, the identity function I4 : A — A defined by I4(z) = = for all x € A is a
bijection. Thus, A =~ A.
Symmetric: Assume that A =~ B. That is, there is a bijection f : A — B. By Theorem 4.3.5,

f~1: B — Ais also a bijection. Thus, B ~ A.

Transitive: Assume that A ~ B and B ~ (. Then, there are two bijective mappings
f:A—= Band g: B — C. By Theorem 4.3.5, go f : A — (' is a bijection as well. Thus,
A~ C.

Therefore, "~ is an equivalence relation on the class of all sets.

Theorem 5.1.3

Let A~ C and B =~ D. Show that

1. Ax B=CxD,
2. ffANB=¢and CND = ¢, then AUB~CUD.

Assume that A =~ C and B ~ D. Then, there exist f: A %) Candg:B =L D. Then,

onto

1. Let h: Ax B — C x D given by h(a,b) = (f(a),g(b)). We show that & is a bijection:

e 1-1: Assume h(ay,b) = h(ag,by), then (f(a1),g9(b1)) = (f(az),g(bs)). Then,
f(a1) = f(az) and g(b1) = g(b2). Since f and g are both 1-1, we have a; = ay and
by = by. Thus, (a1, b1) = (as,by) and hence h is 1-1.

e onto: Let (¢,d) € C x D, then ¢ € C' and d € D. Since f and g are both onto
functions, Jda € A such that f(a) = ¢ and 3b € B such that g(b) = d. Thus,




5.1. Equivalent Sets; Finite Sets 77

h(a,b) = (f(a),g(b)) = (¢,d) € C x D. Thus, h is onto.

Since h is 1-1 and onto, h: A x B — C' x D is a bijection. Therefore, A x B~ C x D.

f(z) ifzeA
2. Let h(z) = . We show that h is a bijection:

g(zr) ifrxeB
e Assume that h(z1) = h(xg), then if x; € A and x5 € B, then h(z1) = h(x2) which
implies f(x1) = g(z1) but this is not possible since C N D = ¢. Thus, either
r1,Ty € Aor x1,xo € B. With out loss of generality, assume that z;,z, € A.
Then, h(xy) = h(x2) implies f(x1) = f(z2). Since f is 1-1, x; = x5 and thus h is
1-1.

e Let y e CUD, then y € C or y € D (but not in both). Without loss of generality,
assume that y € C. Thus Ja € A such that f(a) = y (f is onto C), then
h(a) = f(a) =y. Thus, h is onto C'U D.

Since h is 1-1 and onto, h : AU B — C'U D is a bijection.

Definition 5.1.2

Let Ny = {1,2,3,--- ,k} C N with k£ € N and the cardinality of Ny is k, denoted by N, = k.

In addition, we might say that N; has cardinal number k.

Definition 5.1.3

A set A is finite if and only if A = ¢ or A = N;. If A = ¢, then A=0. Otherwise, A ~ N,
and A = k. The set A is infinite if it is not finite.

Theorem 5.1.4

If A is a finite set and B =~ A, then B is finite.

Suppose A is finite and A ~ B. If A = ¢, then clearly B = ¢ since there is a bijection between

A and B. Otherwise, A = Nj for some natural number £, then B ~ Nj by transitivity of ~.

In either cases, B is finite.
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Theorem 5.1.5

Every subset of a finite set is finite.

Theorem 5.1.6

If Ais a finite set with A =% >0 and z ¢ A, then AU {z} is finite and has cardinality k -+ 1.

If A= ¢, then A =0 and hence AU {z} = {x} is finite as it is equivalent to N;. In this case,
Au{z} =1

If A # ¢, then A ~ Ni for some natural number k. Also, {z} ~ {k + 1}. Therefore, by
Theorem 5.1.3, AU {2} ~ N, U{k + 1} = Njy1. Thus AU{k+1}, and AU {k + 1} = k + 1.

Another way: Since A is finite and | A| = k, then A ~ Nj;. Then there is a bijection function

ft) ifteA,
f:A— Ng Let g: AU{z} — Ny defined by g(t) = . Note that

E+1 ift=x
f(t) #k+1forallte A

Can you show that ¢ is a bijection!? AU {x} has cardinality k + 1.

Theorem 5.1.7

If A and B are two finite sets, then A U B is finite.

Assume first that AN B = ¢. Note that if either A or B is empty, then the proof is trivial.

So, we may assume that neither sets is finite.

Since A and B are finite, then there are bijections (A ~ N,,) f : A = N,, and (B = N,,)
g: B —> N, Let H={m+1m+2--- , m+n} and let h : N, — H be defined by
h(z) = m + x. Clearly, h is a bijection and hence H ~ N,,. Thus, H ~ B (This is because ~

is transitive). Therefore, Theorem 5.1.3 implies

Hence, AU B is finite.
Now assume that ANB # ¢, then clearly B—A C B which is finite. Thus, AUB = (B—A)UA,
where (B — A) and A are disjoint finite sets. Thus A U B is finite.
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Theorem 5.1.8

For any n € N, if Ay, Ag,--- , A, are finite sets, then Ay U Ay U---U A, is a finite set.

Theorem 5.1.9

Let A and B be two finite sets. Then

1. f ANB=¢,then |AUB|=|A|+|B]|.
2. f ANB # ¢, then |AUB|=|A|+|B|—-|ANB|.
3. AX Bis finiteand |Ax B|=|A|-|B].
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Section 5.2: Infinite Sets

The set N is an infinite set.

Assume that N is finite. Clearly N #£ ¢. Then N &~ Ny, for some k € N. Thus, 3f : N, % N.
Let n = f(1) + f(2) +---+ f(k) + 1. Thus, n > f(i) for all 1 € Ny and hence n # f(i) for
any i = 1,2,--- k. Hence n € N and n ¢ Rng(f). Therefore, f is not onto N, contradiction.

Thus N 2 Ny, for any k£ € N. Therefore, N is infinite.

Definition 5.2.1

A set S is called denumerable if and only if S ~ N. If S is denumerable, then S has cardinal

number 7. That is, S = To.

Definition 5.2.2

A set S is called countable if and only if S is finite or denumerable. Otherwise, S is said to

be uncountable.

Theorem 5.2.2

The set of integers Z is denumerable. In particular, Z = 7.

We show that there is a bijection mapping from N to Z. That is, N~ Z. Let f : N — Z be
given by

if x is even,

N8

flz) = ,
i if z is odd.
2

That is, we are considering the following mapping:
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o fis 1-1: Let f(x) = f(y) for z,y € N. We consider the following three cases.

1. x and y are both even. Thus, f(x) = f(y) implies that which leads to z = y.

y

2

2. x and y are both odd. Thus, f(z) = f(y) implies that 152 = 1%3/ Then 11—z = 1—y
which implies that x = y.

3. One of them, say z, is even and the other, say ¥, is odd. Then by the definition of

[, we have f(z) # f(y).

Therefore, whenever f(z) = f(y), we get x = y. Thus, f is 1-1.

e fisonto: Let y € Z. If y > 0, then 2y is an even number in N and thus f(2y) = %y =y.
On the other hand, if y < 0, then 1 — 2y is an odd number in N and thus f(1 — 2y) =

1-(1-2y) _ 2y

5 %5 = y. Thus, in either cases of y, f is onto Z.

Therefore, f is a bijection and Z is denumerable with cardinal number 7.

Example 5.2.1

Show that A = {i :keN } is a denumerable set.

Solution:

We show that A ~ N. That is, we show that f : N — A where f(z) = 5- is a bijection.
e fis1-1: Let f(z) = f(y), then i = i Thus, x =y and f is 1-1.

e fisonto: Let y € A, then % € N and hence f(5) = 21

5 — =y. Thus, f is onto A.
y o

Therefore, A is denumerable.

Exercise 5.2.1

Show that A = {Tlﬂ :keN } is a denumerable set.

Example 5.2.2

Show that N x N is denumerable. That is N x N = 7.
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Solution:

Let f: N x N — N be defined by f(m,n) = 2™"1(2n —1). Thus, f is 1-1 by Example 4.3.5
and it is onto N by Example 4.3.2. Therefore, f is a bijection and hence N x N is denumerable.

Theorem 5.2.3

If A and B are denumerable sets, then A x B is denumerable as well.

Since A ~ N and B ~ N. By Theorem 5.1.3, A x B ~ N x N. By Example 5.2.2, N x N ~ N.

Therefore, A x B ~ N. Thus, A x B is denumerable.

Theorem 5.2.4

The interval (0, 1) is uncountable and its cardinal number is ¢ (continuum).

Assume that (0,1) is not uncountable. Then it is countable and so it is either finite or

denumerable. Since (0,1) is not finite (for instance it contains the infinite set {3, 3,1, }),
it is denumerable. Thus, (0,1) ~ N. Suppose that 3f : N — (0, 1), which is a bijection. What

we will do is to contradict with f is not onto (0, 1). Let

f(l) = 0.a11a12a13014015 - - -
f(2) = 0.a21a220a93024095 - - -
f(n> — O-Gnlan2an3an4an5 e

5 if (077 7é 5,

i € N. Then, there is no element in N so that f(n) = x since z is different from f(n) in the

Now let = 0.b1babsbsbs --- € (0,1), where b; = . Thus, x # f(i) for each

n'™ decimal place. Thus, f is not onto, contradiction. Hence (0, 1) is not denumerable and it

is uncountable with cardinal number c.
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Theorem 5.2.5

For any a,b € R with a < b, (a,b) ~ (0,1) and (a, b) is uncountable set with cardinality c. In

particular, any (open or closed) interval (not a point) in R is uncountable.

We recall here the definition we use for a function f in Example 5.1.3. Let f: (0,1) — (a,b)
with f(z) = (b—a)x + a for all x € (0, 1).

o fis 1-1: Let f(x) = f(y), then (b —a)x + a = (b — a)y + a and that implies z = y.
Thus, fis 1-1.

e fis onto: Let y € (a,b). Since 0 <y —a < b—a, we have 0 < =2 < 1. Thus,

y—a, o \Yy—a _
f(b_a)_(b a)b—a+a Y.
Thus f is 1-1.

Therefore, f is a bijection and thus, (a,b) is uncountable with cardinality c.

Theorem 5.2.6

The set of real numbers R is uncountable, and (0,1) ~ R. The cardinality of R is c.

Let f:(0,1) = R be defined by f(z) = tan (7z — 7). Thus, we can show that f is a bijection

by using the horizontal line test.

Y f(=) : L
f is a bijection
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Example 5.2.3

Let A= (3,4)U[5,6). Show that A =~ (0,1) (similarly show that A has cardinal number c).

Solution:

2043 if0<z<i,
Let f:(0,1) — A be given by f(x) =

2044 if;<z<l

e fis 1-1: Assume that f(z) = f(y), we consider the following three cases:

1. z,y € (0,3). Since f(z) = f(y), 2o + 3 = 2y + 3 which implies that z = y.
2. z,y € [5,1). Since f(z) = f(y), 2z +4 =2y + 4. Thus, z =y.
3. z€(0,3) and y € [3,1). In this case, f(z) # f(y).

Thus, whenever f(x) = f(y), we have z = y. Thus, f is 1-1.
e f is onto: We consider the following two cases:

1. if y € (3,4), then 0 < 52 < 1 and thus f(42) = 242
2. if y € [5,6), then 2 < 2% < 1, and thus f(52) =2

Thus, f is onto (3,4) U [5,6).

Therefore, f is a bijection and A ~ (0,1). That is (3,4) U [5,6)

I
o
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Section 5.3: Countable Sets

Theorem 5.3.1

The set QT of positive rational numbers is denumerable.

One can prove this theorem by considering the following mapping:

1 2 3 4 5 6 7 8 9
i \ S i \ \ \ \ \
T N T T

CRCACRC)
CACACEC)

Theorem 5.3.2

If A is denumerable, then AU {z} is denumerable.

If z € A, then there is nothing to prove. So, assume that x ¢ A. Since A is denumerable,

A =~ N and thus 3 a bijection f: N — A. Define g : N — AU {x} by

x ifn=1,
g(n) = :
f(n—1) ifn>1

Thus, g is a bijection (show it!). Therefore, AU {x} is denumerable.




0
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Theorem 5.3.3

If A is denumerable and B is finite, then A U B is denumerable.

Proof:

By using an induction on AU {x} for each x € B using Theorem 5.3.2.

Theorem 5.3.4

If A and B are disjoint denumerable sets, then A U B is denumerable set.

Proof:

Since A and B are denumerable sets, then there are f : N 1;;) Aand g: N % B. Define
h:N— AU B by

f(2ELY if nis odd,
h(n) = )

q(

N3

) if n is even.

The function h is a bijection (show it!). Thus, AU B is denumerable.

Theorem 5.3.5

The set of all rational numbers Q is denumerable.

Proof:

Note that Q = Q" U {0} UQ~. Using Theorem 5.3.2 and Theorem 5.3.4, we can easily show

the desired result.

Show that Q &~ Z x N. You can use f : Q — Z x N, defined by f(g) = (p,q).
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