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1
Chapter

Logic and Proofs

Section 1.1: Propositions and Connectives

Definition 1.1.1

A proposition P is a sentence which is either true T or false F. That is, the truth values of

propositions are T or F.

Example 1.1.1

Consider the following sentences:

• Propositions:

a) 1
2 is a rational number. [T].

b) 2 + 4 = 1. [F].

• Not propositions:

c) How are you doing? [not a proposition].

d) x2 = 36. [where is x coming from?].

e) This sentence is false. [depends on the given sentence!].

The previous propositions studied in a and b are called simple propositions. Compound propo-

sitions can be formed by connectives with simple propositions. For example,

Compound proposition: 1 + 2 = 5 ”and” the sun is made of an orange.

Definition 1.1.2

Let P and Q be two propositions. Then,

1. the conjunction of P and Q, denoted by P∧Q, is the proposition ”P and Q”. P∧Q

is true exactly when both P and Q are true.
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2 Chapter 1. Logic and Proofs

2. the disjunction of P and Q, denoted by P∨Q, is the proposition ”P or Q”. P∨Q is

true exactly when at least one of P or Q is true.

3. the negation of P, denoted by ∼ P, is the proposition ”not P”. ∼ P is true exactly

when P is false.

Example 1.1.2

Let P be ”Kuwait is an island” and let Q be ”Sea water contains salt”. Discuss P∧Q, P∨Q,

and ∼ P.

Solution:

It is clear the P is false and Q is true. Thus,

1. P ∧Q: Kuwait is an island and sea water contains salt. [F].

2. P ∨Q: Kuwait is an island or sea water contains salt. [T].

3. ∼ P: It is not the case that Kuwait is an island. [T].

P Q P ∧Q P ∨Q ∼ P ∼ Q

T T T T F F

T F F T F T

F T F T T F

F F F F T T

Definition 1.1.3

A propositional form is an expression involving finitely many propositions connected by

connectives such as ∧, ∨, and ∼.

Example 1.1.3

Let P, Q, and R be propositions. Write down the truth table of the propositional form(
(P ∧Q) ∨ (P ∨ (∼ R))

)
.

Solution:
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P Q R ∼ R P ∧Q P ∨ (∼ R)
(
(P ∧Q) ∨ (P ∨ (∼ R))

)
T T T F T T T

T T F T T T T

T F T F F T T

T F F T F T T

F T T F F F F

F T F T F T T

F F T F F F F

F F F T F T T

Definition 1.1.4

Two propositional forms P and Q are called equivalent if and only if their truth tables are

identical. In that case, we write P ≡ Q.

Definition 1.1.5

A denial of a proposition P is any proposition equivalent to ∼ P.

A proposition P has only one negation ”∼ P”, but it has many denials. For instance, ∼ P,

∼∼∼ P, and ∼∼∼∼∼ P are all examples of denials. Note that ∼ (∼ P ) is simply P.

Example 1.1.4

Let P be ”π is an irrational number”. Find the negation of P, and give some examples of

denials of P.

Solution:

• negation ∼ P: It is not the case that π is irrational.

• denials of P: a. π is rational. b. π is the quotient of two integers r/s. c. π has a finite

decimal expansion.

Note that since P is true, all of its denials are false.
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Definition 1.1.6

A propositional form is called a tautology if it is true for all possible truth values of its

components. It is called a contradiction if it is the negation of a tautology.

Example 1.1.5

Show that
(
(P ∨Q) ∨ ((∼ P) ∧ (∼ Q))

)
is a tautology for any propositions P and Q.

Solution:

P Q ∼ P ∼ Q P ∨Q (∼ P) ∧ (∼ Q)
(
(P ∨Q) ∨ ((∼ P) ∧ (∼ Q))

)
T T F F T F T
T F F T T F T
F T T F T F T
F F T T F T T

Moreover, it can be seen that the negation of
(
(P∨Q)∨ ((∼ P)∧ (∼ Q))

)
is a contradiction.

Remark 1.1.1

The negation of a tautology is a contradiction, and the negation of a contradiction is a

tautology.
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Section 1.2: Conditionals and Biconditionals

Definition 1.2.1

Given two propositions P and Q, the conditional sentence P ⇒ Q (reads ”P implies Q”)

is the proposition ”if P, then Q”. In that case, P is called antecedent and Q is called

consequent.

Remark 1.2.1

The proposition P ⇒ Q is true whenever P is false or Q is true. In general, P ⇒ Q is

equivalent to (∼ P) ∨Q.

Example 1.2.1

Consider the following propositions:

a) if ”x is an odd integer”, then ”x+ 1 is an even integer”. [T].

b) if ”2 + 1 = 0”, then ”1 + 1 = 0”. [T].

c) if ”1− 1 = 0”, then ”2 + 9 = 1”. [F].

Definition 1.2.2

For propositions P and Q, the converse of P ⇒ Q is Q ⇒ P, and the contrapositive of

P⇒ Q is (∼ Q)⇒ (∼ P).

Theorem 1.2.1

For any propositions P and Q, we have

(i) P⇒ Q is equivalent to (∼ Q)⇒ (∼ P), and (ii) P⇒ Q is not equivalent to Q⇒ P.

Proof:

We prove both results in the following truth table.
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P Q ∼ P ∼ Q P⇒ Q Q⇒ P ∼ Q⇒∼ P

T T F F T T T
T F F T F T F
F T T F T F T
F F T T T T T

Definition 1.2.3

Let P and Q be two propositions. The biconditional sentence P ⇔ Q is ”P if and only if

(iff.) Q”. P⇔ Q is true exactly when both P and Q have the same truth value.

Remark 1.2.2

The following phrases are translated as P⇒ Q for any propositions P and Q:

• if P, then Q. • if a > 5, then a > 3.

• P implies Q. • a > 5 implies a > 3.

• P is sufficient for Q. • a > 5 is sufficient for a > 3.

• P only if Q. • a > 5 only if a > 3

• Q, if P. • a > 3, if a > 5.

• Q whenever P. • a > 3 whenever a > 5.

• Q is necessary for P. • a > 3 is necessary for a > 5.

• Q, when P. • a > 3, when a > 5.

Remark 1.2.3

Moreover, the following phrases are translated as P⇔ Q for any propositions P and Q:

• P if and only if Q. • |x| = 2 iff x2 = 4.

• P if, but only if, Q. • |x| = 2 if, but only if, x2 = 4.

• P is equivalent to Q. • |x| = 2 is equivalent to x2 = 4.

• P is necessary and sufficient for Q. • |x| = 2 is necessary and sufficient for x2 = 4.
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Theorem 1.2.2

Let P, Q, and R be propositions. Then,
a. P⇒ Q ≡ (∼ P) ∨Q.
b. P⇔ Q ≡ (P⇒ Q) ∧ (Q⇒ P).
c. ∼ (P ∧Q) ≡ (∼ P) ∨ (∼ Q).
d. ∼ (P ∨Q) ≡ (∼ P) ∧ (∼ Q).
e. ∼ (P⇒ Q) ≡ P ∧ (∼ Q).
f. ∼ (P ∧Q) ≡ P⇒ (∼ Q).
g. P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R).
h. P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R).

Proof:

b.

P Q P⇔ Q P⇒ Q Q⇒ P (P⇒ Q) ∧ (Q⇒ P)

T T T T T T
T F F F T F
F T F T F F
F F T T T T

g.

P Q R Q ∨R P ∧ (Q ∨R) P ∧Q P ∧R (P ∨Q) ∨ (P ∨R)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F
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Section 1.3: Quantifiers

? Notations:

• N = {1, 2, 3, · · · } is the set of natural numbers.

• Z = {· · · ,−2,−1, 0, 1, 2, · · · } is the set of integer numbers.

• Q = {p
q

: p, q ∈ Z and q 6= 0} is the set of rational numbers.

• R is the set of real numbers.

The sentence x ≥ 5 is not a proposition, unless we assign a value to x. It is an open sentence. In

general, an open sentence with n variables is denoted by P (x1, x2, · · · , xn). For example, the open

sentence P (x1, x2, x3): ”x1 equals to x2 + x3” is an open sentence. On the other hand, P (7, 3, 4) and

P (7, 2, 3) are propositions with true and false values, respectively.

Definition 1.3.1

The set of objects for which an open sentence is true is called the truth set, and is denoted

by T .

On the other hand, the set from where the objects can be taken from is called the universe,

and is denoted by U . In particular, two open sentences are said to be equivalent for a particular

universe if and only if their truth sets are equal.

Example 1.3.1

Let U = N. Then, P (x) : x + 3 > 7 is equivalent to Q(x) : x > 4, since T = {5, 6, 7, · · · } for

both P and Q.

Also, P (x) : x2 = 4 is equivalent to Q(x) : x = 2. However, if U was the set of all integers,

then P (x) : x2 = 4 with truth set {−2, 2} is not equivalent to Q(x) : x = 2 with truth set

{2}.

Definition 1.3.2

Let P(x) be an open sentence with variable x ∈ U . Then,

a) The sentence ”(∀x)P(x)” reads as ”for all x, P(x)”. It is true iff T = U for P(x). ”∀”

is called the universal quantifiers.
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b) The sentence ”(∃x)P(x)” reads as ”there exists x such that P(x)”. It is true iff T 6= ∅

(the empty set). ”∃ is called the existential quantifiers.

c) The sentence ”(∃!x)P(x)” reads as ”there exists a unique x such that P(x)”. It is true

iff T contains only one element. ”∃! is called the unique existential quantifiers.

Example 1.3.2

Let U = R. Decide the truth value and the truth set for each of the following.

Solution:

Consider the following table where we different sentences along with its truth value as true

or false and the corresponding truth set.

sentence T or F T

a. (∀x)(x ≥ 3) F [3,∞).

b. (∀x)(|x| > 0) F R\{0}.

c. (∀x)(x− 1 < x) T R.

d. (∃x)(x ≥ 3) T [3,∞).

e. (∃!x)(|x| = 0) T {0}.

f. (∃!x)(|x| = 2) F {−2, 2}.

g. (∃x)(x2 = −4) F ∅.

h. (∃x)(∃y)(2x+ y = 0 ∧ x− y = 1) T {x = 1
3 , y = −2

3}.

i. (∃!x)(∃!y)(2x+ y = 0 ∨ x− y = 1) F (x, y) ∈
{

(0, 0), (1, 0), (3, 2), · · ·
}

.

j. (∀x)(∀y)(x2 + y2 > 0) F R2\(0, 0).

Definition 1.3.3

Two quantified sentences are equivalent for a particular universe U iff they have the same truth

set in U . Two quantified sentences are equivalent iff they are equivalent in every universe.

For instance, (∀x)(P(x) ∧ Q(x)) is equivalent to (∀x)(Q(x) ∧ P(x)) and (∀x)[P(x) ⇒ Q(x)] is

equivalent to (∀x)[∼ Q(x)⇒∼ P(x)].
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Theorem 1.3.1

Let P(x) be an open sentence with a variable x ∈ U for some U . Then,

a. ∼ (∀x)[P(x)] is equivalent to (∃x)[∼ P(x)].

b. ∼ (∃x)[P(x)] is equivalent to (∀x)[∼ P(x)].

Proof:

(a.) The sentence ∼ (∀x)[P(x)] is true iff (∀x)[P(x)] is false iff the truth set for P(x) is not

the entire universe, i.e. T 6= U iff there exists an x ∈ U such that P(x) is false iff (∃x)[∼ P(x)]

is true.

(b.) The sentence ∼ (∃x)[P(x)] is true iff (∃x)[P(x)] is false iff the truth set of P(x) is empty

iff (∀x)[∼ P(x)] is true.

Remark 1.3.1

Let P(x) be an open sentence with a variable x ∈ U for some U . Then,

(∃!x)P(x) ≡ (∃x)
[
P(x) ∧ (∀y)[P(y)⇒ x = y]

]
.

Example 1.3.3

Find a denial (or the negation) for ”(∀x)[P(x)⇒ Q(x)]”.

Solution:

Using Theorem 1.3.1 and Theorem 1.2.2 (part e), we conclude

∼ (∀x)[P(x)⇒ Q(x)] ≡ (∃x)[∼ (P(x)⇒ Q(x))] ≡ (∃x)[P(x) ∧ (∼ Q(x))].

Example 1.3.4

Find a denial (or the negation) for ”(∃!x)P(x)”.

Solution:
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Using Remark 1.3.1 and Theorem 1.2.2, we conclude

∼ (∃!x)P(x) ≡ ∼ (∃x)
[
P(x) ∧ (∀y)[P(y)⇒ x = y]

]
≡ (∀x)

[
∼
(
P(x) ∧ (∀y)[P(y)⇒ x = y]

)]
≡ (∀x)

[
∼ P(x)∨ ∼ (∀y)[P(y)⇒ x = y]

]
≡ (∀x)

[
∼ P(x) ∨ (∃y) ∼ [P(y)⇒ x = y]

]
≡ (∀x)

[
∼ P(x) ∨ (∃y)[P(y)∧ ∼ (x = y)]

]
≡ (∀x)

[
∼ P(x) ∨ (∃y)[P(y) ∧ x 6= y]

]

Example 1.3.5

Find a denial (or the negation) for

(∀z)(∃x)(∃y)
[(

(x > z) ∧ (y > z)
)
∧ ∼ (∃w)

(
x+ y < w < xz

)]
. (1.3.1)

Solution:

Using Theorem1.3.1 and Theorem 1.2.2, we conclude

∼ Equation(1.3.5) ≡ ∼ (∀z)(∃x)(∃y)
[(

(x > z) ∧ (y > z)
)
∧ ∼ (∃w)

(
x+ y < w < xz

)]
≡ (∃z)(∀x)(∀y) ∼

[(
(x > z) ∧ (y > z)

)
∧ ∼ (∃w)

(
x+ y < w < xz

)]
≡ (∃z)(∀x)(∀y)

[(
(x > z) ∧ (y > z)

)
⇒∼∼ (∃w)

(
x+ y < w < xz

)]
≡ (∃z)(∀x)(∀y)

[(
(x > z) ∧ (y > z)

)
⇒ (∃w)

(
x+ y < w < xz

)]
.

Example 1.3.6

Let U = R. Decide the truth value and the truth set for each of the following.

Solution:

sentence T or F T

a. (∀y)(∃x)[x+ y = 0] T for any y, x = −y is a solution.
b. (∃x)(∀y)[x+ y = 0] F given x = 0 not all y ∈ R is a solution.
c. (∃x)(∃y)[x2 + y2 = 10] T for x ∈ R there is y =

√
10− x2 ∈ R.

d. (∀y)(∃x)(∀z)[xy = xz] T for any y ∈ R, x = 0 for any z ∈ R.
e. (∀y)(∃!x)[x = y2] T for any y ∈ R, x = y2 is a solution.
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Section 1.4: Mathematical Proofs

Definition 1.4.1

A proof is a justification of the truth of a given statement called theorem, proposition, claim,

or lemma.

Remark 1.4.1

Tools of proofs: We may use any of the following:

• Axioms: Initial statements which are assumed to be true.

• Theorems: Some previously proved statement can be use.

• Assumptions: Assumed fact about the problem at hand.

• Tautologies: Examples follow:

a. P ∨ (∼ P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Excluded Middle).

b. (P⇒ Q)⇔ (∼ Q⇒∼ P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Contrapositive).

c.
P ∨ (Q ∨R)⇔ (P ∨Q) ∨R

P ∧ (Q ∧R)⇔ (P ∧Q) ∧R

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Associativity).

d.
P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)

 . . . . . . . . . . . . . . . . . . . . . . . . (Distributivity).

e. (P⇔ Q)⇔ [(P⇒ Q) ∧ (Q⇒ P)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Biconditional).

f. ∼ (P⇒ Q)⇔ (P∧ ∼ Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Denial of Implication).

g.
∼ (P ∧Q)⇔ (∼ P∨ ∼ Q)

∼ (P ∨Q)⇔ (∼ P∧ ∼ Q)

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . (De Morgan’s Laws).

h. P⇔ [∼ P⇒ (Q∧ ∼ Q)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Contradiction).

i. [(P⇒ Q) ∧ (Q⇒ R)]⇔ (P⇒ R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Transitivity).

j. [P ∧ (P⇒ Q)]⇒ Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Modus Ponens).

In what follows, we consdier different types of proof.
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1.4.1 Type 1: Direct Proof

Direct proof P⇒ Q: Assume P, then · · · · · · . Therefore, Q.

Example 1.4.1

Let n be an integer. Show that if n is odd, then n+ 1 is even.

Solution:

Assume that n = 2k + 1 for some integer k. Then, n + 1 = ( 2k + 1 ) + 1. That is n + 1 =

2k + 2 = 2( k + 1 ). Therefore, n+ 1 is even.

Example 1.4.2

Assume that sin(x) is an odd funtion, i.e. sin(−x) = − sin(x). Show that f(x) = sin2(x) for

any x ∈ R is an even function, i.e. f(−x) = f(x).

Solution:

f(−x) = (sin(−x))2 = (− sin(x))2 = sin(x) = f(x). Therefore, f(x) is an even function.

Theorem 1.4.1

Suppose that a, b, and c are integers. If a divides b and b divides c, then a divides c.

Proof:

Since a divides b (a | b), then there is an integer k such that b = ka. Also, since b | c there is

an integer h such that c = hb. Thus, c = hb = h(ka) = (hk)a, and therefore a | c.

Theorem 1.4.2

Let a, b, c ∈ Z. If a | b and a | c, then a | b± c.

Proof:

Since a | b, ∃k ∈ Z such that b = ka, and since a | c, ∃h ∈ Z such that c = ha. Thus,

b± c = ka± ha = (k ± h)a.

Therefore, a | b± c.
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1.4.2 Type 2: Proof By Contradiction

Contradiction to proof P: Suppose ∼ P, then · · · · · · . Thus Q. Then, · · · · · · . Therefore, ∼ Q,

contradiction.

This technique uses the tautology P⇔ [∼ P⇒ (Q∧ ∼ Q)].

Example 1.4.3

The equation x3 + x− 1 = 0 has at most one real root.

Solution:

Let f(x) = x3 +x− 1. Suppose that f(x) has two real roots a and b, then f(a) = f(b) = 0. f

is continuouse on [a, b] and is differentiable on (a, b) since it is a polynomial. Then, by Rolle’s

Theorem, there is a c ∈ (a, b) such that f ′(c) = 0. But f ′(c) = 3c2 + 1 6= 0 for all c ∈ R. This

is a contradiction. Therefore, f has at most one real root.

Remark 1.4.2

• Any square integer has an even number of 2’s as prime factors.

• All natural number greater than 1 has a prime divisor q > 1.

Example 1.4.4

Prove that
√

2 is an irrational number.

Solution:

Recall the fact that any square integer number has an even number of 2’s as prime factors.

Suppose that
√

2 is rational number. Then,
√

2 = p
q

for some p, q ∈ Z. Thus, 2 = p2

q2 or

p2 = 2q2. Since p2 and q2 are both square numbers, p2 contains an even number of 2’s as

prime factors (might be 0 times for odd numbers) and q2 contains an even number of 2’s as

prime factors. But then 2q2 has an odd number of 2’s as prime factors and thus p2 has an

odd number of 2’s as prime factors because p2 = 2q2. This is a contradiction. Thus,
√

2 is an

irrational number.
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Theorem 1.4.3

The set of primes in N is infinite.

Proof:

Suppose that the set of primes W = {p1, p2, · · · , pk} is finite for some k ∈ N. Let n =

p1p2 · · · pk + 1 ∈ N. (fact) All natural number has a prime divisor q > 1. So, q | n, and since

q is a prime, then q ∈ W and q | p1p2 · · · pk (because q = pi for some 1 ≤ i ≤ k). Also, q | n.

Therefore, q | (n− p1p2 · · · pk), but n− p1p2 · · · pk = 1. Thus q = 1, Contradition. Thus W is

infinite.

1.4.3 Type 3: Contrapositive Proofs

Contraposition to show P⇒ Q: Suppose ∼ Q, then · · · · · · . Thus ∼ P.

Therefore, P⇒ Q. This technique uses the tautology (P⇒ Q)⇔ (∼ Q⇒∼ P).

Example 1.4.5

Let m ∈ Z. If m2 is odd, then m is odd.

Solution:

Assume that m is even. Then m = 2k for some k ∈ Z and m2 = 4k2 = 2(2k2) which is even.

By contraposition, the result is proved.

Example 1.4.6

Let x, y ∈ R such that x < 2y. Show that if 7xy ≤ 3x2 + 2y2, then 3x ≤ y.

Solution:

Assume that x < 2y. By contraposition, assume that 3x > y. Then, 2y−x > 0 and 3x−y > 0,

but

(2y − x)(3x− y) = 7xy − 3x2 − 2y2 > 0 ⇒ 7xy > 3x2 + 2y2.

Therefore, if 7xy ≤ 3x2 + 2y2, then 3x ≤ y.
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1.4.4 Type 4: Two-Directions Proofs

Two directions to show P ⇔ Q: By any method, (i) Show that P ⇒ Q. (ii) Show that

Q⇒ P. Therefore, P⇔ Q.

Theorem 1.4.4

Let a be a prime number, and let b and c be positive integers. Prove that a | bc if and only if

a | b or a | c.

Proof:

We show the result by two direction: ” ⇒ ” and ” ⇐ ”.

” ⇒ ”: Assume that a | bc. By Fundamental Theorem of Arithmetic, b and c can be written

uniquely as products of primes. Assume b = p1p2 · · · pk and c = q1q2 · · · qh for some h, k ∈ N.

But then bc = p1p2 · · · pkq1q2 · · · qh. Since a | bc and a is a prime, a is one of the prime factors.

If a = pi for some 1 ≤ i ≤ k, then a | b or if a = qi for some 1 ≤ i ≤ h, then a | c. Thus,

either a | b or a | c.

” ⇐ ”: Assume that a | b or a | c. Thus,

Case 1: a | b then b = ka for some k ∈ Z and hence bc = (ka)c = (kc)a. Thus a | bc.

Case 2: a | c then c = ha for some h ∈ Z and hence bc = b(ha) = (bh)a. Thus a | bc.

In either cases, a | bc.

1.4.5 Type 5: Proofs By Cases (Exhaustion)

Contradiction to show (P1 ∨P2)⇒ Q: By any method, (i) Show that P1 ⇒ Q and (ii) show

that P2 ⇒ Q. Using the tautology [(P1 ∨P2)⇒ Q]⇔ [(P1 ⇒ Q) ∧ (P2 ⇒ Q)].

Example 1.4.7

Show that for any x, y ∈ Z, if either x or y is even, then xy is even.

Solution:

We have two cases:

Case 1: Assume x-even. Then x = 2k for some k ∈ Z. That is xy = 2(ky) which is even.

Case 2: Assume y-even. Then y = 2h for some h ∈ Z. That is xy = 2(xh) which is even.
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Thus, in both cases, xy is even.

Example 1.4.8

Let x, y ∈ Z. If x and y are both odd, then xy is odd.

Solution:

a. Direct Proof: Assume x and y are odd integers. Then, there are m and n in Z such

that x = 2m+ 1 and y = 2n+ 1. Thus, xy = (2m+ 1)(2n+ 1) = 4mn+ 2m+ 2n+ 1 =

2(2mn+m+ n) + 1. Therefore, xy is odd as well.

b1. Proof by Contradiction: Assume that xy is even. Thus 2 | xy which implies that 2 | x

or 2 | y (since 2 is a prime number) which is a contradiction both ways since both of x

and y are odd.

b2. Another Proof by Contradiction: Assume that xy is even. Since x and y are odd, there

are m and n in Z such that x = 2m+ 1 and y = 2n+ 1. Thus, xy = (2m+ 1)(2n+ 1) =

4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 which is odd, contradiction. Therefore, xy

is odd.

c. Proof by Contraposition: We use ∼ (xy is odd) ⇒∼ (x is odd and y is odd) which is

equivalent to (xy is even)⇒ [(x is even) or (y is even)].

Assume that xy is even. Thus, 2 | xy. Since 2 is a prime number, we have either 2 | x

or 2 | y. Thus, either x is even or y is even. Therefore, if x and y are odd, then xy is

odd.

Exercise 1.4.1

Let a, b ∈ Z. Use a contrapositive proof to show that if ab-odd, then a - odd and b-odd.
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Section 1.6: Proofs Involving Quantifiers

1.6.1 Type 1: Proof of (∃x)P(x)

• Direct proof: Name or construct an element x ∈ U which has the property P(x).

• Proof by contradiction: Suppose ∼ (∃x)P(x). Then (∀x)(∼ P(x)) ... ... ... .Therefore,

Q(x)∧ ∼ Q(x), contradiction. Hence, ∼ (∃x)P(x) is false, then (∃x)P(x) is true.

Example 1.6.1

Show that there is an even prime number.

Solution:

2 is a prime even number.

Example 1.6.2

Let U = R. Show that (∃x)[x3 + 3x2 + x− 1 = 0].

Solution:

Using direct proof: x = −1 is a solution. On the other hand, using a proof by contradiction:

Assume ∼ (∃x)[x3 + 3x2 + x− 1 = 0] ≡ (∀x)[x3 + 3x2 + x− 1 6= 0]. Therefore, either:

Case 1: (∀x)[x3 + 3x2 + x− 1 > 0] which is false for if x = −10, or

Case 2: (∀x)[x3 + 3x2 + x− 1 < 0] which is false for if x = 10.

Therefore, (∃x)[x3 + 3x2 + x− 1 = 0].

1.6.2 Type 2: Proof of (∀x)P(x)

• Direct proof: Let x ∈ U be arbitrary, then ... .... Hence, P(x) is true. Since x was arbitrary

chosen, (∀x)P(x) is true.

• Proof by contradiction: Suppose ∼ (∀x)P(x). Then (∃x)(∼ P(x)) ... ... ... .Therefore,

Q(x)∧ ∼ Q(x), contradiction. Hence, ∼ (∀x)P(x) is false, then (∀x)P(x) is true.
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Example 1.6.3

Let U = Z. Show that (∀x), if x is even, then x2 is even.

Solution:

Assume that x ∈ Z so that x = 2k for some integer k. Then x2 = ( 2k )2 = 2( 2k2 ) which is

even.

Example 1.6.4

Show that for all rational numbers p and q, p+ q

2 is rational.

Solution:

Assume that p = x
y

and q = u
v

where x, y, u, v ∈ Z with y, v 6= 0. Then,

p+ q

2 = 1
2

(
x

y
+ u

v

)
= 1

2

(
xv + yu

yv

)
= xv + yu

2yv ,

which is rational.

1.6.3 Type 3: Proof of (∃!x)P(x)

1. Prove that (∃x)P(x) by any method.

2. Assume that x, y ∈ U such that P(x) and P(y) are true ... ... . Thus, x = y. Therefore,

(∃!x)P(x).

Example 1.6.5

Prove that every nonzero real number has a unique multiplicative inverse.

Solution:

Let x be any nonzero real number. We want to show that xy = 1 for exactly one real number

y. Let y = 1
x
, then y is a real number. Since x 6= 0, then xy = x 1

x
= 1. Thus, x has a

multiplicative inverse.

Assume that y and z are two real numbers such that xy = xz = 1. Since x 6= 0, xy = xz

implies that y = z. Therefore, every nonzero real number has a unique multiplicative inverse.
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Exercise 1.6.1

Prove that every nonsingular matrix has a unique inverse.



2
Chapter

Set Theory

Section 2.1: Basic Notations of Set Theory

Definition 2.1.1

A set is a collection of objects called elements. Sets are usually denoted by capital letters

A,B,C, · · · while elements are usually denoted by small letters a, b, c, · · · .

• If a is an element of a set A, then we write a ∈ A. Otherwise, we write a 6∈ A.

• The empty set φ := {x : x 6= x}. That is, φ is a set with no elements.

• A set B is a subset of A, denoted by B ⊆ A, if and only if every elements of B is also

an element of A. That is, ∀b ∈ B ⇒ b ∈ A.

• A set B is called a proper subset of set A, if B ⊆ A and B 6= φ, but B 6= A. In this

case, we write B ⊂ A.

• Two subsets A and B are equal , denoted by A = B, if and only of A ⊆ B and B ⊆ A.

• If a set A contains n elements, we say that |A | = n.

Theorem 2.1.1

For any sets A, B, and C, we have:

1) φ ⊆ A,

2) A ⊆ A, and

3) if A ⊆ B and B ⊆ C, then A ⊆ C.

Proof:

The first two results are trivial so we leave those. For part 3) let a be any element of A. Since

A ⊆ B, a ∈ B. But since B ⊆ C, a ∈ C. Thus, if a ∈ A⇒ a ∈ C. Thus, A ⊆ C.

21
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Definition 2.1.2

Let A be a set. The power set of A is the set whose elements are all the subsets of A and is

denoted by P(A). Thus,

P(A) = {B : B ⊆ A}.

Example 2.1.1

Let A = {a, b, c}. Find P(A).

Solution:

P(A) = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A}.

Remark 2.1.1

Let A be any given set. Then,

a. Theorem: If |A | = n, then | P(A) | = 2n.

b. A 6⊆ P(A), but A ∈ P(A).

Example 2.1.2

Let A = {1, {1, 3}, {2, 3}}. Find P(A).

Solution:

P(A) = {φ, {1}, { { 1, 3 } }, { { 2, 3 } }, { 1, { 1, 3 } }, { 1, { 2, 3 } }, { { 1, 3 }, { 2, 3 } }, A }.

Note that, 1 ∈ A, while 2 6∈ A and 3 6∈ A. Also, {1} 6∈ A where {2, 3} ∈ A and {{2, 3}} ⊆ A

hence {{2, 3}} ∈ P(A). Moreover, 1 6∈ P(A), {1} ∈ P(A), and {{1}} ⊆ P(A). Also,

φ ⊆ A, φ ∈ P(A) and {φ} ⊆ P(A). Finally, {1, 3} 6∈ P(A), but {{1, 3}} ∈ P(A) and

{{{1, 3}}} ⊆ P(A).
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Theorem 2.1.2

Let A and B be two sets. Then, A ⊆ B if and only if P(A) ⊆ P(B).

Proof:

” ⇒ ”: Assume that A ⊆ B. Let X ∈ P(A). Then, X ⊆ A ⊆ B. That is, X ∈ P(B). Thus,

P(A) ⊆ P(B).

” ⇐ ”: Assume that P(A) ⊆ P(B). Since A ∈ P(A) ⊆ P(B), we have A ∈ P(B)⇒ A ⊆ B.

Exercise 2.1.1

Let A = { 9n : n ∈ Z } and B = { 3n : n ∈ Z }. Show that A $ B.

Exercise 2.1.2

Let A = { 9n : n ∈ Q } and B = { 3n : n ∈ Q }. Show that A = B.

Exercise 2.1.3

Find P(φ), P(P(φ)), and P(P(P(φ))).
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Section 2.2: Set Operations

Definition 2.2.1

Let A and B be two sets. Then,

1.
Union: A ∪B = {x : x ∈ A or x ∈ B}.

What is the meaning of x 6∈ A ∪B? A B

A ∪B

2.
intersection: A ∩B = {x : x ∈ A and x ∈ B}.

What is the meaning of x 6∈ A ∩B? A B

A ∩B

3.
Difference: A−B = {x : x ∈ A and x 6∈ B}.

What is the meaning of x 6∈ A−B? A B

A−B

4.
Complement: If U is the universal, then

Ã = {x : x 6∈ A} = {x : x ∈ U − A}. A

U
Ã = U − A

5. Disjoint: A and B are called disjoint if A∩B = φ.
A

U

B

A ∩B = φ

Theorem 2.2.1

Let A, B, and C be sets. Then,

1. A ⊆ A ∪B.

2. A ∩B ⊆ A.

3. A ∩ φ = φ.

4. A ∪ φ = A.
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5. A ∩ A = A.

6. A ∪ A = A.

7. A ∪B = B ∪ A.

8. A ∩B = B ∩ A.

9. A− φ = A.

10. φ− A = φ.

11. A ∪ (B ∪ C) = (A ∪B) ∪ C.

12. A ∩ (B ∩ C) = (A ∩B) ∩ C.

13. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

14. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

15. A ⊆ B if and only if A ∪B = B.

16. A ⊆ B if and only if A ∩B = A.

17. if A ⊆ B, then A ∪ C ⊆ B ∪ C.

18. if A ⊆ B, then A ∩ C ⊆ B ∩ C.

Proof:

Proof of (13): Using the fact ”P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R)” as follows.

x ∈ A ∩ (B ∪ C) iff x ∈ A and x ∈ B ∪ C
iff x ∈ A and (x ∈ B or x ∈ C)
iff (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
iff x ∈ A ∩B or x ∈ A ∩ C
iff x ∈ (A ∩B) ∪ (A ∩ C).

Proof of (15): ” ⇒ ”: Assume that A ⊆ B. By part (1), B ⊆ A ∪ B so we only show that

A ∪ B ⊆ B. Let x ∈ A ∪ B, then x ∈ A ⊆ B or x ∈ B. In both cases, x ∈ B. Thus,

A ∪B ⊆ B. Therefore, B = A ∪B.

” ⇐ ”: Assume that A ∪B = B. By part (1) A ⊆ A ∪B = B. Thus, A ⊆ B.

Proof of (18): Assume that A ⊆ B. Let x ∈ A∩C, then x ∈ A ⊆ B and x ∈ C. Thus, x ∈ B

and x ∈ C, which implies that x ∈ B ∩ C. Therefore, A ∩ C ⊆ B ∩ C.
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Theorem 2.2.2

Let A and B be two subsets of the universe U . Then:

1. ˜̃
A = A.

2. A ∪ Ã = U .

3. A ∩ Ã = φ.

4. A−B = A ∩ B̃.

5. A ⊆ B iff B̃ ⊆ Ã.

6. A ∩B = φ iff A ⊆ B̃.

7.
a. Ã ∪B = Ã ∩ B̃.

b. Ã ∩B = Ã ∪ B̃.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (De Morgan’s Laws).

Proof:

Proof of (2): If x ∈ A ∪ Ã then x ∈ A ⊆ U or x ∈ Ã = U − A. In either cases, x ∈ U . Thus,

A ∪ Ã ⊆ U .

Assume now that x ∈ U . Thus, x ∈ A or x ∈ U − A = Ã which implies x ∈ A ∪ Ã. Thus

U ⊆ A ∪ Ã. Therefore, U = A ∪ Ã.

Proof of (5): Using a contrapositive proof as follows:

A ⊆ B iff (∀x)(x ∈ A⇒ x ∈ B)
iff (∀x)(x 6∈ B ⇒ x 6∈ A)
iff (∀x)(x ∈ B̃ ⇒ x ∈ Ã)
iff B̃ ⊆ Ã.

Proof of (7.b): Recall that ∼ (P ∧Q) =∼ P∨ ∼ Q:

x ∈ Ã ∩B iff x 6∈ A ∩B
iff ∼ (x ∈ A and x ∈ B)
iff x 6∈ A or x 6∈ B
iff x ∈ Ã or x ∈ B̃
iff x ∈ Ã ∪ B̃.
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Example 2.2.1

Let U = {1, 2, 3, 4, 5, 6, 7, 8} be the universe and let A = {1, 5, 7}, B = {2, 5, 8}, and C =

{3, 4, 5, 6, 7} Answer Each of the following:

1. A ∩B = {5}.

2. B ∪ C = {2, 3, 4, 5, 6, 7, 8}.

3. (A ∩B) ∪ (A ∩ C) = {5} ∪ {5, 7} = {5, 7}.

4. A− C = {1}.

5. (A ∪ C)− (B ∩ C) = {1, 3, 4, 5, 6, 7} − {5} = {1, 3, 4, 6, 7}.

6. Ã = U − A = {2, 3, 4, 6, 8}.

7. Ã ∩ B̃ = {2, 3, 4, 6, 8} ∩ {1, 3, 4, 6, 7} = {3, 4, 6}.

Example 2.2.2

Let A ⊆ B ∪ C and A ∩B = φ. Show that A ⊆ C.

Solution:

Let x ∈ A. Since A ⊆ B ∪ C, x ∈ B or x ∈ C. If x ∈ B, then x ∈ A ∩ B, contradiction.

Thus, x ∈ C and therefore, A ⊆ C.

Example 2.2.3

Show that P(A ∩B) = P(A) ∩ P(B).

Solution:

Let X ∈ P(A ∩B) iff X ⊆ A ∩B
iff X ⊆ A and X ⊆ B

iff X ∈ P(A) and X ∈ P(B)
iff X ∈ P(A) ∩ P(B).
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Example 2.2.4

Show that P(A) ∪ P(B) ⊆ P(A ∪B). Is P(A) ∪ P(B) = P(A ∪B) in general? Explain.

Solution:

Let X ∈ P(A) ∪ P(B) ⇒ X ∈ P(A) or X ∈ P(B)
⇒ X ⊆ A or X ⊆ B

⇒ X ⊆ A ∪B
⇒ X ∈ P(A ∪B).

In general, P(A ∪B) 6⊆ P(A) ∪ P(B) and thus P(A) ∪ P(B) 6= P(A ∪B).

For instance, consider A = {a} and B = {b}. Then A ∪ B = {a, b}, P(A) = {φ, {a}} and

P(B) = {φ, {b}}. Therefore,

P(A ∪B) = {φ, {a}, {b}, {a, b}} 6= P(A) ∪ P(B) = {φ, {a}, {b}}.

Remark 2.2.1

If A ⊆ B, then P(A) ∪ P(B) = P(A ∪B).

Exercise 2.2.1

Suppose that A,B, and C are three nonempty sets. Show that if A ⊆ B, then A−C ⊆ B−C.

Exercise 2.2.2

Suppose that A, and B are two nonempty sets. Show that A−B = φ iff A ∩B = A.
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Section 2.3: Extended Set Operations

Definition 2.3.1

Let I be a nonempty set. Suppose that for each i ∈ I, there is a corresponding set Ai. Then,

the family of sets A = {Ai : i ∈ I} is called an indexed family of sets. Each i ∈ I is called

an index and I is called an indexing set. Then

1. The union over A is defined by

⋃
i∈I

Ai = {x : (∃Ai ∈ A) [x ∈ Ai] } = {x : (∃Ai ) [Ai ∈ A ∧ x ∈ Ai] }.

2. the intersection over A is defined by

⋂
i∈I

Ai = {x : (∀Ai ∈ A) [x ∈ Ai] } = {x : (∀Ai ) [Ai ∈ A ⇒ x ∈ Ai] }.

3. The indexed family A of sets is said to be pairwise disjoint if and only if for all i and

j in I, either Ai = Aj or Ai ∩ Aj = φ.

Example 2.3.1

Let I = { 1, 2, 3 }, and define Ai = { i, i+ 1 } for each i ∈ I. Find
⋃
i∈I
Ai and

⋂
i∈I
Ai.

Solution:

Note that A1 = { 1, 2 }, A2 = { 2, 3 }, and A3 = { 3, 4 }. Thus,
⋃
i∈I
Ai = { 1, 2, 3, 4 }, and⋂

i∈I
Ai = φ.

Example 2.3.2

For each i ∈ N, let Ai = {j ∈ N : j ≤ i}. Find
⋃
i∈N
Ai and

⋂
i∈N
Ai.

Solution:

Note that A1 = {1}, A2 = {1, 2}, · · · , An = {1, 2, · · · , n} and so on. Thus,
⋃
i∈N
Ai = N while⋂

i∈N
Ai = {1}.
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Theorem 2.3.1

Let A = {Ai : i ∈ I} be an indexed family of sets. Then,

1. For each k ∈ I, Ak ⊆
⋃
i∈I
Ai.

2. For each k ∈ I,
⋂
i∈I
Ai ⊆ Ak.

3.
a.
⋃̃
i∈I
Ai =

⋂
i∈I
Ãi.

b.
⋂̃
i∈I
Ai =

⋃
i∈I
Ãi.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (De Morgan’s Laws).

Proof:

Proof of (1): Let x ∈ Ak. Since Ak ∈ A, x ∈
⋃
i∈I
Ai. Thus, Ak ⊆

⋃
i∈I
Ai.

Proof of (2): Let x ∈
⋂
i∈I
Ai. Then, x ∈ Ai for every i ∈ I. Since k ∈ I, x ∈ Ak. Thus,⋂

i∈I
Ai ⊆ Ak.

Proof of (3.a):

x ∈
⋃̃
i∈I
Ai ⇔ x 6∈

⋃
i∈I
Ai

⇔ x 6∈ Ai for all i ∈ I

⇔ x ∈ Ãi for all i ∈ I

⇔ x ∈
⋂
i∈I
Ãi.

Proof of (3.b): A similar proof as that in part (3.a) can be shown in this part as well. However,

we use a different style as follows: Using Ai = ˜̃
Ai together with part (3.a) of this theorem, we

get ⋂̃
i∈I
Ai =

⋂̃
i∈I

˜̃
Ai =

˜̃⋃
i∈I
Ãi =

⋃
i∈I
Ãi.

Example 2.3.3

Let I = {1, 2, 3, 4} so that A1 = {1, 2, 7}, A2 = {3, 4, 8}, A3 = {1, 4, 8}, and A4 = {1, 3, 4, 7}.

If U = {1, 2, 3, · · · , 10}, answer each of the following:

a.
⋃
i∈I
Ai = {1, 2, 3, 4, 7, 8}.
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b.
⋂
i∈I
Ai = φ.

c.
⋃
i∈I
Ãi =

⋂̃
i∈I
Ai = U .

d.
⋂
i∈I
Ãi =

⋃̃
i∈I
Ai = {5, 6, 9, 10}.

e. Is A = {Ai : i ∈ I} a pairwise disjoint? Explain. Answer: No, A3 ∩ A4 = {1, 4} 6= φ.

Example 2.3.4

Let U = N and I = N. Define Ai = N− {1, 2, · · · , i} for all i ∈ I. Find:

a. A10 = {11, 12, 13, · · · }.

b.
⋃
i∈I
Ai = {2, 3, 4, 5, · · · }.

c.
⋂
i∈I
Ai = φ.

Example 2.3.5

If U = R, let An = [− 1
n
, 2 + 1

n
) for all n ∈ N. Find:

a.
⋃
n∈N

An = [−1, 3) =: A1.

b.
⋂
n∈N

An = [0, 2].

c.
⋂
n∈N

Ãn =
⋃̃
n∈N

An = R− [−1, 3).

d.
⋃
n∈N

Ãn =
⋂̃
n∈N

An = R− [0, 2].

Example 2.3.6

Let U = R and define Sa = (−a, a) for all a ∈ N. Find

a.
⋃
a∈N

Sa = R.
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b.
⋂
a∈N

Sa = (−1, 1).

Exercise 2.3.1

Let A = {Ai : i ∈ I } be an indexed family of sets for a nonempty set I. Show that if B ⊆ Ai

for every i ∈ I, then B ⊆
⋂
i∈I

Ai.

Exercise 2.3.2

For each natural number n ≥ 3, let An =
[

1
n
, 2 + 1

n

]
, and A = {An : n ≥ 3 }. Find

⋂
n≥3

An

and
⋃
n≥3

An.
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Section 2.4: Proof by Induction

Definition 2.4.1: Principle of Mathematical Induction (PMI)

If S is a subset of N so that:

1. 1 ∈ S, and

2. for all n ∈ N, if n ∈ S, then n+ 1 ∈ S,

then S = N.

2.4.1 Proof of (∀n ∈ N)P(n) using PMI

• Basic Step: Show that P(1) is true.

• Induction Step: Show that for all n ∈ N, if P(n) is true, then P(n+ 1) is true.

• Conclusion: By step 1 and step 2 and using the PMI, P(n) is true for all n ∈ N.

Example 2.4.1

Show that for all n ∈ N,

1 + 2 + 3 + · · ·+ n = n(n+ 1)
2 .

Solution:

For n = 1, clearly 1 = 1(1+1)
2 is true. Assume that for some n ∈ N, we have

1 + 2 + 3 + · · ·+ n = n(n+ 1)
2 .

Now, we want to show that 1 + 2 + 3 + · · ·+ n+ (n+ 1) = (n+1)(n+2)
2 .

use our assumption︷ ︸︸ ︷
1 + 2 + 3 + · · ·+ n+(n+ 1) = n(n+ 1)

2 + (n+ 1)

= n(n+ 1)
2 + 2(n+ 1)

2
= n(n+ 1) + 2(n+ 1)

2
= (n+ 1)(n+ 2)

2 .
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Example 2.4.2

Show that for all n ∈ N,
n∑
i=1

( 2i− 1 ) = n2.

Solution:

For n = 1, 2(1) − 1 = 1 = 12, which is true. Assume that for some n ∈ N, we have
n∑
i=1

( 2i− 1 ) = n2. We want to show that
n+1∑
i=1

( 2i− 1 ) = (n+ 1 )2. Thus,

n+1∑
i=1

( 2i− 1 ) =
n∑
i=1

( 2i− 1 ) + 2(n+ 1 )− 1 = n2 + 2n+ 1 = (n+ 1 )2.

Example 2.4.3

Show that for all n ∈ N, n+ 3 < 5n2.

Solution:

For n = 1 we have 1 + 3 = 4 < 5 which is true. So, assume that for n, n + 3 < 5n2 is true.

For n+ 1, we want to show that (n+ 1) + 3 < 5(n+ 1)2 = 5n2 + 10n+ 5. Then,

(n+ 1) + 3 = (n+ 3) + 1 < 5n2 + 1 < 5n2 + (10n+ 4) + 1 = 5(n+ 1)2.

Therefore, for all n ∈ N, n+ 3 < 5n2.

Definition 2.4.2

For n ∈ N, define 0! = 1 and n! = n · (n − 1) · (n − 2) · · · · 2 · 1. Then, the bionomial

coefficient ”n choose k”, where 0 ≤ k ≤ n, is(
n

k

)
= n!
k!(n− k)! = n(n− 1)(n− 2)(n− 3) · · · (n− k + 2)(n− k + 1)

k! .

Moreover, the bionomial expansion of any a, b ∈ R is given by

(a+ b)n =
n∑
k=0

(
n

k

)
ak bn−k.
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Remark 2.4.1: Pascal’s Triangle

Let a, b ∈ R. Then, the coefficients of the bionomial expansion (a+ b)n can be computed by

the Pascal’s Triangle for each n.

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1
... ... ... ... ... ... ...

Example 2.4.4

Show that for all n ∈ N, n
3

3 + n5

5 + 7n
15 is an integer.

Solution:

n3

3 + n5

5 + 7n
15 = 5n3 + 3n5 + 7n

15 is an integer iff 15 | 5n3 + 3n5 + 7n iff ∃k ∈ N such that

5n3 + 3n5 + 7n = 15k.

For n = 1, we have 5 + 3 + 7 = 15 which is true. So assume that there k ∈ N such that

5n3 + 3n5 + 7n = 15k. Then, we want to show that

5(n+ 1)3 + 3(n+ 1)5 + 7(n+ 1) = 15h (2.4.1)

for some h ∈ N. Thus, using the Pascal’s Triangle we get

Eqn.(2.4.1) = 5(n3 + 3n2 + 3n+ 1) + 3(n5 + 5n4 + 10n3 + 10n2 + 5n+ 1) + 7n+ 7

= (5n3 + 3n5 + 7n)︸ ︷︷ ︸
=15k

+ 15 n2 + 15 n+ 5 + 15 n4

+ 30 n3 + 30 n2 + 15 n+ 3 + 7

= 15k + 15
[
n2 + n+ n4 + 2n3 + 2n2 + n+ 1

]

Thus 15 | 5(n+ 1)3 + 3(n+ 1)5 + 7(n+ 1) and n3

3 + n5

5 + 7n
15 is an integer for all n ∈ N.
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Example 2.4.5

Express the terms of (2x− 4yz2)5 for x, y, z ∈ R.

Solution:

Let a = 2x, b = −4yz2, and n = 5. Using the bionomial expansion form, we get

(2x− 4yz2)5 = (2x)5 + 5(2x)4(−4yz2) + 10(2x)3(−4yz2)2 + 10(2x)2(−4yz2)3

+5(2x)(−4yz2)4 + (−4yz2)5.

Definition 2.4.3: Generalized Principle of Mathematical Induction (GPMI)

Let k be a natural number. If S is a subset of N so that:

1. k ∈ S, and

2. for all n ∈ N with n ≥ k, if n ∈ S, then n+ 1 ∈ S,

then S contains all natural number greater than or equal to k.

Example 2.4.6

Show that for all n ≥ 5, n2 − n− 20 ≥ 0.

Solution:

For n = 5, we have 25 − 5 − 20 = 0 ≥ 0 which is true. Assume that for some n ≥ 5,

n2 − n− 20 ≥ 0 is true. For n+ 1, we have

(n+ 1)2 − (n+ 1)− 20 = n2 + 2n+ �1− n− �1− 20 = (n2 − n− 20) + 2n︸︷︷︸
positive

≥ 0.

Thus, n2 − n− 20 ≥ 0 for all n ≥ 5.

Example 2.4.7

Let n ∈ N. Show that (n+ 1)! > 2n+3 for all n ≥ 5.

Solution:

For n = 5, we have 6! = 720 ≥ 28 = 256 which is true. Assume that for some n ≥ 5,

(n+ 1)! > 2n+3 is true.
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For n + 1, we want to show that (n + 2)! > 2n+4 for all n + 1 ≥ 5. Since n + 2 > 2 for all

n ≥ 4, we get

(n+ 2)! = (n+ 2)(n+ 1)! > (n+ 2)2n+3 > 2 · 2n+3 = 2n+4.

Thus, (n+ 1)! > 2n+3 for all n ≥ 5.

Exercise 2.4.1

Show that for all n ∈ N, the polynomial x− y divides the polynomial xn − yn.

Exercise 2.4.2

Show that for all n ∈ N, 12 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)
6 .

Exercise 2.4.3

Show that for all n ∈ N, 3 | n3 + 5n.

Exercise 2.4.4

Let x ∈ R with x ≥ −1. Show that (1 + x)n ≥ 1 + nx for all n ∈ N.

Exercise 2.4.5

Show that for all natural numbers n,
n∏
i=1

( 2i− 1 ) = ( 2n )!
n! 2n .
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Chapter

Relations

Section 3.1: Cartesian Products and Relations

Definition 3.1.1

Let A and B be two sets. An ordered pair is (a, b) 6= {a, b} for a ∈ A and b ∈ B. We say

that (a, b) = (c, d) if and only if a = c and b = d.

Definition 3.1.2

Let A and B be two sets. The (Cartesian or cross) product of A and B, denoted by A×B,

is defined by

A×B = {(a, b) : a ∈ A and b ∈ B}.

Moreover, if (a, b) ∈ A × B, then a ∈ A and b ∈ B. If (a, b) 6∈ A × B, then either a 6∈ A or

b 6∈ B.

Remark 3.1.1

Let A and B be two given sets. Then,

1. if A has m elements and B has n elements, then A×B has mn elements.

2. In general, A×B 6= B × A.

Example 3.1.1

Let A = {1, 2, 3} and B = {a, b}. Find A×B and B × A.

Solution:

Note that, in general A×B 6= B × A as this example shows.

A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}, and

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.

39
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A

B

A×B
1 2 3

a

b

×

×

×

×

×

×

B

A

B × A
a b

1

2

3

×

×

×

×

×

×

Example 3.1.2

Let A = [0, 1] and B = {1} ∪ [2, 3). Find A×B.

Solution:

A×B = {(a, b) : a ∈ A and b ∈ B}.

A

B

A×B
0 1

1

2

3

••

Theorem 3.1.1

If A and B are nonempty set, then A×B = B × A iff A = B.

Proof:

” ⇒ ”: Assume that A 6= φ, B 6= φ and A×B = B ×A. Let a ∈ A, then there is b ∈ B such

that (a, b) ∈ A×B = B × A which implies that a ∈ B Thus, A ⊆ B.

Let b ∈ B, then there is a ∈ A such that (b, a) ∈ B × A = A × B which implies that b ∈ A.

Thus, B ⊆ A and therefore A = B.

” ⇐ ”: if A = B, then A×B = A× A = B × A.

Theorem 3.1.2

Let A,B,C, and D be sets. Then

1.



a. A× (B ∪ C) = (A×B) ∪ (A× C).
b. (A ∪B)× C = (A× C) ∪ (B × C).
c. A× (B ∩ C) = (A×B) ∩ (A× C).
d. (A ∩B)× C = (A× C) ∩ (B × C).
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2. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

3. (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Proof:

Proof of (1.a):

(x, y) ∈ A× (B ∪ C) iff x ∈ A ∧ y ∈ B ∪ C
iff x ∈ A ∧ (y ∈ B ∨ y ∈ C)
iff (x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C)
iff ( (x, y) ∈ A×B) ∨ ( (x, y) ∈ A× C)
iff (x, y) ∈ (A×B) ∨ (A× C).

Proof of (2):

(x, y) ∈ (A×B) ∩ (C ×D) iff (x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D)
iff (x ∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D)
iff (x ∈ A ∩ C) ∧ (y ∈ B ∩D)
iff (x, y) ∈ (A ∩ C)× (B ∩D).

Proof of (3): Let (x, y) ∈ (A×B) ∪ (C ×D), then (x, y) ∈ A×B or (x, y) ∈ C ×D.

Case(i): (x, y) ∈ A × B implies that x ∈ A and y ∈ B. Then, x ∈ A ∪ C and y ∈ B ∪ D.

Thus, (x, y) ∈ (A ∪ C)× (B ∪D).

Case(ii): (x, y) ∈ C×D implies that x ∈ C and y ∈ D. Then again x ∈ A∪C and y ∈ B∪D.

Thus, (x, y) ∈ (A ∪ C)× (B ∪D).

Therefore, (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D).

Remark 3.1.2

Note that (A × B) ∪ (C × D) 6= (A ∪ C) × (B ∪ D): For instance, Let A = B = {0}, and

C = D = {1}. Then, (0, 1) ∈ (A∪C)× (B ∪D) while (0, 1) 6∈ (A×B)∪ (C ×D). Therefore,

(A ∪ C)× (B ∪D) 6⊆ (A×B) ∪ (C ×D).
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Definition 3.1.3

Let A and B be sets. A relation R from A to B is a subset of A×B. In this case, we write

aRb for (a, b) ∈ R and say that ”a is related to b”. Also, a��Rb means that (a, b) 6∈ R ⊆ A×B.

Moreover, if A = B, then subsets of A× A are called relations on A.

Definition 3.1.4

If R ⊆ A × B is a relation, then the domain of R is Dom(R) = {a ∈ A : (a, b) ∈ R}.

Moreover, the range of R is Rng(R) = {b ∈ B : (a, b) ∈ R}.

Example 3.1.3

Let A = {1, 2, {3}, 4} and B = {a, b, c, d}. Find the domain and range of R, where

R = {(1, c), ({3}, a), (1, d), (2, d)} ⊆ A×B.

Solution:

The Dom(R) = {1, 2, {3}} ⊆ A and the Rng(R) = {a, c, d} ⊆ B. Note that Dom(R) 6= A

and Rng(R) 6= B.

Example 3.1.4

Let A = {1, 3, 5, 7} and B = {2, 6}. Let R ⊆ A×B defined by R = {(a, b) ∈ A×B : a < b}.

Find R along with its domain and range.

Solution:

R = {(1, 2), (1, 6), (3, 6), (5, 6)}

Dom(R) = {1, 3, 5}

Rng(R) = {2, 6}.
•
•
•
•1

3

5

7

•

•

2

6

A B
→
R
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Example 3.1.5

Let R = {(x, y) ∈ R× R : y = x2 + 3}. Find the domain and the range of the relation R.

Solution:

Domain: x ∈ Dom(R) iff ∃y ∈ R with y = x2 + 3 which is true for all x ∈ R. Thus,

Dom(R) = R. Range: y ∈ Rng(R) iff ∃x ∈ R with y = x2 + 3 and since x2 ≥ 0, we have

y ≥ 3. Therefore, Rng(R) = [3,∞).

Definition 3.1.5

For any set A, the relation IA is the identity relation on A and is defined by

IA = {(a, a) : a ∈ A},

with Dom(IA) = A = Rng(IA).

Definition 3.1.6

For any sets A and B, if R ⊆ A×B is a relation, then the inverse relation is

R−1 = {(b, a) : (a, b) ∈ R} ⊆ B × A,

with Dom(R−1) = Rng(R) and Rng(R−1) = Dom(R).

Definition 3.1.7

Let R ⊆ A× B be a relation and let S ⊆ B × C be a relation. The composition relation

S ◦ R is defined by

S ◦ R = {(a, c) : (∃b ∈ B)
(
(a, b) ∈ R and (b, c) ∈ S

)
} ⊆ A× C.

Moreover, Dom(S ◦ R) ⊆ Dom(R).
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Example 3.1.6

Let A = {a, b, c}, B = {1, 2, 3, 4}, and C = {x, y, z, w}. Let

R = {(a, 1), (b, 2), (c, 2), (c, 3), (c, 4)} ⊆ A×B, and

S = {(1, w), (2, x), (2, z), (3, y), (4, y)} ⊆ B × C.

Find R−1, and S ◦ R.

Solution:

R−1 = {(1, a), (2, b), (2, c), (3, c), (4, c)} ⊆ B × A.

S ◦ R = {(a, w), (b, x), (b, z), (c, x), (c, z), (c, y)} ⊆ A× C.

•

•

•a

b

c •
•
•
•
1

2

3

4
•
•
•
•x
y

z

w

A B C
→
R

→
S

=⇒

•

•

•a

b

c •
•
•
•x
y

z

w

A B
→
S ◦R

Example 3.1.7

Let R = {(x, y) ∈ R× R : x < y}. Find R−1.

Solution:

Note that

(x, y) ∈ R−1 iff (y, x) ∈ R
iff y < x

iff x > y.

That is R−1 = { (x, y) ∈ R× R : x > y }.
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Example 3.1.8

Let R = { (x, y) ∈ R× R : y = x− 1 } and let S = { (x, y) ∈ R× R : y = x2 }. Find S ◦ R

and R ◦ S.

Solution:

S ◦ R = { (x, y) : (∃z ∈ R )( (x, z) ∈ R and (z, y) ∈ S ) }
=
{

(x, y) : (∃z ∈ R )
(
z = x− 1 and y = z2

) }
=
{

(x, y) : (∃z ∈ R )
(
y = (x− 1)2

) }

R ◦ S = { (x, y) : (∃z ∈ R )( (x, z) ∈ S and (z, y) ∈ R ) }
=
{

(x, y) : (∃z ∈ R )
(
z = x2 and y = z − 1

) }
=
{

(x, y) : (∃z ∈ R )
(
y = x1 − 1

) }

Theorem 3.1.3

Let A,B,C, and D be sets. Let R ⊆ A×B, S ⊆ B × C, and T ⊆ C ×D. Then,

1. (R−1)−1 = R.

2. T ◦ (S ◦ R) = (T ◦ S) ◦ R.

3. (S ◦ R)−1 = R−1 ◦ S−1.

Proof:

Proof of part(2): Let a ∈ A and d ∈ D so that

(a, d) ∈ T ◦ (S ◦ R) iff (∃c ∈ C)
[
(a, c) ∈ S ◦ R and (c, d) ∈ T

]
iff (∃c ∈ C)

[
(∃b ∈ B)

(
(a, b) ∈ R and (b, c) ∈ S

)
and (c, d) ∈ T

]
iff (∃c ∈ C)(∃b ∈ B)

[
(a, b) ∈ R and (b, c) ∈ S and (c, d) ∈ T

]
iff (∃b ∈ B)

[
(a, b) ∈ R and (∃c ∈ C)

(
(b, c) ∈ S and (c, d) ∈ T

)]
iff (∃b ∈ B)

[
(a, b) ∈ R and (b, d) ∈ T ◦ S

]
iff (a, d) ∈ (T ◦ S) ◦ R.
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Proof of part (3): Let a ∈ A and c ∈ C so that

(c, a) ∈ (S ◦ R)−1 iff (a, c) ∈ S ◦ R

iff (∃b ∈ B)
[
(a, b) ∈ R and (b, c) ∈ S

]
iff (∃b ∈ B)

[
(b, a) ∈ R−1 and (c, b) ∈ S−1

]
iff (∃b ∈ B)

[
(c, b) ∈ S−1 and (b, a) ∈ R−1

]
iff (c, a) ∈ R−1 ◦ S−1.

Example 3.1.9

Let A = [2, 4] and B = (1, 3) ∪ {4}. Let R be the relation on A× R with xRy iff x ∈ A and

let S be the relation on R×B with xSy iff y ∈ B. Find R∩ S and R∪ S.

Solution:

By Theorem 3.1.2 part(2), R∩S = (A×R)∩(R×B) = (A∩R)×(R∩B) = A×B. Therefore,

R∩ S = A× B = {(a, b) : a ∈ A and b ∈ B}. On the other hand, R∪ S = {(a, b) ∈ R× R :

a ∈ A or b ∈ B}.

1 2 3 4 5

1

2

3

4

5

◦ ◦

◦ ◦

• •

R ∩ S

1 2 3 4 5

1

2

3

4

5

• •

• •

R ∪ S

Exercise 3.1.1

Let A and B be two nonempty sets. Show that if A×B ⊆ B × C, then A ⊆ C.

Exercise 3.1.2

Let R ⊆ A×B and S ⊆ B × C be two relations. Show that Dom(S ◦ R) ⊆ Dom(R).
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Section 3.2: Equivalence Relations

Definition 3.2.1

Let A be a set and R be a relation on A. Then R is called an equivalence relation if and

only if:

1. R is reflexive on A: (∀x ∈ A) xRx.

2. R is symmetric on A: (∀x, y ∈ A) if xRy, then yRx.

3. R is transitive on A: (∀x, y, z ∈ A) if xRy and yRz, then xRz.

Example 3.2.1

Let A = {1, 2, 3, 4} and R1 = {(1, 2), (2, 3), (1, 3)}, R2 = {(1, 1), (1, 2)}, R3 = {(3, 4)},

R4 = {(1, 2), (2, 1)}, and R5 = {(1, 1), (2, 2), (3, 3), (4, 4)}. Decide which relation is reflexive,

symmetric, transitive.

Solution:

R5 is reflexive. R4, and R5 are symmetric. R1,R2,R3, and R5 are transitive. Therefore, R5

is an equivalence relation on A.

Example 3.2.2

Let R = {(x, y) : xy > 0} be a relation on Z. Discuss whether R reflexive, symmetric,

transitive, and equivalence relation.

Solution:

Clearly, xRx for all x ∈ Z except for x = 0, thus R is not reflexive. If xRy, then xy > 0 or

yx > 0 which imples that yRx. Thus, R is symmetric. If xRy and yRz, then xy > 0 and

yz > 0. Considering the cases of y ∈ Z− {0}, we have

1. case 1: y > 0, then x > 0 and z > 0 which implies that xz > 0 and thus xRz.

2. case 1: y < 0, then x < 0 and z < 0 which implies that xz > 0 and thus xRz.

In either cases, R is transitive on Z. Note that R is not reflexive and thus it is not an

equivalence relation on Z.
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Example 3.2.3

Let R be the relation on Z given by xRy iff x − y is even. Show that R is an equivalence

relation on Z.

Solution:

Reflexive: Since x− x = 0 is even, xRx for all x ∈ Z. Thus, R is reflexive.

Symmetric: Assume that xRy, then there is k ∈ Z such that x−y = 2k. Thus, y−x = 2(−k)

which implies that yRx. Thus, R is symmetric.

Transitive: Let xRy and yRz. Then, there are h, k ∈ Z such that x− y = 2h and y− z = 2k.

Adding these two equations, we get x − z = 2(h + k) which is even. Therefore, xRz and R

is transitive.

Therefore, R is an equivalence relation on Z.

Definition 3.2.2

Let R be an equivalence relation on a set A. For x ∈ A, define the equivalence class of x

determined by R as

x/R = {y ∈ A : xRy},

which reads ”the class of x modulo R” or ”x mod R. The set of all equivalence classes is

called A modulo R and is defined by

A/R = {x/R : x ∈ A}.

Example 3.2.4

Let R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} be an equivalence relation on A = {1, 2, 3}. Find:

• 1/R = {1, 2}.

• 2/R = {1, 2}.

• 3/R = {3}.

• A/R = {{1, 2}, {3}}.
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Example 3.2.5

Let R be a relation on N so that xRy ⇔ 2 | x+ y. Show that R is an equivalence relation

on N. Calculate all the equivalence classes of R.

Solution:

reflexive: Since x+ x = 2x, 2 | x+ x and thus xRx. So, R is reflexive.

symmetric: if xRy, then 2 | x+ y. Thus, 2 | y + x as well and yRx. Therefore, R is

symmetric.

transitive: Assume that xRy and yRz. Then 2 | x+ y and 2 | y + z. Thus, 2 | x+ z + 2y.

But because 2 | 2y, we have 2 | x+ z. Thus, xRz and R is transitive.

Therefore, R is an equivalence relation on N.

For x ∈ N, x/R = {y ∈ N : 2 | x+ y}. Thus,

1 = {1, 3, 5, 7, 9, · · · } = 3 = 5 = · · · , and 2 = {2, 4, 6, 8, 10, · · · } = 2 = 4 = · · · .

Therefore, N = 1 ∪ 2.

Theorem 3.2.1

Let R be an equivalence relation on a nonempty set A. For all x, y ∈ A,

1. x/R ⊆ A and x ∈ x/R 6= φ.

2. xR y iff. x/R = y/R.

3. x��Ry iff. x/R∩ y/R = φ.

Proof:

1. Clearly, x/R ⊆ A by the definition. SinceR is reflexive, xRx and hence x ∈ x/R.

2. ” ⇒ ”: Suppose xR y. Then yRx (since R is symmetric). To show that x/R = y/R,

we first show that x/R ⊆ y/R: Let z ∈ x/R ⇒ xR z and yRx. Hence, yR z. Hence,

x/R ⊆ y/R. The proof of y/R ⊆ x/R is similar.

” ⇐ ”: Suppose x/R = y/R. Then x ∈ x/R = y/R. That is xR y.

3. ” ⇒ ”: Suppose x��Ry. We proof by contradiction: Assume that there is z ∈ x/R∩ y/R.

Then, z ∈ x/R and z ∈ y/R and hence xR z and zR y. Thus, xR y, contradiction.

” ⇐ ”: Suppose x/R∩ y/R = φ. Then, x ∈ x/R. Thus, x 6∈ y/R and hence x��Ry.
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Definition 3.2.3

Let m 6= 0 be a fixed integer. Then ”≡m” denotes the relation on Z and is defined by

(
x ≡ y mod m or x ≡m y

)
⇔ m | x− y,

which reads ”x is congruent to y modulo m”. That is x = {y ∈ Z : x ≡m y ⇔ m | x− y},

and the set of equivalence classes for ≡m is Z mod m (denoted Zm) and is defined by

Zm = {0, 1, 2, · · · ,m− 1}.

Example 3.2.6

Find all the equivalence classes of Z3.

Solution:

Note that Z3 = {0, 1, 2}, where x = {y ∈ Z : x ≡ y mod 3 or 3 | x− y}. Therefore,

• 0 = 0/ ≡3= {· · · ,−9,−6,−3, 0, 3, 6, 9, · · · },

• 1 = 1/ ≡3= {· · · ,−8,−5,−2, 1, 4, 7, 10, · · · },

• 2 = 2/ ≡3= {· · · ,−7,−4,−1, 2, 5, 8, 11, · · · },

Therefore, Z3 = {0, 1, 2}.

Theorem 3.2.2

Let m 6= 0 be a fixed integer. The relation ≡m is an equivalence relation on Z. Moreover, Zm
has m distinct elements: Zm = {0, 1, · · · ,m− 1}.

Proof:

We only show that ≡m is an equivalence relation. reflexive: Since x−x = 0 which is divisible

by m, x ≡m x. Thus ≡m is reflexive.

symmetric: Assume that x ≡m y, then m | x− y which implies that m | y − x. Thus, y ≡m x

and ≡m is symmetric.

transitive: Assume that x ≡m y and y ≡m z, then m | x− y and m | y − z. Thus, m |

(x− y) + (y − z) which implies m | x− z. Therefore, x ≡m z and ≡m is transitive. That

shows that ≡m is an equivalence relation on Z.
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Exercise 3.2.1

Let m 6= 0. For x, y ∈ Z: Show that x ≡m y if and only if x = y.

Exercise 3.2.2

Let R be a relation on the set A. Prove that R∪R−1 is symmetric.

Exercise 3.2.3

Let R be a relation on N so that xRy iff 3 | x+ y. Determine whether R an equivalence

relation. Explain.

Exercise 3.2.4

Let R be a relation on N so that xRy iff 3 | x+ 2y. Show that R is an equivalence relation

on N. Find the equivalence class of 1.

Exercise 3.2.5

Let R be a relation on R so that xR y iff x = y or xy = 1. Show that R is an equivalence

relation on R. Find the equivalence classes for 2; 0; and −1
5 .
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Section 3.3: Partitions

Definition 3.3.1

Let A be a set and A be a family of subsets of A. A is called a partition of A if and only if:

1. if X ∈ A, then X 6= φ.

2. if X, Y ∈ A, then either X = Y or X ∩ Y = φ.

3.
⋃
X∈A

X = A.

Example 3.3.1

1. The set of even natural numbers and odd natural numbers is a partition of N.

2. Let A0 = {0} and Ai = {−i, i} for all i ∈ N. Then A = {A0, A1, A2, A3, · · · } is a

partition of Z.

3. The set {0/ ≡3, 1/ ≡3, 2/ ≡3} is a partition of Z.

4. The set {{ male students, female students }} is a partition for the set of all students in

Kuwait University.

5. The collection {Bi : i ∈ Z }, where Bi = [i, i+ 1) is a partition of R.

Theorem 3.3.1

Let A 6= φ and letR be an equivalence relation on A. Then, the family A/R = {x/R : x ∈ A}

is a partition of A.

Proof:

Do it your self!



3.4. Ordering Relations 53

Section 3.4: Ordering Relations

Definition 3.4.1

A relation R on a set A is called antisymmetric if for all x, y ∈ A, if xRy and yRx, then

x = y.

Definition 3.4.2

A relationR on a set A is called a partial order (or partial ordering) for A ifR is reflexive,

antisymmetric, and transitive. In that case, A is called a partially ordered set or a poset.

Example 3.4.1

Show that ”⊆” is a partial order relation on P(A) for any set A.

Solution:

reflexive: if X ∈ P(A), then X ⊆ A and hence X ⊆ X and hence xRx.

antisymmetric: Let X, Y ∈ P(A) with XRY and YRX. Then, X ⊆ Y and Y ⊆ X.

Therefore, X = Y and R is antisymmetric.

transitive: Assume that X, Y, Z ∈ P(A) with X ⊆ Y and Y ⊆ Z. Then X ⊆ Z and hence

XRZ.

Therefore, R is a partial order relation on P(A).

Example 3.4.2

Let R be a relation on N so that aRb⇔ a | b for all a, b ∈ N. Show that R is a partial order

on N.

Solution:

reflexive: Since a = 1 · a for all a ∈ N, then a | a and aRa. Hence, R is reflexive.

antisymmetric: Assume that a | b and b | a. Then, there are h, k ∈ N such that b = ha

and a = kb. Thus, b = ha = h(kb) = (hk)b. Then, hk = 1 which implies that h = k = 1.

Therefore, a = b and R is antisymmetric.

transitive: Assume that a | b and b | c. Then, Theorem 1.4.1 implies that a | c. Thus, aRc
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and R is transitive. Therefore, R is a partial order on N.

Example 3.4.3

Let R be a relation on N so that aRb iff 2 | a+ b with a ≤ b for all a, b ∈ N. Show that N is

a poset with respect to R.

Solution:

reflexive: Since 2 | a+ a = 2a with a ≤ a, aRa and R is reflexive.

antisymmetric: Assume that aRb and bRa. Then, 2 | a+ b with a ≤ b and 2 | b+ a with

b ≤ a. Thus, a ≤ b ≤ a which implies that a = b. Thus, R is antisymmetric.

transitive: Assume that aRb and bRc. Then, 2 | a+ b with a ≤ b and 2 | b+ c with b ≤ c.

Therefore, by Theorem 1.4.1, 2 | a+ 2b+ c which implies that 2 | a+ c with a ≤ b ≤ c. Thus,

aRc and R is transitive. Therefore, N is a poset with respect to R.

3.4.1 Upper and Lower Bounds

Definition 3.4.3

Let R be a partial order for A and let B be any subset of A. Then,

• a ∈ A is an upper bound for B if for every b ∈ B, bRa. Also, a is called a ”least

upper bound” or ”supremum for B, denoted by sup(B), if:

1. a is an upper bound for B, and

2. aRx for every upper bound x for B.

• a ∈ A is a lower bound for B if for every b ∈ B, aRb. Also, a is called a ”greatest

upper bound” or ”infimum for B, denoted by inf(B), if:

1. a is a lower bound for B, and

2. xRa for every lower bound x for B.

Theorem 3.4.1

If R is a partial order for a set A and B ⊆ A, then if the least upper bound (or greatest lower

bound) for B exists, then it is unique.
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Proof:

Assume that x and y are both least upper bound for B. Since x is an upper bound and y

is the least upper bound, thus yRx. Similarly, since y is an upper bound and x is the least

upper bound, thus xRy. Since R is antisymmetric, xRy and yRx, implies x = y.

Example 3.4.4

Let A = [0, 6) ⊂ R be a poset with respect to ”≤”, and let B = {1
2 , 3, 5} and C = {1, 1

2 ,
1
3 , · · · }

be two subsets of A. Find sup(B), inf(B), sup(C), and inf(C).

Solution:

sup(B): Note that 5, 5.1, 5.35, 5.9, and so on are all considered upper bounds for B since for

example b ≤ 5 for all b ∈ B. Then, sup(B) = 5 since 5 ≤ x for all upper bounds for B.

inf(B): 0, 1
2 ,

1
4 ,

1
45 and so on are all considered lower bounds for B since for example 1

4 ≤ b for

all b ∈ B. Then, inf(B) = 1
2 since 1

2 ≤ x for all lower bounds x for B.

sup(C): The set of upper bounds for C consists of {1, 2, 1.5, 3, 5, 5.5, · · · } while the sup(C) =

1.

inf(C): The set of upper bounds for C consists of {0} and the inf(C) = 0.

Note that, if A = (0, 6), then C would has no inf(C).

Example 3.4.5

Let A = {1, 2, 3, 4, 5, 6} and consider P(A) with the partial ordering ”⊆”. Let B ={
{1, 2}, {1, 2, 3}, {1, 2, 6}

}
. Find sup(B) and inf(B).

Solution:

Upper bound for B are like {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, and A it self. Therefore,

sup(B) = {1, 2, 3, 6} =
⋃
X∈B

X. On the other hand, φ, {1}, {2}, and {1, 2} are all lower

bounds for B while the inf(B) = {1, 2} =
⋂
X∈B

X.
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Exercise 3.4.1

Let R be a relation on N so that xRy iff y = 2kx for some integer k ≥ 0. Show that N is a

poset with respect to R.



4
Chapter

Functions

Section 4.1: Functions as Relations

Definition 4.1.1

A function f from A to B is a relation from A to B that satisfies

1. Dom(f) = A,

2. if (x, y) ∈ f and (x, z) ∈ f , then y = z.

Moreover, if A = B, we say that f is a function on A.

Remark 4.1.1: Notations

A function (mapping) f from A to B is denoted by f : A → B. The domain of f is A and

the codomain of f is B.

If (x, y) ∈ f , then y = f(x) where we say that y is the image of x and that x is the preimage

of y. The range of f is a subset of B and is defined as

Rng(f) = {y ∈ B : ∃x ∈ A with y = f(x)}.

Example 4.1.1

Let A = {1, 2, 3} and B = {a, b, c}. Let R1 = {(1, a), (2, b), (2, c), (3, c)}, R2 =

{(1, a), (2, c), (3, b)}, and R3 = {(1, a), (2, c)} be three relations on A × B. Decide whether

R1, R2, and R3 a function.

Solution:

R1 is clearly not a function since (2, b) and (2, c) both are in R1 where b 6= c. R2 satisfies the

conditions of Definition 4.1.1 and so it is a function from A to B.

R3 is not a function from A to B; however, it is a function from {1, 2} to {a, c}.

57
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Example 4.1.2

Let S = {(x, y) ∈ R× R : x2 + y2 = 1} be a relation on R. Is S a function? Explain.

Solution:

Note that for x = 0, we have y = −1 or y = 1 and so S is not a function. Another reason is

that for x = 5, y2 = −24 6∈ R.

Example 4.1.3

Let f = {(x, y) ∈ Z× Z : y = x2}. Determine whether f a function on Z.

Solution:

f : Z → Z is a function with Rng(f) = {0, 1, 4, 9, 16, · · · }. That is f(x) = x2 is a function

from Z to Z.

? Constant Function: f : R→ R such that f(x) = c (c is a constant) for all x ∈ R.

Example 4.1.4

Let f = { (x, y ) ∈ R× R : y = 2x+ 5 }. Show that f is a function from R to R.

Solution:

We first show that Dom(f) = R. Clearly, Dom(f) ⊆ R by the definition of f . Next, let

x ∈ R. Then there is y = 2x+ 5 ∈ R and hence (x, y) ∈ f . That is x ∈ Dom(f).

Now assume that (x, y), (x, z) ∈ f , we want to show that y = z. But since y = 2x + 5 and

z = 2x+ 5, we have y = z. Therefore, f is a function from R to R.

Theorem 4.1.1

Two functions f and g are equal iff (i) Dom(f) = Dom(g), and (ii) for all x ∈ Dom(f),

f(x) = g(x).

Proof:

” ⇒ ”: Assume that f = g. Proof of (i): If x ∈ Dom(f), then (x, y) ∈ f = g for some y and

hence x ∈ Dom(g). Thus, Dom(f) ⊆ Dom(g). Similarly, if x ∈ Dom(g), then (x, y) ∈ g = f
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for some y and hence x ∈ Dom(f). Thus, Dom(g) ⊆ Dom(f). Therefore, Dom(f) = Dom(g).

Proof of (ii): Let x ∈ Dom(f). Then for some y, (x, y) ∈ f = g. Thus, f(x) = y = g(x).

” ⇐ ”: Assume that Dom(f) = Dom(g) and that for all x ∈ Dom(f), f(x) = g(x). Suppose

that (x, y) ∈ f , then there is y such that y = f(x) and x ∈ Dom(f) = Dom(g). Thus,

y = f(x) = g(x) which implies that (x, y) ∈ g and hence f ⊆ g. Now suppose that (x, y) ∈ g.

Then there is y such that y = g(x) = f(x) for x ∈ Dom(f). Thus, y = f(x) and (x, y) ∈ f .

Hence g ⊆ f . Therefore, f = g.
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Section 4.2: Constructions of Functions

Definition 4.2.1

Let f : A→ B and g : B → C be two given functions. The composition function g ◦ f is

defined by g ◦ f : A→ C where (g ◦ f)(x) = g(f(x)) for every x ∈ A. Note that f ◦ g 6= g ◦ f ,

while (f ◦ g) ◦ h = f ◦ (g ◦ h) for any three (appropriate) functions f , g, and h.

Example 4.2.1

Let f(x) = sin(x) and g(x) = 2x+ 1 for x ∈ R. Find f ◦ g and g ◦ f .

Solution:

For any x ∈ R, we have

1. (f ◦ g)(x) = f(g(x)) = f(2x+ 1) = sin(2x+ 1).

2. (g ◦ f)(x) = g(f(x)) = g(sin(x)) = 2 sin(x) + 1.

Definition 4.2.2

Let f : A→ B and let D ⊆ A. The ”restriction of f to D”, denoted by f |D, is a function

with domain D and is defined as

f |D = {(x, y) : (x, y) ∈ f and x ∈ D}.

In that case, we say that f is an extension of f |D.

Example 4.2.2

Let f : A → B be a function where A = {1, 2, 3, 4}, B = {a, b, c}, and f =

{(1, a), (2, a), (3, b), (4, c)}. Find f |A, f |{1}, and f |{2,4}.

Solution:

Clearly, f |A = f , f |{1} = {(1, a)}, and f |{2,4} = {(2, a), (4, c)}.
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Remark 4.2.1

Let f : A→ B and g : C → D be two functions. Then,

1. f ∩ g is a function with Dom(f ∩ g) = {x ∈ A ∩ C : f(x) = y = g(x) ∈ B ∩D}.

2. If A ∩ C = φ, then f ∪ g is a function with domain A ∪B.

Example 4.2.3

Let f = {(1, 2), (3, 5), (4, 2)} and g = {(1, 2), (3, 6), (5,−10)}. Find f ∩g and f ∪g and decide

whether either of those relation is a function.

Solution:

Clearly, f is a function from A = {1, 3, 4} to B = {2, 5} while g is a function from C = {1, 3, 5}

to D = {2, 6,−10}. So,

• f ∩ g = {(1, 2)} which is clearly a function from Dom(f ∩ g) = {1} to {2}.

• f ∪ g = {(1, 2), (3, 5), (4, 2), (3, 6), (5,−10)} which is not a function (by the definition)

since 3 maps to two different values, namely 5 and 6.
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Section 4.3: Functions That are Onto; One-to-One Functions

Definition 4.3.1

A function f : A→ B is onto (surjective mapping) B iff Rng(f) = B. Also, f is called a

surjection. In that case, we write f : A onto−−→ B.

Remark 4.3.1

Since Rng(f) ⊆ B is always true, f is a surjection iff B ⊆ Rng(f). Thus,

f : A onto−−→ B ⇐⇒ (∀b ∈ B)(∃a ∈ A)(f(a) = b).

Example 4.3.1

Let f(x) = x+ 2 and g(x) = x2 + 1 for all x ∈ R. Determine whether f and g are onto R.

Solution:

• f is onto: Let y ∈ R (in the range of f), then there exists x ∈ R such that y = x+ 2 or

x = y − 2. Thus, f(x) = f(y − 2) = (y − 2) + 2 = y. Thus, f is onto R.

• g is not onto: Let y ∈ R, then y = x2 + 1 so x = ±
√
y − 1. So, y must be greater than

or equal to 1. If we choose y = 0, then x 6∈ R and hence g is not onto R.

Example 4.3.2

Let f : N×N→ N be a function defined by f(m,n) = 2m−1(2n− 1). Show that f is onto N.

Solution:

We show that N ⊆ Rng(f). That is, for all s ∈ N, there exists (m,n) ∈ N × N such that

f(m,n) = s. We consider the following two cases of s.

(i) if s is even: s can be written as 2kt, where k ≥ 1 and t is odd. Since t is odd, t = 2n− 1

or n = t+1
2 for some n ∈ N. Choosing m = k + 1, we have

f(m,n) = 2m−1(2n− 1) = 2kt = s.

Thus, N ⊆ Rng(f).
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(ii) if s is odd: s = 2n−1 for some n ∈ N. Choosing m = 1, we have f(m,n) = 20(2n−1) =

s. Thus, N ⊆ Rng(f).

Therefore, f is onto N.

Theorem 4.3.1

Let A, B, and C be three sets. Then,

1. If f : A onto−−→ B and g : B onto−−→ C, then g ◦ f : A onto−−→ C. That is, the composite of

surjective functions is a surjection.

2. If f : A→ B, g : B → C, and g ◦ f : A onto−−→ C, then g is onto C.

Proof:

1. We show that for every c ∈ C, c ∈ Rng(g ◦ f). Since g is onto C, there exists b ∈ B

such that g(b) = c. but since f is onto B, there exists a ∈ A such that f(a) = b. Thus,

(g ◦ f)(a) = g(f(a)) = g(b) = c. Thus, c ∈ Rng(g ◦ f).

2. We show that again C ⊆ Rng(g ◦ f). Let c ∈ C. Since g◦f is onto C, there exists a ∈ A

such that (g ◦ f)(a) = c. Let b = f(a) ∈ B. Then, (g ◦ f)(a) = g(f(a)) = g(b) = c.

Thus, there exists b ∈ B such that g(b) = c and hence g is onto.

Definition 4.3.2

A function f : A → B is said to be ”one-to-one” (injective mapping) iff (a1, b) ∈ f

and (a2, b) ∈ f imply that a1 = a2. Also, f is called an injection. In that case, we write

f : A 1−1−−→ B.

Remark 4.3.2

A function f : A 1−1−−→ B is one-to-one if and only if

f(a1) = f(a2) ⇒ a1 = a2 or equivalently a1 6= a2 ⇒ f(a1) 6= f(a2).
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Example 4.3.3

Let f : R→ R given by f(x) = 5x− 1. Show that f is one-to-one.

Solution:

Assume that f(a) = f(b), then 5a− 1 = 5b− 1⇒ 5a = 5b⇒ a = b. Thus, f is 1-1.

Example 4.3.4

Determine whether f : R→ R is one-to-one, where f(x) = 1
x2 + 1.

Solution:

Assume that f(a) = f(b), then

1
a2 + 1 = 1

b2 + 1 ⇒ a2 + 1 = b2 + 1⇒ a2 = b2 ⇒ a = ±b.

Therefore, f is not 1-1. For instance, f(1) = f(−1) while 1 6= −1.

Example 4.3.5

Let f : N× N→ N defined by f(m,n) = 2m−1(2n− 1). Show that f is one-to-one.

Solution:

Assume that f(a, b) = f(x, y) for (a, b), (x, y) ∈ N × N. Then, 2a−1(2b − 1) = 2x−1(2y − 1).

Consider the following cases:

1. if a > x: 2a−1(2b− 1) = 2x−1(2y − 1)⇒ 2a−x(2b− 1)︸ ︷︷ ︸
even

= (2y − 1)︸ ︷︷ ︸
odd

which is impossible.

2. if a < x: 2a−1(2b− 1) = 2x−1(2y − 1)⇒ (2b− 1)︸ ︷︷ ︸
odd

= 2x−a(2y − 1)︸ ︷︷ ︸
even

which is impossible.

3. if a = x: 2a−1(2b− 1) = 2x−1(2y − 1)⇒ (2b− 1) = (2y − 1)⇒ b = y.

Thus, the only possible case is the third case which suggests that (a, b) = (x, y). Therefore,

f is 1-1.
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Theorem 4.3.2

Let A, B, and C be three sets. Then,

1. If f : A 1−1−−→ B and g : B 1−1−−→ C, then g ◦ f : A 1−1−−→ C.

2. If f : A→ B and g : B → C, and g ◦ f : A 1−1−−→ C, then f : A 1−1−−→ B.

Proof:

1. Assume that (g ◦ f)(x) = (g ◦ f)(y) for some x, y ∈ A. Then, g(f(x)) = g(f(y)). Since,

g is 1-1, f(x) = f(y), and since f is 1-1 as well, x = y. Therefore, g ◦ f is 1-1.

2. Assume that f(x) = f(y) for x, y ∈ A. Then g(f(x)) = g(f(y)) implies that (g◦f)(x) =

(g ◦ f)(y). Since g ◦ f is 1-1, x = y. Thus, f is 1-1.

Remark 4.3.3

Horizontal Line Test: Let f : A→ B be a given function. Then,

1. f is onto B iff for all b ∈ B, the horizontal line y = b intersects the graph of f at least

once.

2. f is one-to-one iff for all b ∈ B, the horizontal line y = b intersects the graph of f at

most once.

Example 4.3.6

Let f : R→ R and g : R→ R be two function. Use the Horizontal line test to decide whether

f(x) = x2 and g(x) = x3 are onto, one-to-one, or neither.

Solution:

We apply the horizontal line test on both f and g. In f , we see that on one place the line

crosses the curve in two points, so f is not one-to-one, and it does not cross the curve in

another place so it is not onto. However, in g, the line crosses the curve exactly once in any

place, so it is one-to-one and onto.
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f(x) = x2

f is not onto

f is not 1-1
• •

f is neither onto nor 1-1

g(x) = x3

•

•

g is onto and 1-1

Definition 4.3.3

Let f : A → B be a function. If the inverse relation f−1 of f is a function, then we say

that f−1 is the inverse function of f . In particular, if f−1 is a function, then f−1 : B → A

is defined by

f−1 = {(y, x) : (x, y) ∈ f}.

Example 4.3.7

Let f = {(1, 2), (4, 2)} be a function. Decide whether f−1 is a function.

Solution:

No. Since f−1 = {(2, 1), (2, 4)} where 2 is mapped to two distinct elements.

Theorem 4.3.3

Let f : A→ B and g : B → A. Then, g = f−1 iff f ◦g = IB and g◦f = IA, where IA : A→ A

is the identity function defined by IA(x) = x for all x ∈ A.

Example 4.3.8

Let f(x) = 2x+ 1 and let g(x) = x− 1
2 . Show that g = f−1.

Solution:
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For all x ∈ R, (f ◦ g)(x) = f(g(x)) = f(x−1
2 ) = 2x−1

2 + 1 = x − 1 + 1 = x = IR. Therefore,

g = f−1.

Theorem 4.3.4

Let f : A→ B be a function. Then,

1. f−1 is a function from Rng(f) to A iff f is one-to-one.

2. If f−1 is a function, then f−1 is one-to-one.

Proof:

1. ” ⇒ ”: Assume that f−1 is a function. Let f(x) = f(y) = z, then (x, z), (y, z) ∈ f .

Thus, (z, x), (z, y) ∈ f−1. Since f−1 is a function, x = y. Therefore, f is 1-1.

” ⇐ ”: Assume that f is 1-1. Let (x, y), (x, z) ∈ f−1 (we need to show that y = z).

Then, (y, x), (z, x) ∈ f . Since f is 1-1, y = z. Thus, f−1 is a function. By Definition

3.1.6, Dom(f−1) = Rng(f) and Rng(f−1) = Dom(f).

2. Assume that f−1 is a function. Let f−1(x) = f−1(y) = z, then (x, z), (y, z) ∈ f−1.

Thus, (z, x), (z, y) ∈ f and since f is a function, x = y. Therefore, f−1 is 1-1.

Definition 4.3.4

A function f : A → B is called a 1-1 corresponding or a bijection if it is both 1-1 and

onto B. In that case, we write f : A 1−1−−→
onto

B.

Theorem 4.3.5

Let f : A 1−1−−→
onto

B and g : B 1−1−−→
onto

C. Then,

1. g ◦ f : A 1−1−−→
onto

C is a bijection.

2. f−1 : B 1−1−−→
onto

A is a bijection.

Proof:

1. By Theorem 4.3.1 and Theorem 4.3.2, if f and g are one-to-one and onto, the composite

function g ◦ f is also one-to-one and onto.

2. By Theorem 4.3.4, if f is one-to-one, then f−1 is a function and hence it is a one-to-one
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function. To show that f−1 is onto A, let a ∈ A. Then, f(a) = b ∈ B. Thus, (a, b) ∈ f

and hence (b, a) ∈ f−1 and therefore f−1(b) = a.
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Section 4.4: Images of Sets

Definition 4.4.1

Let f : A→ B. If X ⊆ A, the image of X or image set of X is

f(X) = {y ∈ B : y = f(x) for some x ∈ X}.

If Y ⊆ B, then the inverse image of Y is

f−1(Y ) = {x ∈ A : f(x) = y for some y ∈ Y }.

f−1

f

f−1(Y )

X

Y

f(X)

A B

Example 4.4.1

Let f : R→ R be defined by f(x) = 2x+ 2. Find f ({1, 4}), f ([1, 2]), f (N), f−1 ({2, 3}), and

f−1 ([2, 4]).

Solution:

• f ({1, 4}) = {4, 10}.

• f ([1, 2]) = [4, 6].

• f (N) = {4, 6, 8, 10, 12, · · · }.

• f−1 ({2, 3}) = {0, 1
2}.

• f−1 ([2, 4]) = [0, 1].
1 2 3 4

1

2

3

4

5

6

f(x) = 2x+ 2

f ([1, 2])
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Example 4.4.2

Let f(x) = x2 be a function from R to R. Find f ([1, 2]), f ([0, 1]), f ({2}), f ([−2,−1] ∪ [1, 2]),

and f−1 ([1, 4]).

Solution:

• f ([1, 2]) = [1, 4].

• f ([0, 1]) = [0, 1].

• f ({2}) = f ({2,−2}) = {4}.

• f ([−2,−1] ∪ [1, 2]) = [1, 4].

• f−1 ([1, 4]) = [−2,−1] ∪ [1, 2].

f(x) = x2

0 1 2 3−1−2−3

1

2

3

4

5

6

f([−2,−1] ∪ [1, 2]) and f−1([1, 4])

Example 4.4.3

Let f : R → R be defined by f(x) = x2. If X = [−2,−1] and Y = [1, 2], find f(X ∩ Y ),

f(X) ∩ f(Y ), f(X ∪ Y ), and f(X) ∪ f(Y ).

Solution:

Note that X ∩ Y = φ. Thus, f(X ∩ Y ) = φ. However, f(X) = [1, 4] = f(Y ) and thus

f(X) ∩ f(Y ) = [1, 4]. Therefore, f(X ∩ Y ) 6= f(X) ∩ f(Y ).

On the other hand, f(X ∪ Y ) = [1, 4] = f(X) ∪ f(Y ).

Theorem 4.4.1

Let f : A→ B and let
{
Xi : i ∈ I

}
⊆ A and

{
Yi : i ∈ I

}
⊆ B. Then,

1. f
(⋂
i∈I

Xi

)
⊆
⋂
i∈I

f (Xi).

2. f
(⋃
i∈I

Xi

)
=
⋃
i∈I

f (Xi).



4.4. Images of Sets 71

3. f−1
(⋂
i∈I

Yi

)
=
⋂
i∈I

f−1 (Yi).

4. f−1
(⋃
i∈I

Yi

)
=
⋃
i∈I

f−1 (Yi).

Proof:

Proof of (1): Let b ∈ f
(⋂
i∈I

Xi

)
, then b = f(a) for some a ∈

⋂
i∈I

Xi. Thus, a ∈ Xi for every

i ∈ I so that b = f(a). Hence, for every i ∈ I, b ∈ f(Xi). Therefore, b ∈
⋂
i∈I

f (Xi).

Proof of (2):

Let b ∈ f
(⋃
i∈I

Xi

)
⇔ b = f(a) for some a ∈

⋃
i∈I

Xi

⇔ b = f(a) for some a ∈ Xi for some i ∈ I

⇔ b ∈ f(Xi) for some i ∈ I

⇔ b ∈
⋃
i∈I

f (Xi) .

Proof of (3):

Let a ∈ f−1
(⋂
i∈I

Yi

)
⇔ a = f−1(b) for some b ∈

⋂
i∈I

Yi

⇔ a = f−1(b) for some b ∈ Yi for every i ∈ I

⇔ a ∈ f−1(Yi) for every i ∈ I

⇔ a ∈
⋂
i∈I

f−1 (Yi) .

Example 4.4.4

Let f : N × N → N be defined by f(m,n) = 2m−1(2n − 1), and let Y = {3, 10}. Find the

inverse image of Y .

Solution:

By Theorem 4.4.1, f−1(Y ) = f−1({3} ∪ {10}) = f−1({3}) ∪ f({10}). Then,

• f−1({3}) = (m,n) such that 3 = f(m,n) = 2m−1(2n − 1). Since 2 - 3, 2m−1 = 1.

Then m − 1 = 0 or m = 1. In that case, 3 = 2n − 1 and hence n = 2. Therefore,

f−1({3}) = (m,n) = (1, 2).
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• f−1({10}) = (m,n) such that 10 = f(m,n) = 2m−1(2n− 1). After factoring 10, we get

10 = 21 · 5. Thus, 2 | 10 and hence 2m−1 = 21. Then, m − 1 = 1 and so m = 2. As a

result of that, 10 = 22−1(2n− 1). Thus, 10 = 2(2n− 1) which implies n = 3. Therefore,

f−1({10}) = (2, 3).

Therefore, f−1({3, 10}) = {(1, 2), (2, 3)}.

Example 4.4.5

Let f : A→ B and let X, Y ⊆ A. Show that f is 1-1 if and only if f(X)∩ f(Y ) = f(X ∩ Y ).

Solution:

” ⇒ ”: Assume that f is 1-1. By Theorem 4.4.1, we have f(X ∩ Y ) ⊆ f(X) ∩ f(Y ). So, we

only show that f(X)∩ f(Y ) ⊆ f(X ∩ Y ). Assume that b ∈ f(X)∩ f(Y ), then b ∈ f(X) and

b ∈ f(Y ). Thus, b = f(a1) for some a1 ∈ X and b = f(a2) for some a2 ∈ Y . Since f is 1-1,

b = f(a1) = f(a2) implies a1 = a2 =: a. Thus, b = f(a) for some a ∈ X ∩ Y . Therefore,

b ∈ f(X ∩ Y ) and hence f(X) ∩ f(Y ) ⊆ f(X ∩ Y ). Thereforem f(X) ∩ f(Y ) = f(X ∩ Y ).

” ⇐ ”: Let x, y ∈ A with x 6= y. Then, {x} ∩ {y} = φ. Thus, f({x} ∩ {y}) = φ which implies

that f({x}) ∩ f({y}) = φ.

That is, {f(x)} ∩ {f(y)} = φ and hence f(x) 6= f(y). Therefore, f is 1-1.

Example 4.4.6

Let f : A 1−1−−→ B. Prove that if X ⊆ A, then f(A−X) = f(A)− f(X).

Solution:

” ⊆ ”: Let y ∈ f(A−X), then there exists x ∈ A−X such that y = f(x). That is, x ∈ A and

x /∈ X. Thus, f(x) ∈ f(A) and f(x) /∈ f(X) (since f is 1-1). Therefore, f(x) ∈ f(A)− f(X)

and hence y ∈ f(A)− f(X).

” ⊇ ”: Let y ∈ f(A) − f(X). Then, y ∈ f(A) and y /∈ f(X). Thus, there exists x ∈ A such

that y = f(x) and x /∈ X (since if x ∈ X, then f(x) ∈ f(X) which is not the case). Thus,

x ∈ A−X and thus f(x) ∈ f(A−X) which implies y ∈ f(A−X).
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Exercise 4.4.1

Let f : R → R be defined by f(x) = x2. Find f({−2, 2 }); f( [1, 2] ); f( [−1, 2] ); and

f−1( { 4, 16 } ).

Exercise 4.4.2

Let f : A → B be a function and let Y ⊆ B. Show that f (f−1(Y )) ⊆ Y . If moreover f is

onto B, then f (f−1(Y )) = Y .
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Chapter

Cardinality

Section 5.1: Equivalent Sets; Finite Sets

Definition 5.1.1

Two sets A and B are equivalent, denoted by A ≈ B, if and only if there exists a bijection

f : A→ B. Otherwise, A 6≈ B.

Example 5.1.1

Let A = {1, 2, 3} and B = {a, b, c}. Show that A ≈ B.

Solution:

To show that A ≈ B, we have to find a bijection f : A → B. Let f : A → B defined by

f(1) = a, f(2) = b, and f(3) = c. Thus, f is a bijection from A to B and hence A ≈ B.

Theorem 5.1.1: The Pigeonhole Principle

Let h, k ∈ N. If f : Nh → Nk and h > k, then f is not a one-to-one function.

Example 5.1.2

Let A = {1, 2, 3, 4} and B = {a, b, c}. Is A ≈ B? Explain.

Solution:

The answer is NO. By the Pigeonhole Principle, there is no one-to-one function from A to B,

and hence A 6≈ B.

Example 5.1.3

Let a, b, c, d ∈ R with a < b and c < d. Show that the open intervals (a, b) ≈ (c, d).

Solution:

75
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Let f : (a, b)→ (c, d) defined by

f(x) = d− c
b− a

(x− a ) + c.

You should show that f is a bijection to get the desired result.

Theorem 5.1.2

The relation ”≈” is an equivalence relation on the class of all sets.

Proof:

Reflexive: Clearly, the identity function IA : A → A defined by IA(x) = x for all x ∈ A is a

bijection. Thus, A ≈ A.

Symmetric: Assume that A ≈ B. That is, there is a bijection f : A→ B. By Theorem 4.3.5,

f−1 : B → A is also a bijection. Thus, B ≈ A.

Transitive: Assume that A ≈ B and B ≈ C. Then, there are two bijective mappings

f : A → B and g : B → C. By Theorem 4.3.5, g ◦ f : A → C is a bijection as well. Thus,

A ≈ C.

Therefore, ”≈” is an equivalence relation on the class of all sets.

Theorem 5.1.3

Let A ≈ C and B ≈ D. Show that

1. A×B ≈ C ×D,

2. If A ∩B = φ and C ∩D = φ, then A ∪B ≈ C ∪D.

Proof:

Assume that A ≈ C and B ≈ D. Then, there exist f : A 1−1−−→
onto

C and g : B 1−1−−→
onto

D. Then,

1. Let h : A×B → C ×D given by h(a, b) = (f(a), g(b)). We show that h is a bijection:

• 1-1: Assume h(a1, b1) = h(a2, b2), then (f(a1), g(b1)) = (f(a2), g(b2)). Then,

f(a1) = f(a2) and g(b1) = g(b2). Since f and g are both 1-1, we have a1 = a2 and

b1 = b2. Thus, (a1, b1) = (a2, b2) and hence h is 1-1.

• onto: Let (c, d) ∈ C × D, then c ∈ C and d ∈ D. Since f and g are both onto

functions, ∃a ∈ A such that f(a) = c and ∃b ∈ B such that g(b) = d. Thus,
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h(a, b) = (f(a), g(b)) = (c, d) ∈ C ×D. Thus, h is onto.

Since h is 1-1 and onto, h : A×B → C ×D is a bijection. Therefore, A×B ≈ C ×D.

2. Let h(x) =


f(x) if x ∈ A

g(x) if x ∈ B
. We show that h is a bijection:

• Assume that h(x1) = h(x2), then if x1 ∈ A and x2 ∈ B, then h(x1) = h(x2) which

implies f(x1) = g(x1) but this is not possible since C ∩ D = φ. Thus, either

x1, x2 ∈ A or x1, x2 ∈ B. With out loss of generality, assume that x1, x2 ∈ A.

Then, h(x1) = h(x2) implies f(x1) = f(x2). Since f is 1-1, x1 = x2 and thus h is

1-1.

• Let y ∈ C ∪D, then y ∈ C or y ∈ D (but not in both). Without loss of generality,

assume that y ∈ C. Thus ∃a ∈ A such that f(a) = y (f is onto C), then

h(a) = f(a) = y. Thus, h is onto C ∪D.

Since h is 1-1 and onto, h : A ∪B → C ∪D is a bijection.

Definition 5.1.2

Let Nk = {1, 2, 3, · · · , k} ⊆ N with k ∈ N and the cardinality of Nk is k, denoted by Nk = k.

In addition, we might say that Nk has cardinal number k.

Definition 5.1.3

A set A is finite if and only if A = φ or A ≈ Nk. If A = φ, then A = 0. Otherwise, A ≈ Nk

and A = k. The set A is infinite if it is not finite.

Theorem 5.1.4

If A is a finite set and B ≈ A, then B is finite.

Proof:

Suppose A is finite and A ≈ B. If A = φ, then clearly B = φ since there is a bijection between

A and B. Otherwise, A ≈ Nk for some natural number k, then B ≈ Nk by transitivity of ≈.

In either cases, B is finite.
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Theorem 5.1.5

Every subset of a finite set is finite.

Theorem 5.1.6

If A is a finite set with A = k ≥ 0 and x /∈ A, then A∪{x} is finite and has cardinality k+ 1.

Proof:

If A = φ, then A = 0 and hence A∪ {x} = {x} is finite as it is equivalent to N1. In this case,

A ∪ {x} = 1.

If A 6= φ, then A ≈ Nk for some natural number k. Also, {x} ≈ {k + 1}. Therefore, by

Theorem 5.1.3, A∪ {x} ≈ Nk ∪ {k+ 1} = Nk+1. Thus A∪ {k+ 1}, and A ∪ {k + 1} = k+ 1.

Another way: Since A is finite and |A | = k, then A ≈ Nk. Then there is a bijection function

f : A → Nk. Let g : A ∪ {x} → Nk+1 defined by g(t) =


f(t) if t ∈ A,

k + 1 if t = x

. Note that

f(t) 6= k + 1 for all t ∈ A.

Can you show that g is a bijection!? A ∪ {x} has cardinality k + 1.

Theorem 5.1.7

If A and B are two finite sets, then A ∪B is finite.

Proof:

Assume first that A ∩ B = φ. Note that if either A or B is empty, then the proof is trivial.

So, we may assume that neither sets is finite.

Since A and B are finite, then there are bijections (A ≈ Nm) f : A → Nm and (B ≈ Nn)

g : B → Nn. Let H = {m + 1,m + 2, · · · ,m + n} and let h : Nn → H be defined by

h(x) = m+ x. Clearly, h is a bijection and hence H ≈ Nn. Thus, H ≈ B (This is because ≈

is transitive). Therefore, Theorem 5.1.3 implies

A ∪B ≈ Nm ∪H = Nm+n.

Hence, A ∪B is finite.

Now assume that A∩B 6= φ, then clearly B−A ⊆ B which is finite. Thus, A∪B = (B−A)∪A,

where (B − A) and A are disjoint finite sets. Thus A ∪B is finite.
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Theorem 5.1.8

For any n ∈ N, if A1, A2, · · · , An are finite sets, then A1 ∪ A2 ∪ · · · ∪ An is a finite set.

Theorem 5.1.9

Let A and B be two finite sets. Then

1. If A ∩B = φ, then |A ∪B | = |A |+ |B |.

2. If A ∩B 6= φ, then |A ∪B | = |A |+ |B | − |A ∩B |.

3. A×B is finite and |A×B | = |A | · |B |.
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Section 5.2: Infinite Sets

Theorem 5.2.1

The set N is an infinite set.

Proof:

Assume that N is finite. Clearly N 6= φ. Then N ≈ Nk for some k ∈ N. Thus, ∃f : Nk
1−1−−→
onto

N.

Let n = f(1) + f(2) + · · · + f(k) + 1. Thus, n > f(i) for all i ∈ Nk and hence n 6= f(i) for

any i = 1, 2, · · · , k. Hence n ∈ N and n /∈ Rng(f). Therefore, f is not onto N, contradiction.

Thus N 6≈ Nk for any k ∈ N. Therefore, N is infinite.

Definition 5.2.1

A set S is called denumerable if and only if S ≈ N. If S is denumerable, then S has cardinal

number τ0. That is, S = τ0.

Definition 5.2.2

A set S is called countable if and only if S is finite or denumerable. Otherwise, S is said to

be uncountable.

Theorem 5.2.2

The set of integers Z is denumerable. In particular, Z = τ0.

Proof:

We show that there is a bijection mapping from N to Z. That is, N ≈ Z. Let f : N → Z be

given by

f(x) =


x

2 if x is even,

1− x
2 if x is odd.

That is, we are considering the following mapping:

N : 1 2 3 4 5 6 7 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ · · ·

Z : 0 1 −1 2 −2 3 −3 · · ·
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• f is 1-1: Let f(x) = f(y) for x, y ∈ N. We consider the following three cases.

1. x and y are both even. Thus, f(x) = f(y) implies that x
2 = y

2 which leads to x = y.

2. x and y are both odd. Thus, f(x) = f(y) implies that 1−x
2 = 1−y

2 . Then 1−x = 1−y

which implies that x = y.

3. One of them, say x, is even and the other, say y, is odd. Then by the definition of

f , we have f(x) 6= f(y).

Therefore, whenever f(x) = f(y), we get x = y. Thus, f is 1-1.

• f is onto: Let y ∈ Z. If y > 0, then 2y is an even number in N and thus f(2y) = 2y
2 = y.

On the other hand, if y ≤ 0, then 1− 2y is an odd number in N and thus f(1− 2y) =
1−(1−2y)

2 = 2y
2 = y. Thus, in either cases of y, f is onto Z.

Therefore, f is a bijection and Z is denumerable with cardinal number τ0.

Example 5.2.1

Show that A =
{

1
2k : k ∈ N

}
is a denumerable set.

Solution:

We show that A ≈ N. That is, we show that f : N→ A where f(x) = 1
2x is a bijection.

• f is 1-1: Let f(x) = f(y), then 1
2x = 1

2y . Thus, x = y and f is 1-1.

• f is onto: Let y ∈ A, then 1
2y ∈ N and hence f( 1

2y ) = 1
2 1

2y

= y. Thus, f is onto A.

Therefore, A is denumerable.

Exercise 5.2.1

Show that A =
{

1
2k+1 : k ∈ N

}
is a denumerable set.

Example 5.2.2

Show that N× N is denumerable. That is N× N = τ0.
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Solution:

Let f : N × N → N be defined by f(m,n) = 2m−1(2n − 1). Thus, f is 1-1 by Example 4.3.5

and it is onto N by Example 4.3.2. Therefore, f is a bijection and hence N×N is denumerable.

Theorem 5.2.3

If A and B are denumerable sets, then A×B is denumerable as well.

Proof:

Since A ≈ N and B ≈ N. By Theorem 5.1.3, A×B ≈ N×N. By Example 5.2.2, N×N ≈ N.

Therefore, A×B ≈ N. Thus, A×B is denumerable.

Theorem 5.2.4

The interval (0, 1) is uncountable and its cardinal number is c (continuum).

Proof:

Assume that (0, 1) is not uncountable. Then it is countable and so it is either finite or

denumerable. Since (0, 1) is not finite (for instance it contains the infinite set {1
2 ,

1
3 ,

1
4 , · · · }),

it is denumerable. Thus, (0, 1) ≈ N. Suppose that ∃f : N→ (0, 1), which is a bijection. What

we will do is to contradict with f is not onto (0, 1). Let

f(1) = 0.a11a12a13a14a15 · · ·
f(2) = 0.a21a22a23a24a25 · · ·

... = ...
f(n) = 0.an1an2an3an4an5 · · ·

... = ...

Now let x = 0.b1b2b3b4b5 · · · ∈ (0, 1), where bi =

5 if aii 6= 5,
1 if aii = 5

. Thus, x 6= f(i) for each

i ∈ N. Then, there is no element in N so that f(n) = x since x is different from f(n) in the

nth decimal place. Thus, f is not onto, contradiction. Hence (0, 1) is not denumerable and it

is uncountable with cardinal number c.
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Theorem 5.2.5

For any a, b ∈ R with a < b, (a, b) ≈ (0, 1) and (a, b) is uncountable set with cardinality c. In

particular, any (open or closed) interval (not a point) in R is uncountable.

Proof:

We recall here the definition we use for a function f in Example 5.1.3. Let f : (0, 1)→ (a, b)

with f(x) = (b− a)x+ a for all x ∈ (0, 1).

• f is 1-1: Let f(x) = f(y), then (b − a)x + a = (b − a)y + a and that implies x = y.

Thus, f is 1-1.

• f is onto: Let y ∈ (a, b). Since 0 < y − a < b− a, we have 0 < y−a
b−a < 1. Thus,

f(y − a
b− a

) = (b− a)y − a
b− a

+ a = y.

Thus f is 1-1.

Therefore, f is a bijection and thus, (a, b) is uncountable with cardinality c.

Theorem 5.2.6

The set of real numbers R is uncountable, and (0, 1) ≈ R. The cardinality of R is c.

Proof:

Let f : (0, 1)→ R be defined by f(x) = tan (πx− π
2 ). Thus, we can show that f is a bijection

by using the horizontal line test.

x

y f(x)

0 1
2

•
1

•

•

f is a bijection
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Example 5.2.3

Let A = (3, 4) ∪ [5, 6). Show that A ≈ (0, 1) (similarly show that A has cardinal number c).

Solution:

Let f : (0, 1)→ A be given by f(x) =


2x+ 3 if 0 < x < 1

2 ,

2x+ 4 if 1
2 ≤ x < 1.

• f is 1-1: Assume that f(x) = f(y), we consider the following three cases:

1. x, y ∈ (0, 1
2). Since f(x) = f(y), 2x+ 3 = 2y + 3 which implies that x = y.

2. x, y ∈ [1
2 , 1). Since f(x) = f(y), 2x+ 4 = 2y + 4. Thus, x = y.

3. x ∈ (0, 1
2) and y ∈ [1

2 , 1). In this case, f(x) 6= f(y).

Thus, whenever f(x) = f(y), we have x = y. Thus, f is 1-1.

• f is onto: We consider the following two cases:

1. if y ∈ (3, 4), then 0 < y−3
2 < 1

2 , and thus f(y−3
2 ) = 2y−3

2 + 3 = y.

2. if y ∈ [5, 6), then 1
2 ≤

y−4
2 < 1, and thus f(y−4

2 ) = 2y−4
2 + 4 = y.

Thus, f is onto (3, 4) ∪ [5, 6).

Therefore, f is a bijection and A ≈ (0, 1). That is (3, 4) ∪ [5, 6) = c.
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Section 5.3: Countable Sets

Theorem 5.3.1

The set Q+ of positive rational numbers is denumerable.

Proof:

One can prove this theorem by considering the following mapping:

1 2 3 4 5 6 7 8 9 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ · · ·
1 2 1

2 3 1
3 4 3

2
2
3

1
4 · · ·

1
5

...
...

...
...

...
...

. . .

· · ·

· · ·

· · ·

· · ·

1
4 ��AA

2
4

3
4

4
4

5
4

6
4

7
4

1
3

2
3 ��AA

3
3

4
3

5
3

6
3

7
3

1
2 ��AA

2
2

3
2 ��AA

4
2

5
2

6
2

7
2

1
1

2
1

3
1

4
1

5
1

6
1

7
1

1 2

3

4

5

6

7

8

9

10

11

Theorem 5.3.2

If A is denumerable, then A ∪ {x} is denumerable.

Proof:

If x ∈ A, then there is nothing to prove. So, assume that x /∈ A. Since A is denumerable,

A ≈ N and thus ∃ a bijection f : N→ A. Define g : N→ A ∪ {x} by

g(n) =


x if n = 1,

f(n− 1) if n > 1.
.

Thus, g is a bijection (show it!). Therefore, A ∪ {x} is denumerable.
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Theorem 5.3.3

If A is denumerable and B is finite, then A ∪B is denumerable.

Proof:

By using an induction on A ∪ {x} for each x ∈ B using Theorem 5.3.2.

Theorem 5.3.4

If A and B are disjoint denumerable sets, then A ∪B is denumerable set.

Proof:

Since A and B are denumerable sets, then there are f : N 1−1−−→
onto

A and g : N 1−1−−→
onto

B. Define

h : N→ A ∪B by

h(n) =


f(n+1

2 ) if n is odd,

g(n2 ) if n is even.
.

The function h is a bijection (show it!). Thus, A ∪B is denumerable.

Theorem 5.3.5

The set of all rational numbers Q is denumerable.

Proof:

Note that Q = Q+ ∪ {0} ∪Q−. Using Theorem 5.3.2 and Theorem 5.3.4, we can easily show

the desired result.

Exercise 5.3.1

Show that Q ≈ Z× N. You can use f : Q→ Z× N, defined by f(p
q
) = (p, q).
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