Introduction to Abstract Algebra

Dr. Abdullah Al-Azemi

Mathematics Department
Kuwait University

June 1, 2023

Contents

0 Review 1
0.0 Basic Notation 1
1 Mapping and Operations 3
1.1 Mappings 3
1.2 Composition. Invertible Mappings 6
1.3 Operations 10
1.4 Composition as an Operation 16
2 Introduction To Groups 19
2.5 Definition and Examples 19
2.6 Permutations and Symmetric Group 27
2.7 Subgroups 32
3 Equivalence. Congruence. Divisiblity 43
3.9 Equivalence Relations 43
3.10 Congruence. The Division Algorithm 47
3.11 Integers Modulo n 53
3.12 Greatest Common Divisor. The Euclidean Algorithm 56
3.13 Factorization. Euler's Phi-Function 60
4 Groups 65
4.14 Elementary Properties 65
4.14.1 Solving Book Problems from Section 14 71
4.15 Direct Products 75
4.16 Cosets 79
4.16.1 Solving Book Problems from Section 16 84
4.17 Lagrange's Theorem. Cyclic Groups 88
4.17.1 Solving Book Problems from Section 17 92
4.18 Isomorphism 95
4.19 More On Isomorphism 101
5 Group Homomorphisms 105
5.21 Homomorphism of Groups. Kernels 105
5.22 Quotient Groups 111

Section 0.0: Basic Notation

Definition 0.0.1

- A set is a collection of objects (called elements or members).
- We write $x \in A$ to indicate that an element x belongs to set A, while we write $x \notin A$ to indicate that x does not belong to A.
- For any two sets A and B, we write $A \subseteq B$ if $\forall x \in A, x \in B$.
- Equality: $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
- Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$.
- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$.
- Difference: $A-B=\{x: x \in A$ and $x \notin B\}$.
- Cartesian (Cross) Product: $A \times B=\{(x, y): x \in A$ and $y \in B\}$.
- Note that in general, $A \times B \neq B \times A$.
* Notations: We define the following sets of numbers:
- \mathbb{N} : the set of all natural numbers $\{1,2,3, \cdots\}$.
- \mathbb{Z} : the set of all integers $\{\cdots,-2,-1,0,1,2, \cdots\}$.
- \mathbb{Q} : the set of all rational numbers $\left\{\frac{a}{b}: a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$.
- \mathbb{R} : the set of all real numbers.
- \mathbb{C} : the set of all complex numbers.
- S^{*} : the whole set S without the ' 0 ' element.
- S^{+}: the set of all positive numbers in S.
- S^{-}: the set of all negative numbers in S.
- $M_{n \times n}$: the set of all $n \times n$ matrices with entries of real numbers.
- $N_{n \times n}$: the set of all $n \times n$ non-singular matrices with entries of real numbers.

Section 1.1: Mappings

Definition 1.1.1

A mapping from a set S to a set T is a relationship that maps every element of S to a uniquely determined element of T. Moreover, If $\alpha: S \rightarrow T$ is a mapping from S to T, then we say that S is the domain and T is the codomain of α. Such a mapping is written as $S \xrightarrow{\alpha} T$ sometimes. Moreover, if $S=T$, we simply say that α is a mapping on S.

Example 1.1.1
Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Let $\alpha: S \rightarrow T$ so that:

$$
\begin{array}{rllr}
\text { i. } \alpha(a)=1, & \alpha(b)=2, & \alpha(c)=3, & \alpha \text { is a mapping, } \\
\text { ii. } \alpha(a)=1, & \alpha(b)=1, & \alpha(c)=2, & \alpha \text { is a mapping, } \\
\text { iii. } \alpha(a)=1, & \alpha(a)=3, & \alpha(b)=2, & \alpha \text { is not a mapping. }
\end{array}
$$

Clearly $i i i$. is not a mapping since first α does not map c and second because $\alpha(a)=1 \neq 3=$ $\alpha(a)$.

Definition 1.1.2

If $\alpha: S \rightarrow T$ is a mapping and $\alpha(a)=b$ for some $a \in S$ and $b \in T$, then we say that b is the image of a and that a is the preimage of b.
Moreover, if $A \subseteq S$, then $\alpha(A)=\{\alpha(x): x \in A\} \subseteq T$.

Definition 1.1.3

A mapping (function) α from a set S into a set T is one-to-one if each element of T has at most one element of S mapped into it. Moreover, α is onto T if each element of T has at least one element of S mapped into it.

Definition 1.1.4

A mapping α is called a bijection if it is one-to-one and onto.

Remark 1.1.1

Let $\alpha: S \rightarrow T$ be a function. Then,

1. α is a one-to-one function if for all $a, b \in S, \alpha(a)=\alpha(b)$ implies $a=b$.
2. α is onto T if for each $b \in T$, there is $a \in S$ such that $\alpha(a)=b$.

Example 1.1.2

Consider the two mappings $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^{3}$. Decide whether f and g are one-to-one and onto?

Solution:

- Clearly, f is not one-to-one since $f(1)=f(-1)=1$ but $-1 \neq 1$. Also, f is not onto since there is no $x \in \mathbb{R}$ with $f(x)=-1$ for instance. Therefore f is not a bijection.
- g is one-to-one since if $g(x)=g(y)$, then $x^{3}=y^{3}$ and hence $x=y$. Also it is onto since for any $y \in R$, there is $x=y^{\frac{1}{3}} \in \mathbb{R}$ with $g(x)=\left(y^{\frac{1}{3}}\right)^{3}=y$. Hence g is a bijection.

Example 1.1.3

Let f be a mapping on \mathbb{N} defined by $f(x)=2 x$. Is f a bijection? Explain.

Solution:

Clearly, f is one-to-one since $f(a)=f(b)$ implies that $2 a=2 b$ and hence $a=b$. But f is not onto, since $1 \in \mathbb{N}$ and no $a \in \mathbb{N}$ with $f(a)=1$. That is f is not a bijection.

Exercise 1.1.1

Solve the following exercises from the book at page 14:

- $1.1-1.6$,
- $1.12-1.13$.

Section 1.2: Composition. Invertible Mappings

Definition 1.2.1

Let A, B, and C be three nonempty sets. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two mappings, then the composition of f and g, denoted by $g \circ f$, is the mapping from A to C defined by $(g \circ f)(x)=g(f(x))$ for each $x \in A$.

Example 1.2.1

Let $A=\{x, y, z\}, B=\{1,2,3\}$ and $C=\{a, b, c\}$. Define $f: A \rightarrow B$ and $g: B \rightarrow C$ by

$$
f(x)=2, f(y)=1, \text { and } f(z)=3, \text { and } g(1)=b, g(2)=c, \text { and } g(3)=a .
$$

List all the elements of $g \circ f$.

Solution:

- $(g \circ f)(x)=g(f(x))=g(2)=c$,
- $(g \circ f)(y)=g(f(y))=g(1)=b$,
- $(g \circ f)(z)=g(f(z))=g(3)=a$.

Example 1.2.2
Let f and g be two mapping on \mathbb{R} where $f(x)=2 x+1$ and $g(x)=x-1$. Is $g \circ f=f \circ g$? Explain.

Solution:

Clearly,

- $(g \circ f)(x)=g(f(x))=g(2 x+1)=(2 x+1)-1=2 x$, while
- $(f \circ g)(z)=f(g(x))=f(x-1)=2(x-1)+1=2 x-1$.

Therefore, $g \circ f \neq f \circ g$.

Theorem 1.2.1: This is from Math-250

Assume that $f: A \rightarrow B$ and $g: B \rightarrow C$ are two mappings. Then,

1. If f and g are onto, then $g \circ f$ is onto.
2. If $g \circ f$ is onto, then g is onto.
3. If f and g are one-to-one, then $g \circ f$ is one-to-one.
4. If $g \circ f$ is one-to-one, then f is one-to-one.
5. If f and g are bijections, then $g \circ f$ is a bijection.

Proof:

Recall this Theorem from Math-250.

1. Assume that both f and g are onto. Let $z \in C$, then there is $y \in B$ such that $g(y)=z$ since g is onto. Also, there is $x \in A$ such that $f(x)=y$ since f is onto. Therefore, $(g \circ f)(x)=g(f(x))=g(y)=z$ and hence $g \circ f$ is onto.
2. Assume that $g \circ f$ is onto. If $z \in C$, then there is $x \in A$ such that $(g \circ f)(x)=z$ (since $g \circ f$ is onto). That is $g(f(x))=z$ with $f(x)=y \in B$. Thus g is onto.
3. Assume that both f and g are one-to-one. Then $(g \circ f)(x)=(g \circ f)(y)$ implies $g(f(x))=$ $g(f(y))$ which implies that $f(x)=f(y)$ since g is one-to-one. Hence $x=y$ because f is one-to-one. Therefore, $g \circ f$ is one-to-one.
4. Assume that $g \circ f$ is one-to-one. Let $f(x)=f(y)$. Then $(g \circ f)(x)=g(f(x))=g(f(y))=$ $(g \circ f)(y)$ and since $g \circ f$ is one-to-one, we get that $x=y$. Hence f is one-to-one.
5. Assume that f and g are both bijections. Combining part 1 and part 3 concludes the result. Hence $g \circ f$ is a bijection.

Definition 1.2.2

Let I_{A} denote the identity mapping on A. That is,

$$
I_{A}(x)=x \quad \text { for every } \quad x \in A
$$

Note that this mapping is an example of a bijection mapping.

Definition 1.2.3

A mapping $g: B \rightarrow A$ is an inverse of a mapping $f: A \rightarrow B$ if both $g \circ f=I_{A}$ and $f \circ g=I_{B}$. In that case, f is called invertible and we write $f^{-1}=g$.

Theorem 1.2.2

A mapping $f: A \rightarrow B$ is invertible if and only if f is a bijection.

Proof:

$" \Rightarrow "$: Assume that f is invertible. Then $f^{-1} \circ f=I_{A}$ is one-to-one, and hence f is one-to-one. Moreover, $f \circ f^{-1}=I_{B}$ is onto and hence f is onto. Therefore, f is a bijection. $" \Leftarrow "$ Assume that f is a bijection. We construct $f^{-1}: B \rightarrow A$ as follows: If $y \in B$, then there is $x \in A$ such that $f(x)=y$ (since f is onto). But since f is one-to-one, this element x is unique. Let $f^{-1}(y)=x$. This is can be done to all elements $y \in B$ and hence $f^{-1}: B \rightarrow A$ satisfying $f \circ f^{-1}=I_{B}$ and $f^{-1} \circ f=I_{A}$. Thus f is invertible.

Theorem 1.2.3

If $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection.

Proof:

This is can be done using your knowledge from Math-250.

Exercise 1.2.1

Solve the following exercises from the book at page 18:

- 2.1-2.6,
- 2.11-2.13.

Section 1.3: Operations

Definition 1.3.1

A binary operation " *" on a set S is a relationship that maps each ordered pair of elements of S to a unique element of S. That is $*: S \times S \rightarrow S$, where $S \times S$ is the Cartesian product of S with S which contains all ordered pairs (a, b) with $a, b \in S$.

Definition 1.3.2

Let $*$ be a binary operation on a set S. For all $a, b \in S, a * b \in S$. This property of $*$ is called closure and we say that S is closed with respect to $*$.

Note that we write $(S, *)$ for a defined binary operation $*$ on a set S.
Example 1.3.1
Decide if the following is binary operation:

$(\mathbb{N},-)$	NO, $1,2 \in \mathbb{N}$ but $1-2=-1 \notin \mathbb{N}$
$(\mathbb{Z},+)$	YES
$(\mathbb{Z},-)$	YES
(\mathbb{Z}, \cdot)	YES
(\mathbb{Z}, \div)	NO, $1,2 \in \mathbb{Z}$ but $\frac{1}{2} \notin \mathbb{Z}$
(\mathbb{Q}, \div)	NO, $0,1 \in \mathbb{Q}$ but $\frac{1}{0} \notin \mathbb{Q}$
$\left(\mathbb{Q}^{*}, \div\right)$	YES
$(\mathbb{R},+)$	YES
$(\mathbb{R},-)$	YES
(\mathbb{R}, \cdot)	YES
$\left(\mathbb{R}^{*}, \div\right)$	YES

Example 1.3.2

Let $*$ be defined on \mathbb{Z}^{+}by $m * n=m^{n}$ for all $m, n \in \mathbb{Z}^{+}$. Is $*$ a binary operation? Does the order of elements make any difference?

Solution:

Clearly, for any $m, n \in \mathbb{Z}^{+}, m * n=m^{n} \in \mathbb{Z}^{+}$. Thus, $*$ is a binary operation on \mathbb{Z}^{+}.
However, the order makes difference since $3 * 2=3^{2}=9$ while $2 * 3=2^{3}=8$.

Definition 1.3.3

If S is a finite set, then we can specify a binary operation on S by means of a table. We put $a * b$ at the intersection of the row containing a and the column containing b, for all $a, b \in S$. Changing one more of the entries in the table will give a different binary operation. Such defined tables are called Cayley tables.

Example 1.3.3

Let $S=\{a, b, c\}$. Give two different Cayley tables.

Solution:

$*_{1}$	a	b	c
a	a	c	c
b	b	b	a
c	b	c	b

$*_{2}$	a	b	c
a	b	b	b
b	a	b	c
c	b	b	b

Remark 1.3.1

In general there are $n^{n^{2}}$ Cayley tables for $S=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. This is because each row has n positions with n possible elements in each position. That is, each row has n^{n} possible ways. Overall we have n rows and thus we have $n^{n} \cdot n^{n} \cdots n^{n}$ (n-times) which is $n^{n^{2}}$.

Example 1.3.4

Decide whether + and • are binary operations on $M_{2 \times 2}$

Solution:

Yes, because for any 2×2 matrices, we have

- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{ll}a+x & b+y \\ c+z & d+w\end{array}\right] \in M_{2 \times 2}$,
- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right] \in M_{2 \times 2}$,

Definition 1.3.4

A binary operation $*$ on a set S is said to be associative if the associative law

$$
a *(b * c)=(a * b) * c
$$

is satisfied for all $a, b, c \in S$.

Definition 1.3.5

A binary operation $*$ on a set S is said to be commutative if the commutative law

$$
a * b=b * a
$$

is satisfied for all $a, b \in S$.

Example 1.3.5

Discuss the associative and commutative properties on

1. $(\mathbb{Z},+)$,
2. $(\mathbb{Z},-)$,
3. $\left(\mathbb{Q}^{*}, \div\right)$

Solution:

1) Clearly, $m+(n+k)=(m+n)+k$ for all $m, n, k \in \mathbb{Z}$, then + is associative on \mathbb{Z}. Also, $m+n=n+m$ for all $m, n \in \mathbb{Z}$ and hence + is commutative on \mathbb{Z}.
2) $2-(1-3)=4$ while $(2-1)-3=-2$ and hence - is not associative on \mathbb{Z}. Moreover, $1-2 \neq 2-1$. Thus - is not commutative on \mathbb{Z}.
3) " \div " is not associative on \mathbb{Q}^{*} since $1 \div(3 \div 2)=\frac{2}{3}$ while $(1 \div 3) \div 2=\frac{1}{6}$. Moreover,
$1 \div 2 \neq 2 \div 1$, hence \div is not commutative on \mathbb{Q}^{*}.

Definition 1.3.6

Let S be a set with a binary operation $*$. An element $e \in S$ is called an identity (or identity element) for $*$ on S if

$$
e * a=a * e=a
$$

for all $a \in S$.

Definition 1.3.7

Let e be an identity for a binary operation $*$ on a set S. An element $b \in S$ is called an inverse of a relative to $*$ if

$$
a * b=b * a=e .
$$

Example 1.3.6
Discuss the identity and inverse elements in what follows:

1. $(\mathbb{Z},+): 0$ is the identity element for + on \mathbb{Z}, while " $-a$ " is the inverse of a relative to + for every $a \in \mathbb{Z}$. Note that $a+(-a)=0$.
2. $\left(\mathbb{Q}^{*}, \cdot\right): 1$ is the identity for \cdot on \mathbb{Q}^{*}, while $\frac{1}{a}$ is the inverse of $a \in \mathbb{Q}^{*}$. That is $a \cdot \frac{1}{a}=1$ for all $a \in \mathbb{Q}^{*}$.
3. $\left(\mathbb{Z}^{+},+\right)$: has no identity and no inverse.
4. $(2 \mathbb{Z}, \cdot): 2 \mathbb{Z}=\{\cdots,-4,-2,0,2,4, \cdots\}$ has no identity and no inverses.
5. $\left(M_{2 \times 2},+\right)$: the identity matrix is $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and for any $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2 \times 2}$ the inverse element is $\left[\begin{array}{cc}-a & -b \\ -c & -d\end{array}\right]$.
6. $\left(M_{2 \times 2}, \cdot\right)$: the identity matrix is $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Some matrices have no inverse and some
do. For instance the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ has no inverse since its determinant equals zero.
7. $\left(N_{2 \times 2}, \cdot\right)$: the identity matrix is I_{2} and the inverse of a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is given by $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. That is, $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$.

Exercise 1.3.1

Solve the following exercises from the book at page 23:

- $3.1-3.8$,
- 3.13.

Exercise 1.3.2

Let $*$ be defined by $m * n=m^{n}$ for all positive integers m and n. Is $*$ a commutative binary operation on \mathbb{Z}^{+}? Explain.

Section 1.4: Composition as an Operation

Example 1.4.1

Let S be any nonempty set, and let $M(S)$ denote the set of all mappings from S to S. Is "०", the composition, an operation on $M(S)$? Explain.

Solution:

Let $\alpha, \beta \in M(S)$. Then $\alpha: S \rightarrow S$ and $\beta: S \rightarrow S$ and hence $\beta \circ \alpha: S \rightarrow S$. Thus, $\beta \circ \alpha \in M(S)$ and the composition "०" is an operation on $M(S)$.

Theorem 1.4.1

Let S denote any nonempty set. Then

1. Composition is an associative operation on $M(S)$, with the identity element I_{S}.
2. Composition is an associative operation on the set of all invertible mappings in $M(S)$, with identity I_{S}.

Proof:

1. Let $f, g, h \in M(S)$. Then for any $x \in S$, we have

$$
[h \circ(g \circ f)](x)=h((g \circ f)(x))=h(g(f(x)))=(h \circ g)(f(x))=[(h \circ g) \circ f](x) .
$$

That is \circ is associative on $M(S)$. Moreover, it is clear that $f \circ I_{S}=I_{S} \circ f=f$ for any $f \in M(S)$.
2. Assume that $f, g \in M(S)$ and that both are invertible. Thus both f and g are bijections and hence $g \circ f$ is a bijection which implies that $g \circ f$ is invertible. Since the composition is associative on $M(S)$, it is associative on any of its subsets and hence it is associative on the subset of invertible mappings. Moreover, I_{S} is invertible and thus it is the identity element on the subset of invertible elements in $M(S)$.

Remark 1.4.1

Note that the composition operation " \circ " is not commutative in general since $f \circ g \neq g \circ f$ for some mappings f and g.

Section 2.5: Definition and Examples

Definition 2.5.1

A group $(G, *)$ is a set G, closed under a binary operation $*$, such that the following conditions are satisfied
\mathcal{G}_{1} : associativity: $*$ is associative on G,
\mathcal{G}_{2} : identity element: there is $e \in G$ such that $e * g=g * e=g$ for every $g \in G$,
\mathcal{G}_{3} : inverse element: for every $g \in G$, there exists $h \in G$ (usually written as $h=g^{-1}$) such that $g * h=h * g=e$. That is every element in G has an inverse in G.

Example 2.5.1

Show that the set of even integers, denoted by $2 \mathbb{Z}$, with addition is a group.

Solution:

We show that $(2 \mathbb{Z},+)$ is a group by showing the conditions of Definition 2.5.1 as follows:
\mathcal{G}_{1} : Let $a, b, c \in 2 \mathbb{Z}$. Then $(a+b)+c=a+b+c=a+(b+c)$ and hence + is associative.
\mathcal{G}_{2} : The identity element is $0 \in 2 \mathbb{Z}$ since $a+0=0+a=a$ for all $a \in 2 \mathbb{Z}$.
$\mathcal{G}_{3}:$ For any $a \in 2 \mathbb{Z},-a \in 2 \mathbb{Z}$ and $a+(-a)=0=(-a)+a$.
Therefore $(2 \mathbb{Z},+)$ is a group.

Example 2.5.2
Is $\left(\mathbb{Z}^{+},+\right)$a group? Explain.

Solution:

No. There is no identity element in \mathbb{Z}^{+}and there is no inverse in \mathbb{Z}^{+}for any element in \mathbb{Z}^{+}.

Example 2.5.3

Decide whther $\left(M_{2 \times 2}, \cdot\right)$ "the set of all 2×2 matrices" is a group.

Solution:

Clearly, . is associative on $M_{2 \times 2}$ and there is identity element $I_{2} \in M_{2 \times 2}$. But for some elements $A \in M_{2 \times 2}$ there is no inverse. For instance the inverse of $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ does not exist. Thus $\left(M_{2 \times 2}, \cdot\right)$ is not a group.

Definition 2.5.2

A group G is called abelian if its binary operation is commutative. It is called non-abelian otherwise.

Definition 2.5.3

For $a, n \in \mathbb{Z}$ with $n>0$, define the congruence class of a modulo n in \mathbb{Z} by

$$
[a]=\bar{a}=\left\{x \in \mathbb{Z}: a \equiv_{n} x \Leftrightarrow n \mid a-x\right\} .
$$

Moreover, for $[a],[b] \in \mathbb{Z}_{n}$, define

$$
[a] \oplus[b]=[a+b] .
$$

Theorem 2.5.1

Let n be a positive integer, then $\mathbb{Z}_{n}=\{[0],[1], \cdots,[n-1]\}$ is an abelian group with respect to the operation \oplus.

Proof:

\mathcal{G}_{1} :

$$
\begin{aligned}
{[a] \oplus([b] \oplus[c]) } & =[a] \oplus[b+c]=[a+b+c]=[(a+b)+c] \\
& =[a+b] \oplus[c]=([a] \oplus[b]) \oplus[c]
\end{aligned}
$$

\mathcal{G}_{2} : The identity is $[0]$ since $[0] \oplus[a]=[0+a]=[a]=[a+0]=[a] \oplus[0]$.
\mathcal{G}_{3} : The inverse of $[a]$ is $[-a]$:

$$
[a] \oplus[-a]=[a+(-a)]=[0]=[(-a)+a]=[-a] \oplus[a] .
$$

Note that $[-a]$ is congruent modulo n to exactly one integer in $\{[0],[1], \cdots,[n-1]\}$.

To show that \mathbb{Z}_{n} is abelian, let $[a],[b] \in \mathbb{Z}_{n}$, then

$$
[a] \oplus[b]=[a+b]=[b+a]=[b] \oplus[a] .
$$

Thus, \mathbb{Z}_{n} is abelian group with respect to \oplus.

Remark 2.5.1

Notation:

For simplicity, we write $\mathbb{Z}_{n}=\{0,1, \cdots, n-1\}$ instead of $\mathbb{Z}_{n}=\{[0],[1], \cdots,[n-1]\}$.

Example 2.5.4
The following are examples of some groups:

$$
\begin{aligned}
& (\mathbb{Z},+),(\mathbb{Q},+),\left(M_{2 \times 2},+\right), \text { and }\left(M_{m \times n},+\right) . \\
& \left(N_{n \times n}, \cdot\right),\left(\mathbb{Q}^{*}, \cdot\right),\left(\mathbb{Q}^{+}, \cdot\right), \text { and }(2 \mathbb{Z},+) .
\end{aligned}
$$

Theorem 2.5.2

Let $(G, *)$ be a group. Then:

1. The identity element of G is unique.
2. The inverse of each element in G is unique.

Proof:

1. Let e_{1} and e_{2} be two identity elements in G. Then $e_{1} * a=a$ for all $a \in G$. In particular, $e_{1} * e_{2}=e_{2}$ and $e_{1} * e_{2}=e_{1}$. Thus, $e_{1}=e_{1} * e_{2}=e_{2}$, and hence $e_{1}=e_{2}$.
2. Let a_{1} and a_{2} be two inverses of $a \in G$. Then,

$$
a_{1}=a_{1} * e=a_{1} *\left(a * a_{2}\right)=\left(a_{1} * a\right) * a_{2}=e * a_{2}=a_{2} .
$$

Definition 2.5.4

The order of a group is the number of elements in G denoted by $|G|$. If G is finite, we write $|G|<\infty$. Otherwise, we say that G is infinite group.

Groups of small order:

\star Groups of order $1: \mathbb{Z}_{1}=\{0\},+:$

If $G=\{e\}$, then G is a group of order 1 , with $e^{-1}=e$.

\star Groups of order 2: $\mathbb{Z}_{2}=\{0,1\},+:$

Let $G=\{e, a\}$. The identity element is e and the inverse of a is a.

$$
\begin{array}{c|cc}
* & e & a \\
\hline e & e & a \\
a & a & e
\end{array}
$$

Remark 2.5.2

Each element needs an inverse in any group. Thus, there must be identity input in each row and column in the Caylay table of the group.

Remark 2.5.3

The equations $a * x=b$ and $y * a=b$ have unique solutions. Therefore, each element appears exactly once in each row and column of the Caylay table of the group.
\star Groups of order 3: $\mathbb{Z}_{3}=\{0,1,2\},+$:

Let $G=\{e, a, b\}$. We start with Table 1 .
Now if $a * a=e$, then $a * b=b$ since each element appears once in each row and column. But this suggests that $a=e$ which is not the case. Thus, we must have $a * a=b$ and $a * b=e$. Therefore, we get Table 2 .

Table 1.

$*$	e	a	b
e	e	a	b
a	a		
b	b		

Table 2.

$*$	e	a	b
e	e	a	b
a	a	\mathbf{b}	\mathbf{e}
b	b	\mathbf{e}	\mathbf{a}

Remark 2.5.4

For any element a in a group G and n is a natural number, we have:

1. $a^{n}=a * a * \cdots * a, \quad n$-times.
2. $a^{-n}=\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}=a^{-1} * a^{-1} * \cdots * a^{-1}$, $\quad n$-times.
3. $a^{0}=e$.

Definition 2.5.5

If two groups G_{1} and G_{2} have the same structure, one group can be made to look exactly like the other by a renaming of elements. Then they are said to be isomorphic, denoted by $G_{1} \cong G_{2}$. In particular, $\left|G_{1}\right|=\left|G_{2}\right|$.

Example 2.5.5

Consider $\mathbb{Z}_{3}=\{0,1,2\}$ with " + modulo 3 ". Find its order.

Solution:

This is a group of order 3 as above by renaming $e=0, a=1$, and $b=2$. Thus, $\left|\mathbb{Z}_{3}\right|=3$.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

\star Groups of order 4: \mathbb{Z}_{4} and $\mathbb{Z}_{2}^{2}=D_{2}$:

Let $G=\{e, a, b, c\}$. Thus, the Caylay table is

$*$	e	a	b	c
e	e	a	b	c
a	a	$?$		
b	b			
c	c			

The question mark can NOT be filled with a, but it can be filled either with e or with $\{b$ or $c\}$.
Case-1: The ? spot filled with " e ": Note that $a * b \neq b$ since $a \neq e$. Thus, we get two possible tables
T_{1} and T_{2} as follows:

$$
T_{1} \text { (The Klein 4-group) : } \begin{array}{c|cccc}
* & e & a & b & c \\
\hline e & e & a & b & c \\
a & a & \mathbf{e} & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{array} . \quad \text { or } \quad T_{2}: \begin{array}{c|cccc}
* & e & a & b & c \\
\hline e & e & a & b & c \\
a & a & \mathbf{e} & c & b \\
b & b & c & a & e \\
c & c & b & e & a
\end{array}
$$

Case-2: The ? spot filled with " b " without loss of generality, and $a * c \neq c$ since $a \neq e$. We get T_{3} :

$$
T_{3}: \begin{array}{c|cccc}
* & e & a & b & c \\
\hline e & e & a & b & c \\
a & a & \mathbf{b} & c & e \\
b & b & c & e & a \\
c & c & e & a & b
\end{array}
$$

We end up with three tables T_{1}, T_{2}, and T_{3}. Note that T_{2} has the same structure as T_{3} when we interchanging letters a and b in table T_{2} everywhere and then rewrite the table to get exactly table T_{3}. Note that T_{1} is the smallest example of a non-cyclic group which is called the Klein 4-group.

Example 2.5.6

Consider the group $\left(\mathbb{Z}_{4},+\right)$. Find its order.

Solution:

This is a group of order 4 and it is isomorphic to the table T_{3}, namely $\left(\mathbb{Z}_{4},+\right)$.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Exercise 2.5.1

Show that $G=\left\{2^{m} 3^{n}: m, n \in \mathbb{Z}\right\}$ is a group with respect to multiplication.

Exercise 2.5.2

Let G denote $M(\mathbb{R})$, the set of all mappings on \mathbb{R}. For $f, g \in G$ define $f+g$ by $(f+g)(x)=$ $f(x)+g(x)$ for all $x \in \mathbb{R}$. Verify that G with this operation is a group.

Exercise 2.5.3

Let $G=\left\{A \in M_{2 \times 2}: \operatorname{det} A \in \mathbb{Q}^{*}\right\}$. Show that (G, \cdot) is a group.

Exercise 2.5.4

Let $G=\left\{A \in M_{2 \times 2}: \operatorname{det} A=1\right\}$. Show that (G, \cdot) is a group.

Exercise 2.5.5

Prove that if G is a group, $a \in G$, and $a * b=b$ for some $b \in G$, then a is the identity element of G.

Exercise 2.5.6

Solve the following exercises from the book at pages 33-34:

- 5.1-5.14,
- $5.16-5.18$,
- 5.22.

Exercise 2.5.7

Consider the group $\left(U_{4}, \cdot\right)$ where $U_{4}=\{1, i,-1,-i\}$. Find its order and its isomorphic group.

Section 2.6: Permutations and Symmetric Group

Definition 2.6.1

A permutation of a set A is a mapping $\phi: A \rightarrow A$ that is both one-to-one and onto A. That is $\phi: A \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} A$.

The composition mapping is a binary operation on the collection of all permutations of a set A. We will call this operation permutation multiplication.

Theorem 2.6.1

The set of all permutations of a nonempty set A is a group with respect to permutation multiplication. This group is called the symmetric group on A and is denoted by $\operatorname{Sym}(A)$.

If $A=\{1,2, \cdots, n\}$ is a set, then the group $\operatorname{Sym}(A)$ is commonly denoted by S_{n}, and is called the symmetric group on n letters.

Example 2.6.1

Let $A=\{1,2,3\}$. Find the elements of $\operatorname{Sym}(A)$ or simply S_{3}.

Solution:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \text {, and }\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

Which is (in cycle notation):

$$
e,\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), \text { and }\left(\begin{array}{ll}
1 & 3
\end{array}\right)
$$

Theorem 2.6.2

The order of $S_{n}=n!$.

Proof:

Counting the number of possibilities of permutations $\left(\begin{array}{llll}1 & 2 & \cdots & n \\ \text {.. } & . . & \cdots & . .\end{array}\right)$.

Remark 2.6.1

- the identity element in S_{n} is $\left(\begin{array}{llll}1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n\end{array}\right)$.
- the inverse element is obtained by reading from bottom to top. That is, for instance,

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right)^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

That is $\left(\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right)^{-1}=\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$.

- Compute in S_{4} :

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)
$$

That is $\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right) \circ\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=\left(\begin{array}{ll}3 & 4\end{array}\right)$ "in cycle notation".

Theorem 2.6.3

S_{1} and S_{2} are abelian groups. If $n \geq 3$, then S_{n} is non-abelian group.

Proof:

Let α and β in $S_{n}(n \geq 3)$ be defined by

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \cdots & n \\
1 & 3 & 2 & 4 & \cdots & n
\end{array}\right) \text { and } \beta=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
3 & 2 & 1 & 4 & \cdots & n
\end{array}\right) .
$$

Then,

$$
\alpha \circ \beta=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
2 & 3 & 1 & 4 & \cdots & n
\end{array}\right) \text { and } \beta \circ \alpha=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
3 & 1 & 2 & 4 & \cdots & n
\end{array}\right) \text {. }
$$

That is $\alpha \circ \beta \neq \beta \circ \alpha$, and the group is non-abelian.

Definition 2.6.2

If A is a set and $a_{1}, a_{2}, \cdots, a_{k} \in A$, then $\left(a_{1} a_{2} \cdots a_{k}\right)$ denotes the permutation of A for which $a_{1} \mapsto a_{2}, a_{2} \mapsto a_{3}, \cdots, a_{k-1} \mapsto a_{k}, a_{k} \mapsto a_{1}$, and $x \mapsto x$ for all other $x \in A$. Such a permutation is called a cycle or k-cycle.

Example 2.6.2

Compute ($\left.\begin{array}{lllllll}1 & 3 & 2 & 5\end{array}\right)\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)$ in S_{5}.

Solution:

We multiply from right to left to get, ($\left.\begin{array}{lllllll}1 & 3 & 2 & 5\end{array}\right)\left(\begin{array}{llllll}1 & 4 & 3 & 2\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 2 & 3 & 5\end{array}\right)$.

Example 2.6.3
Compute ($\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)^{-1}$ in S_{4}.

Solution:

$\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)^{-1}=\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)$

Definition 2.6.3

We say that cycles $\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{m}\end{array}\right)$ and $\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right)$ are disjoint cycles if $a_{i} \neq b_{j}$ for all i and j.

Theorem 2.6.4

Disjoint cycles commute; That is if α and β represent disjoint cycles, then $\alpha \beta=\beta \alpha$.

Theorem 2.6.5

Any permutation of a finite set is either a cycle or can be written as a product of pairwise disjoint cycles. The resulting form is called the cyclic decomposition of the permutation.

Example 2.6.4

Find the cyclic decomposition of the following permutations: $\left.1 . \begin{array}{llll}1 & 3\end{array}\right)(2 \quad 5 \quad 4), 2$.

Solution:

1. $\left(\begin{array}{llll}1 & 3\end{array}\right)\left(\begin{array}{lll}2 & 5 & 4\end{array}\right)=\left(\begin{array}{llll}1 & 3\end{array}\right)\left(\begin{array}{lll}2 & 5 & 4\end{array}\right)$.
2. $\left(\begin{array}{lllll}1 & 4 & 5\end{array}\right)\left(\begin{array}{llllll}2 & 3 & 5\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3\end{array}\right)$.
3. $\left(\begin{array}{lll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)$.
4. $\left(\begin{array}{llllllll}1 & 5 & 4 & 6 & 3 & 2\end{array}\right)\left(\begin{array}{llll}4 & 3 & 6\end{array}\right)\left(\begin{array}{ll}2 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 5\end{array}\right)(24)$.
5. $\left(\begin{array}{lllll}1 & 3 & 2\end{array}\right)(2 \quad 4 \quad 5)(14)=\left(\begin{array}{llll}1 & 5\end{array}\right)\left(\begin{array}{lll}2 & 4 & 3\end{array}\right)$.

Example 2.6.5

Write down the Caylay table for S_{3} defined by "row o column".

Solution:

\bigcirc	e	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	(13)	$\left(\begin{array}{ll}2 & 3\end{array}\right)$
e	e	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right.$	(13)	$\left(\begin{array}{ll}2\end{array}\right)$
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	e	(13)	$\left(\begin{array}{ll}2 & 3\end{array}\right.$	$\left(\begin{array}{ll}1 \\ \text {) }\end{array}\right.$
$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	e	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	(23)	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	(13)
$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right.$	e	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right.$	$\left(\begin{array}{ll}2 & \end{array}\right.$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	e	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
(23)	$\left(\begin{array}{ll}2 & \end{array}\right.$	(1 3)	$\left(\begin{array}{ll}1\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	e

Exercise 2.6.1

Solve the following exercises from the book at page 40:

- $6.1-6.4$.

Section 2.7: Subgroups

Definition 2.7.1

A subset H of a group G is a subgroup of G if H is itself a group under the binary operation of G. In that case, we write $H \leq G$. In addition, if $H \neq G$, we simply write $H<G$.

Example 2.7.1
The following are some examples of subgroups:

- $(\mathbb{Z},+) \leq(\mathbb{R},+)$,
- $(\{1,-1\}, \cdot) \leq\left(\mathbb{R}^{*}, \cdot\right)$,
- (improper subgroup) $(G, *) \leq(G, *)$ for any group G with operation $*$, and
- (improper subgroup) $(\{e\}, *) \leq(G, *)$ for any group G with operation *.

Remark 2.7.1

Let H be a subgroup of a group $(G, *)$, i.e. $H \leq G$. Then:

- $a * b \in H$ for all $a, b \in H$. In particular, H must be closed under the operation $*$.
- $e_{H}=e_{G}$ and for $a \in H, a^{-1}$ in H is the same as a^{-1} in G.

Theorem 2.7.1

A subset H is a subgroup of a group G if and only if the following properties hold:
$\mathcal{S}_{1}: H$ is not empty.
$\mathcal{S}_{2}:$ If $a, b \in H$, then $a * b \in H$, and
$\mathcal{S}_{3}:$ If $a \in H$, then $a^{-1} \in H$.

Proof:

$" \Rightarrow "$ Assume that H is a subgroup of G. Then H is a group itself and the properties 1, 2, and 3 hold.
$" \Leftarrow "$ Assume now that properties 1,2 , and 3 hold. Then we show that H is a group contained in G :
\mathcal{G}_{1} : Clearly $*$ is associative on G and hence it is associative on its subset H.
\mathcal{G}_{2} : H is not empty by Property 1, and hence there is $a \in H$ and thus $a^{-1} \in H$ (by Property 3). Therefore, $a * a^{-1}=e \in H$ (by Property 2).
\mathcal{G}_{3} : For any $a \in H$, there is an inverse of a in H by Property 3 .
Therefor H is a subgroup of G.

Definition 2.7.2

A subgroup H of a group G is called a proper subgroup if $H \neq\{e\}$ "the trivial subgroup of G ", and $H \neq G$ "the improper subgroup of G ".

Example 2.7.2: Exercise 7.22 at page 46

Prove that if G is a group with operation $*$, and H is a subset of G, then H is a subgroup of G if and only if:

1. H is not empty.
2. If $a, b \in H$, then $a * b^{-1} \in H$, and

Solution:

$" \Rightarrow "$ Assume that $H \leq G$. Then H is a group and the properties 1, and 2 hold.
$" \Leftarrow "$ Assume now that properties 1 , and 2 hold. Then we show that H is a group in G :
\mathcal{G}_{1} : Clearly $*$ is associative on G and hence it is associative on its subset H.
\mathcal{G}_{2} : Let $a \in H$, then $e=a * a^{-1} \in H$ (by Property 2).
\mathcal{G}_{3} : For any $a \in H$, we have $e * a^{-1} \in H$ (by Property 2) and hence there is an inverse of a in H.

Therefor H is a subgroup of G.

Remark 2.7.2

1. $(\mathbb{R},+) \geq(\mathbb{Q},+) \geq(\mathbb{Z},+) \geq(n \mathbb{Z},+), n \in \mathbb{Z}, \geq\{0\}$.
2. $\left(\mathbb{R}^{*}, \cdot\right) \geq\left(\mathbb{Q}^{*}, \cdot\right) \geq\left(\mathbb{Q}^{+}, \cdot\right) \geq\{1\}$.
3. Note that $(3 \mathbb{Z},+) \nsubseteq(2 \mathbb{Z},+)$ since $3 \mathbb{Z} \nsubseteq 2 \mathbb{Z}$.

Example 2.7.3

Show that $H=\{0,2\}$ is a subgroup of \mathbb{Z}_{4} under the addition modular 4.

Solution:

+	0	2
0	0	2
2	2	$4 \equiv{ }_{4} 0$

Clearly, H is not empty and the identity element is 0 and the inverse of each element in H is itself. Thus $H \leq \mathbb{Z}_{4}$.

Example 2.7.4

Show that $H=\left\{\begin{array}{lll}\left.e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\} \text { is a subgroup of } S_{3} \text { under the permutation multiplication. } \text {. } 10\end{array}\right.$

Solution:

We show that by proving that H satisfying the three properties of Theorem 2.7.1. We first start with the following table:
$\left.\begin{array}{c|ccccccc}\circ & & e & \left(\begin{array}{lllll}1 & 2 & 3\end{array}\right) & (1 & 3 & 2\end{array}\right)$
\mathcal{S}_{1} : Clearly H is not empty.
\mathcal{S}_{2} : The previous table shows that H is closed under the operation \circ.
\mathcal{S}_{3} : Finally, $e^{-1}=e \in H,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \in H$, and $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in H$. Therefore, H is a subgroup of S_{3}.

Remark 2.7.3

Subgroups of S_{3} are:

1. S_{3}.
2. $\{e\}$.
3. $\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$.
4. $\left\{e,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$.
5. $\left\{e,\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$.
6. $\left\{e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$.

Remark 2.7.4

A transposition is a 2 -cycle element in S_{n}.

- Every element in S_{n} is a transposition or a product of transpositions (not in a unique way). For instance in $S_{3},\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{lll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$ and in general in S_{n} we have

$$
\left(a_{1} a_{2} \cdots a_{k}\right)=\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \cdots\left(a_{1} a_{2}\right) .
$$

- A permutation is even (or odd) if it can be written as a product of an even (or an odd, respectively) number of transpositions.

Example 2.7.5

Decide whether $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$ and $\beta=\left(\begin{array}{llll}1 & 2 & 5\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ are even or odd permutations in S_{5}.

Solution:

- α is even (4 transpositions): $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 5\end{array}\right)(14)(13)(12)$, and
- β is odd (3 transpositions): $\beta=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)=\left(\begin{array}{lll}1 & 5\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$.

Definition 2.7.3

The set of all even permutations in S_{n} is called the alternating group and is denoted by A_{n}. Moreover, it is of order $\frac{1}{2} n!$.

Theorem 2.7.2

For each $n \geq 2, A_{n}$ is a subgroup of S_{n}.

Proof:

Let $n \geq 2$, then
\mathcal{S}_{1} : The identity permutation $e=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right) \in A_{n}$ and hence $A_{n} \neq \phi$.
$\mathcal{S}_{2}:$ If $a, b \in A_{n}$, then both are even permutations and the product of two even number of transpositions is an even number. Thus $a b \in A_{n}$.
$\mathcal{S}_{3}:$ If $a=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \cdots\left(a_{k-1} a_{k}\right) \in A_{n}$, then $a^{-1}=\left(a_{k-1} a_{k}\right) \cdots\left(a_{3} a_{4}\right)\left(a_{1} a_{2}\right) \in A_{n}$
Therefore, $A_{n} \leq S_{n}$.

Remark 2.7.5

Note that the subgroup H of Example 2.7.4 is in fact A_{3} which is a subgroup of S_{3} and its order is $3=\frac{1}{2} 3!$.

Definition 2.7.4

Let G be a permutation group on a set S, and let $T \subseteq S$. We define:

- $G_{T}=\{\alpha \in G: \alpha(t)=t$ for all $t \in T\}$, which leaves T elementwise invariant.
- $G_{(T)}=\{\alpha \in G: \alpha(T)=T\}$, which leaves T setwise invariant.

Example 2.7.6

Let $S=\{1,2,3,4\}, G=\operatorname{sym}(S)=S_{4}$, and $T=\{1,2\}$. Find G_{T} and $G_{(T)}$.

Solution:

$$
\left.\left.\left.\begin{array}{rl}
G_{T} & =\{(1)(2)(3)(4),(1)(2)(3
\end{array}\right)\right\}=\left\{\begin{array}{ll}
e,(3 & 4
\end{array}\right)\right\} .
$$

Theorem 2.7.3

If G is a permutation group on S, and $T \subseteq S$, then G_{T} and $G_{(T)}$ are subgroups of G. Moreover, G_{T} is a subgroup of $G_{(T)}$.

Proof:

We first show that $G_{T} \leq G$.
\mathcal{S}_{1} : Clearly, the identity mapping I of G is in G_{T}, and hence $G_{T} \neq \phi$.
\mathcal{S}_{2} : Let $\alpha, \beta \in G_{T}$, then for each $t \in T$, we have

$$
(\alpha \circ \beta)(t)=\alpha(\beta(t))=\alpha(t)=t
$$

So, $\alpha \circ \beta \in G_{T}$.
$\mathcal{S}_{3}:$ If $\alpha \in G_{T}$, and $t \in T$, then $\alpha^{-1} \in G_{T}$ because

$$
\begin{aligned}
\alpha(t) & =t \\
\alpha^{-1}(\alpha(t)) & =\alpha^{-1}(t) \\
\left(\alpha^{-1} \circ \alpha\right)(t) & =\alpha^{-1}(t) \\
t & =\alpha^{-1}(t)
\end{aligned}
$$

Therefore G_{T} is a subgroup of G. Next we show that $G_{(T)} \leq G$.
\mathcal{S}_{1} : Clearly $I(T)=T$ and hence $G_{(T)} \neq \phi$.
$\mathcal{S}_{2}:$ If $\alpha, \beta \in G_{(T)}$, then $(\alpha \circ \beta)(T)=\alpha(\beta(T))=\alpha(T)=T$ and hence $\alpha \circ \beta \in G_{(T)}$.
\mathcal{S}_{3} : If $\alpha \in G_{(T)}$, then $\alpha(T)=T \Rightarrow \alpha^{-1}(\alpha(T))=\alpha^{-1}(T) \Rightarrow T=\alpha^{-1}(T)$ and hence $\alpha^{-1} \in G_{(T)}$.

Therefore, $G_{(T)} \leq G$.
To show that $G_{T} \leq G_{(T)}$, we only show that $G_{T} \subseteq G_{(T)}$ as follows: If $\alpha \in G_{T}$, then $\alpha(t)=t$ for each $t \in T$ and hence $\alpha(T)=T$. That is $\alpha \in G_{(T)}$. Therefore, $G_{T} \subseteq G_{(T)}$ and hence $G_{T} \leq G_{(T)}$.

Example 2.7.7: Exercise 7.13 at page 46

Let H and K be two subgroups of $(G, *)$. Show that $H \cap K$ is also a subgroup of $(G, *)$.

Solution:

We show that $H \cap K$ is a subgroup of G as follows:
$\underline{\mathcal{S}_{1}}: H \cap K \neq \phi$: Since H and K are both subgroups of G, then $e \in H$ and $e \in K$, and hence $e \in H \cap K$.
$\mathcal{S}_{2}: H \cap K$ is closed under $*$: Let $a, b \in H \cap K$. Then

1. $a, b \in H$, and since H is a subgroup of $G, a * b \in H$, and
2. $a, b \in K$, and since K is a subgroup of $G, a * b \in K$.

Thus, $a * b \in H \cap K$.
\mathcal{S}_{3} : For each $a \in H \cap K$, there exists $a^{-1} \in H \cap K$: Let $a \in H \cap K$. Thus, $a \in H$ and hence $a^{-1} \in H$. Also, $a \in K$ and hence $a^{-1} \in K$. Therefore, $a^{-1} \in H \cap K$.

Therefore, $H \cap K$ is a subgroup of G.

Definition 2.7.5

Let G be a group with operation $*$ and that $a \in G$. The centralizer of a in G is defined by

$$
C(a)=\{g \in G: a * g=g * a\} .
$$

Definition 2.7.6

Let G be a group with operation *. The center of G is defined by

$$
Z(G)=\{g \in G: g * a=a * g \text { for all } a \in G\} .
$$

Remark 2.7.6

For the sake of simplicity, we write $a b$ instead of $a * b$ for any elements a and b in $(G, *)$.

Example 2.7.8: Exercises $7.23 \& 7.24$ at page 46

Let G be a group with operation *. Then,
(a) Show that $C(a)$ is a subgroup of G for $a \in G$.
(b) Show that $Z(G)$ is a subgroup of G.

Solution:

We first show that $C(a) \leq G$ for $a \in G$ as follows:
$\mathcal{S}_{1}:$ Clearly, $a e=a=e a$. Hence, $e \in C(a) \neq \phi$.
\mathcal{S}_{2} : Let $g, h \in C(a)$. Then, $a g=g a$ and $a h=h a$. Thus,

$$
a(g h)=(a g) h=(g a) h=g(a h)=g(h a)=(g h) a .
$$

Since $a(g h)=(g h) a,(g h) \in C(a)$, and $C(a)$ is closed.
$\mathcal{S}_{3}:$ Let $g \in C(a)$. Then,

$$
a g=g a \Leftrightarrow g^{-1}(a g)=a \Leftrightarrow g^{-1} a=a g^{-1} .
$$

Hence, $g^{-1} \in C(a)$.
Therefore, $C(a) \leq G$. Next we show that $Z(G) \leq G$ as follows:
$\mathcal{S}_{1}:$ For all $a \in G$, $a e=a=e a$. Hence, $e \in Z(G) \neq \phi$.
\mathcal{S}_{2} : Let $g, h \in Z(G)$, then $g a=a g$ and $h a=a h$ for all $a \in G$. Thus, for all $a \in G$, we have

$$
a(g h)=(a g) h=(g a) h=g(a h)=g(h a)=(g h) a .
$$

Therefore, $g h \in Z(G)$.
$\mathcal{S}_{3}:$ Let $g \in C(a)$. Then, $a g=g a$ for all $a \in G$. Then

$$
g^{-1} a g=a \Leftrightarrow g^{-1} a=a g^{-1} .
$$

Therefore, $Z(G) \leq G$.

Example 2.7.9

Suppose that G is an abelian group with operation $*$. Let H and K be two subgroups of G. Show that $H K=\{h k: h \in H$ and $k \in K\}$ is also a subgroup of G.

Solution:

\mathcal{S}_{1} : Clearly, $e \in H$ and $e \in K$. Thus, $e=e e \in H K \neq \phi$.
\mathcal{S}_{2} : Let $a=h_{1} k_{1}, b=h_{2} k_{2} \in H K$ so that $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Then, $h_{1} h_{2} \in H$ and $k_{1} k_{2} \in K$ since both H and K are subgroups of G. Since G is abelian, we have

$$
a b=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=\left(h_{1} h_{2}\right)\left(k_{1} k_{2}\right)=h k \in H K,
$$

where $h=h_{1} h_{2} \in H$ and $k=k_{1} k_{2} \in K$. Thus $H K$ is closed.
\mathcal{S}_{3} : Let $a=h k \in H K$ where $h \in H$ and $k \in K$. Then, $h^{-1} \in H$ and $k^{-1} \in K$. Thus,

$$
a^{-1}=(h k)^{-1}=k^{-1} h^{-1},
$$

and since G is abelian, we have

$$
a^{-1}=k^{-1} h^{-1}=h^{-1} k^{-1} \in H K
$$

Therefore, $H K$ is a subgroup of G.

Remark 2.7.7

Note that if G is a group (not abelian), then HK is not necessary a subgroup of G for any subgroups H and K. For instance consider $G=S_{3}$ and $H=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$ and $K=\left\{e,\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$.

Example 2.7.10
Let G be a group. If $a, b \in G$ with $a b \in Z(G)$, then $a b=b a$.

Solution:

We show that $a b a^{-1} b^{-1}=e$ which is equivalent to showing that $a b=b a$. Note that $(a b) g=$ $g(a b)$ for all $g \in G$. Then

$$
(a b) a^{-1} b^{-1}=a^{-1}(a b) b^{-1}=e .
$$

Exercise 2.7.1

Solve the following exercises from the book at pages 45-46:

- $7.1-7.4$,
- 7.8, 7.10, 7.13, 7.15,
- $7.22-7.24$.

Exercise 2.7.2

Prove or disprove: For any given group G,

$$
Z(G)=\bigcap_{a \in G} C(a)
$$

Exercise 2.7.3

For any given group G, Compute $C(e)$.

Exercise 2.7.4

Let $G L_{n}(\mathbb{R})=\{$ all $n \times n$ nonsingular matrices with real entries $\}$ be a group with the operation of matrix multiplication and let $S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}): \operatorname{det}(A)=1\right\}$. Show that $S L_{n}(\mathbb{R}) \leq G L_{n}(\mathbb{R})$.

Exercise 2.7.5

Let $G L_{2}(\mathbb{R})=\{$ all 2×2 nonsingular matrices with real entries $\}$ be a group with the operation of matrix multiplication. Find $C\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)$.

Section 3.9: Equivalence Relations

Definition 3.9.1

Let A and B be sets. A relation \sim from A to B is a subset of $A \times B$. If $a \in A$ is related to $b \in B$, then we write $a \sim b$. Otherwise, $a \nsim b$. Moreover, if $A=B$, we simply say that \sim is a relation on A.

Definition 3.9.2

Let \sim be a relation on a set A. Then \sim is called an equivalence relation if and only if:

1. \sim is reflexive on $A:(\forall x \in A) x \sim x$.
2. \sim is symmetric on $A:(\forall x, y \in A)$ if $x \sim y$, then $y \sim x$.
3. \sim is transitive on $A:(\forall x, y, z \in A)$ if $x \sim y$ and $y \sim z$, then $x \sim z$.

Example 3.9.1

Let \sim be the relation on \mathbb{Z} given by $x \sim y$ iff $x-y$ is even. Show that \sim is an equivalence relation on \mathbb{Z}.

Solution:

- for all $x \in \mathbb{Z}, x-x=0$ which is even, hence $x \sim x$ and \sim is reflexive.
- for any $x, y \in \mathbb{Z}$, let $x \sim y$. Then $x-y$ is even. That is $x-y=2 k$ for some $k \in \mathbb{Z}$. Hence $y-x=2(-k)$ which is even as well. Thus, $y \sim x$ and \sim is symmetric.
- for any $x, y, z \in \mathbb{Z}$, let $x \sim y$ and $y \sim z$. Then, $x-y$ and $y-z$ is even. So, $(x-y)+(y-z)=$ $x-z$ is also even. Thus, $x \sim z$ and \sim is transitive.

Therefore, \sim is an equivalence relation on \mathbb{Z}.

Example 3.9.2

Let $\alpha: A \rightarrow B$ be a mapping and define a relation \sim on A so that for any $x, y \in A, x \sim y$ iff $\alpha(x)=\alpha(y)$. Clearly, \sim is an equivalence relation. (Can you show it!?).

Definition 3.9.3

Let A be a non-empty set. A partition of the set A is a family of nonempty subsets $A_{1}, A_{2}, \cdots, A_{n}$ such that:

1. $\bigcup_{i=1}^{n} A_{i}=A$, and
2. $A_{i} \cap A_{j}=\phi$ if $i \neq j$.

Example 3.9.3

Let E denote the set of even integers and O the set of odd integers. Then, $\{E, O\}$ forms a partition of the set of all integers. Note that $\{0,1\}$ is a complete set of equivalence class representatives.

Definition 3.9.4

Let \sim be an equivalence relation on a set A. For $x \in A$, define the equivalence class of x determined by \sim as

$$
[x]=\{y \in A: x \sim y\} .
$$

Remark 3.9.1

It is always true that $x \in[x]$ because \sim is reflexive. And if $y \in[x]$, then $x \in[y]$ because \sim is symmetric.

Theorem 3.9.1

If \sim is an equivalence relation on a nonempty set A, then the set of equivalence classes of \sim forms a partition of A.

Theorem 3.9.2

Let G be a permutation group on nonepmty set S and define a relation \sim on S by $a \sim b$ iff $\alpha(a)=b$ for some $\alpha \in G$. Then \sim is an equivalence relation on S.

Proof:

We show that \sim is reflexive, symmetric, and transitive relations as follows:

Ref.: If $a \in S$, then $I(a)=a$ and hence $a \sim a$.
Symm.: If $a, b \in S$ and $a \sim b$, then $\alpha(a)=b$ for some $\alpha \in G$ and hence $\alpha^{-1}(b)=a$ with $\alpha^{-1} \in G$. Thus $b \sim a$.

Trans.: If $a, b, c \in S$ with $a \sim b$ and $b \sim c$, then there are $\alpha, \beta \in G$ such that $\alpha(a)=b$ and $\beta(b)=c$. Thus $\beta \circ \alpha \in G$ with

$$
(\beta \circ \alpha)(a)=\beta(\alpha(a))=\beta(b)=c .
$$

That is $a \sim c$.

Example 3.9.4
Let $G=\left\{e,\left(\begin{array}{lll}1 & 2 & 5\end{array}\right),\left(\begin{array}{lll}1 & 5 & 2\end{array}\right)\right\}$ and $S=\{1,2,3,4,5\}$ and define a relation \sim on S by $a \sim b$ iff $\alpha(a)=b$ for some $\alpha \in G$. Find all the equivalence classes of \sim on S.

Solution:

Clearly, $\{1,2,5\},\{3\},\{4\}$ are the equivalence classes of \sim on S. Moreover, $\{1,3,4\}$ are called equivalence classes representatives.

Exercise 3.9.1

Solve the following exercises from the book at pages 55-56:

- $9.1-9.4$,
- $9.8,9.9,9.13$
- 9.19.

Exercise 3.9.2

Let \sim be a relation on \mathbb{N} so that $x \sim y$ iff $3 \mid x+y$. Is \sim an equivalence relation on \mathbb{N} ? Explain your answer.

Exercise 3.9.3

Let \sim be a relation on \mathbb{N} so that $x \sim y$ iff $3 \mid x+2 y$. Show that \sim is an equivalence relation on \mathbb{N}.

Section 3.10: Congruence. The Division Algorithm

Definition 3.10.1

Let $a, b \in \mathbb{Z}$. Then b is divisible by a if there is $k \in \mathbb{Z}$ such that $b=a k$. In that case we say:

- a divides b, written as $a \mid b$,
- b is a multiple of a, and
- a is a factor of b.

Theorem 3.10.1

If $a, b \in \mathbb{Z}$, not both zero, then there is a unique positive integer d such that

1. $d \mid a$ and $d \mid b$, and
2. if $c \in \mathbb{Z}$ with $c \mid a$ and $c \mid b$, then $c \mid d$.

In that case, d is called the greatest common divisor and it is denoted by $d=\operatorname{GCD}(a, b)$.

Remark 3.10.1

The following are some general facts about integer numbers:

1. An integer p is a prime if $p>1$ and has no positive factors other than 1 and p,
2. If $a \mid b$, then $a \mid-b$, and
3. If $a \mid b$ and $a \mid c$, then $a \mid(b \pm c)$.
4. If $a, b \in \mathbb{Z}$ (not both zeros), then $\operatorname{GCD}(a, b)=1$ if and only if there are integers m and n such that $a m+b n=1$.

Definition 3.10.2

Let n be a positive integer. Integers a and b are said to be congruent modulo n if $a-b$ is divisible by n. This is written as $a \equiv b(\bmod n)$ or $a \equiv_{n} b$. That is

$$
a \equiv_{n} b \quad \Longleftrightarrow \quad n \mid a-b \quad \Longleftrightarrow \quad a=k n+b \text { or } a-b=k n \text { for some } k \in \mathbb{Z}
$$

Example 3.10.1

Here is some examples of some integers modulo n for some positive integer n :

- $17 \equiv 3(\bmod 7)$ since $7 \mid(17-3)=14$,
- $4 \equiv 22(\bmod 9)$ since $9 \mid(4-22)=-18$,
- $19 \equiv 19(\bmod 11)$ since $11 \mid(19-19)=0$,
- but $17 \not \equiv 3(\bmod 8)$ since $8 \nmid(17-3)=14$.

Theorem 3.10.2

Congruence modulo n is an equivalence relation on \mathbb{Z}, for each $n \in \mathbb{Z}^{+}$.

Proof:

We show that " \equiv_{n} " is reflexive, symmetric, and transitive:
Ref.: for all $a \in \mathbb{Z}, a \equiv_{n} a$ since $n \mid(a-a)=0$.
Symm.: for all $a, b \in \mathbb{Z}$, if $a \equiv_{n} b$, then $n \mid a-b$ and so $n \mid b-a$. That is $b \equiv_{n} a$.
Trans.: for all $a, b, c \in \mathbb{Z}$, if $a \equiv_{n} b$ and $b \equiv_{n} c$, then $n \mid a-b$ and $n \mid b-c$. Thus, $n \mid$ $[(a-b)+(b-c)]$ which implies $n \mid a-c$. Hence, $a \equiv_{n} c$.

Remark 3.10.2

The equivalence classes for the equivalence relation " \equiv_{n} " are called congruence classes modulo n.

Theorem 3.10.3

Let n be a positive integer and $x, y \in \mathbb{Z}$. Then, $x \equiv_{n} y$ if and only if $[x]=[y]$.

Proof:

$" \Rightarrow$ ": Assume that $x \equiv_{n} y$. Then, $n \mid x-y$.

$$
z \in[x] \Longleftrightarrow z \equiv_{n} x \Longleftrightarrow z \equiv_{n} y \Longleftrightarrow z \in[y]
$$

$" \Leftarrow ":$ Assume that $[x]=[y]$. Then $x \in[x]=[y]$ implies that $x \equiv_{n} y$.

Example 3.10.2

Find a complete set of equivalence class representatives of \equiv_{4} on \mathbb{Z}.

Solution:

There are four congruence classes modulo 4:

$$
\begin{aligned}
{[0]=\{\cdots,-8,-4,0,4,8, \cdots\} } & : 4 \mid 0-a \text { where } a \in \mathbb{Z}, \\
{[1]=\{\cdots,-7,-3,1,5,9, \cdots\} } & : 4 \mid 1-a \text { where } a \in \mathbb{Z}, \\
{[2]=\{\cdots,-6,-2,2,6,10, \cdots\} } & : 4 \mid 2-a \text { where } a \in \mathbb{Z}, \\
{[3]=\{\cdots,-5,-1,3,7,11, \cdots\} } & : 4 \mid 3-a \text { where } a \in \mathbb{Z} .
\end{aligned}
$$

Thus $\{0,1,2,3\}$ is a complete set of congruence class representatives.

Theorem 3.10.4

Let n be a positive integer. Then each integer is congruent modulo n to exactly one of the integers $0,1,2, \cdots, n-1$.

Definition 3.10.3

Let n be a positive integer. Then \mathbb{Z}_{n} denotes a complete set of congruence classes modulo n. That is $\mathbb{Z}_{n}=\{[0],[1], \cdots,[n-1]\}$.

Least Integer Principle

Every nonempty set of positive integers contains a least element.

Example 3.10.3
Note that

$$
\frac{11}{4}=2+\frac{3}{4} \text { is the same as } 11=4 \cdot 2+3
$$

Theorem 3.10.5: The Division Algorithm

If $a, b \in \mathbb{Z}$ with $b>0$, then there exist unique integers q and r such that

$$
a=b q+r ; \quad 0 \leq r<b . \quad \text { That is, } a \equiv r(\bmod b) .
$$

Example 3.10.4

Note that (1) $11=4 \cdot 2+3$ and (2) $-6=4 \cdot(-2)+2$ as in $a=b \cdot q+r$. That is

1. $r=3$ is the smallest positive integer in the congruence class mod 4 containing $a=11$, and $q=2$ is the number of positions (right) that moves us from $r=3$ to $a=11$.
2. $r=2$ is the smallest positive integer in the congruence class mod 4 containing $a=-6$, and $q=-2$ is the number of positions (left) that moves us from $r=2$ to $a=-6$.

Example 3.10.5: Exercise 10.3 at page 60

Find the smallest nonnegative integer congruent modulo 7 for
a. 12
b. 100
c. -25

Solution:

a $\frac{12}{7}=1+\frac{5}{7} \Rightarrow 12=1 \cdot 7+5 \Rightarrow 12 \equiv 5(\bmod 7)$,
b $\frac{100}{7}=14+\frac{2}{7} \Rightarrow 100=14 \cdot 7+2 \Rightarrow 100 \equiv 2(\bmod 7)$,
c $\frac{-25}{7}=-3-\frac{4}{7}+(1-1)=-4+\frac{3}{7} \Rightarrow-25=-4 \cdot 7+3 \Rightarrow-25 \equiv 3(\bmod 7)$.

Example 3.10.6: Exercise 10.5 at page 60

Find all x such that $2 x \equiv x(\bmod 5)$.

Solution:

Clearly, $2 x \equiv x(\bmod 5) \quad \Leftrightarrow \quad 5|(2 x-x) \quad \Leftrightarrow \quad 5| x \quad \Leftrightarrow \quad x=\{5 k: k \in \mathbb{Z}\}$.

Example 3.10.7: Exercise 10.11 at page 60

For each pair a and b, find the unique integers q and r such that $a=b q+r$ with $0 \leq r<b$.
(a) $a=19, b=5$,
(b) $a=-7, b=5$,
(c) $a=11, b=17$,
(d) $a=50, b=6$,
(e) $a=13, b=20$,
(f) $a=30, b=1$.

Solution:

Recall that $a=$ (q) $\cdot b+\mathbf{\Upsilon} \quad \Leftrightarrow \quad \frac{a}{b}=q+\frac{r}{b} \quad \Leftrightarrow a-r=b r \quad \Leftrightarrow \quad a \equiv r(\bmod b)$. Then,
(a) $\frac{19}{5}=3+\frac{4}{5} \quad \Rightarrow \quad 19=3 \cdot 5+4$.
(b) $\frac{-7}{5}=-2+\frac{3}{5} \quad \Rightarrow \quad-7=-2 \cdot 5+3$.
(c) $\frac{11}{17}=0+\frac{11}{17} \quad \Rightarrow \quad 11=(0) \cdot 17+11$.
(d) $\frac{50}{6}=8+\frac{2}{6} \quad \Rightarrow \quad 50=8 \cdot 6+2$.
(e) $\frac{13}{20}=0+\frac{13}{20} \Rightarrow 13=(0) \cdot 20+13$.
(f) $\frac{30}{1}=30+\frac{0}{1} \quad \Rightarrow \quad 30=30 \cdot 1+0$.

Exercise 3.10.1

Solve the following exercises from the book at pages 60-61:

- 10.1,
- 10.3-10.8,
- 10.11 - 10.18,
- 10.24.

Section 3.11: Integers Modulo n

Remark 3.11.1

With n is a fixed positive integer and k is any integer, let $[k]$ denote the congruence class to which k belongs $(\bmod n)$. That is

$$
[k]=\{h \in \mathbb{Z}: h \equiv k(\bmod n)\}
$$

Definition 3.11.1

Let $[a],[b] \in \mathbb{Z}_{n}=\{[0],[1], \cdots,[n-1]\}$, define $[a] \oplus[b]$ by

$$
[a] \oplus[b]=[a+b] .
$$

Example 3.11.1
For $n=5$, compute $[3] \oplus[4]$ and $[18] \oplus[-1]$.

Solution:

1. $[3] \oplus[4]=[3+4]=[7]=[2] \in \mathbb{Z}_{5}$, and
2. $[18] \oplus[-1]=[18+(-1)]=[17]=[2] \in \mathbb{Z}_{5}$.

Theorem 3.11.1

\mathbb{Z}_{n}, the group of integers modulo n, is an abelian group with respect to the operation \oplus.

Proof:

Clearly, \mathbb{Z}_{n} is abelian since $[a] \oplus[b]=[a+b]=[b+a]=[b] \oplus[a]$. To show that \mathbb{Z}_{n} is a group: $\mathcal{G}_{1}: \oplus$ is associative:

$$
\begin{aligned}
{[a] \oplus([b] \oplus[c]) } & =[a] \oplus[b+c]=[a+(b+c)] \\
& =[(a+b)+c]=[a+b] \oplus[c]=([a] \oplus[b]) \oplus[c]
\end{aligned}
$$

\mathcal{G}_{2} : The identity is $[0]$ since $[a] \oplus[0]=[a]=[0] \oplus[a]$.
$\mathcal{G}_{3}:$ For $[a] \in \mathbb{Z}_{n}$, the inverse is $[-a] \in \mathbb{Z}_{n}$ with $[a] \oplus[-a]=[a+(-a)]=[0]$.

Theorem 3.11.2

There is a group of order n for each positive integer n.

Proof:

$\left(\mathbb{Z}_{n}, \oplus\right)$ has n elements $\{[0],[1], \cdots,[n-1]\}$.

Definition 3.11.2

For $[a],[b] \in \mathbb{Z}_{n}$, define $[a] \odot[b]=[a b]$.

Remark 3.11.2

$\left(\mathbb{Z}_{n}, \odot\right)$ is not a group in general, but \odot is associative and commutative on \mathbb{Z}_{n} and \mathbb{Z}_{n} has [1] as an identity element. Note that $[0]$ has no inverse in \mathbb{Z}_{n}.

Theorem 3.11.3

$\left(\mathbb{Z}_{n}^{*}, \odot\right)$ is a group if and only if n is a prime number.

Proof:

$" \Rightarrow "$ By contradiction assume that n is not prime. Then $n=a b$ for some $1<a, b<n$.
Considering the equivalence classes, we have $[a],[b] \in \mathbb{Z}_{n}^{*}$. Then

$$
[a][b]=[a b]=[n]=[0] \notin \mathbb{Z}_{n}^{*} .
$$

Then, Z_{n}^{*} is not a group, which is contradiction.
$" \Leftarrow "$ Assume that n is a prime. Then,

1. Let $a, b \in \mathbb{Z}_{n}^{*}$, then $a b \in \mathbb{Z}_{n}^{*}$ since $a b \neq n$.
2. Clearly, $1 \in \mathbb{Z}_{n}^{*}$ (the identity is in \mathbb{Z}_{n}^{*}).
3. Let $a \in \mathbb{Z}_{n}^{*}$, then (the greatest common divisor of a and $\left.n\right) G C D(a, n)=1$ which implies

$$
\exists b, c \in \mathbb{Z} \text { such that } a b+n c=1 \Rightarrow a b=1-n c \Rightarrow a b=1(\bmod n) \Rightarrow b=a^{-1} \in \mathbb{Z}_{n}^{*} .
$$

Exercise 3.11.1

Solve the following exercises from the book at pages 64-65:

- 11.1 - 11.8 .

Exercise 3.11.2

Prove or disprove the following statements:

- $\left(\mathbb{Z}_{4}^{*}, \odot\right)$ is a group.
- $\left(\mathbb{Z}_{5}^{*}, \odot\right)$ is a group.

Section 3.12: Greatest Common Divisor. The Euclidean Algorithm

The Euclidean Algorithm

Let $a, b \in \mathbb{Z}$ with $a>b>0$. Then to find the $\operatorname{GCD}(a, b)$, we do:

$$
a=b q_{1}+r_{1}, \quad 0 \leq r_{1}<b .
$$

If $r_{1}=0$, then $\operatorname{GCD}(a, b)=b$. Otherwise,

$$
b=r_{1} q_{2}+r_{2}, \quad 0 \leq r_{2}<r_{1} .
$$

If $r_{2}=0$, then $\operatorname{GCD}(a, b)=r_{1}$. Otherwise, we go on as follows

$$
\begin{aligned}
a & =b q_{1}+r_{1}, & 0 & \leq r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, & 0 & \leq r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, & 0 & \leq r_{3}<r_{2} \\
r_{2} & =r_{3} q_{4}+r_{4}, & 0 & \leq r_{4}<r_{3}
\end{aligned}
$$

and so on. At some point for some $k, r_{k+1}=0$ so that

$$
\begin{array}{lr}
r_{k-2}=r_{k-1} q_{k}+r_{k}, & 0 \leq r_{k}<r_{k-1} \\
r_{k-1}=r_{k} q_{k+1} . &
\end{array}
$$

Therefore, $\operatorname{GCD}(a, b)=r_{k}$.

Example 3.12.1
Compute the $\operatorname{GCD}(12,5)$ by The Euclidean Algorithm, and write it as a linear combination of 12 and 5 .

Solution:

Following the Euclidean Algorithm, we get:

$$
\begin{aligned}
12 & =5 \cdot 2+2, \\
5 & =2 \cdot 2+1, \\
2 & =2 \cdot 1
\end{aligned}
$$

Therefore, $\operatorname{GCD}(12,5)=1$. To write 1 as a linear combination of 12 and 5 , we go back as follows:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-2 \cdot(12-5 \cdot 2) \\
& =5 \cdot 5-12 \cdot 2 .
\end{aligned}
$$

Thus, $1=5 \cdot 5-12 \cdot 2$.

Example 3.12.2

Compute the $\operatorname{GCD}(1001,357)$ by The Euclidean Algorithm, and write it as a linear combination of 1001 and 357. Do the same thing for $\operatorname{GCD}(252,105) ?=? 21$.

Solution:

Following the Euclidean Algorithm, we get:

$$
\begin{aligned}
1001 & =357 \cdot 2+287 \\
357 & =287 \cdot 1+70 \\
287 & =70 \cdot 4+7 \\
70 & =7 \cdot 10
\end{aligned}
$$

Therefore, $\operatorname{GCD}(1001,357)=7$. To write 7 as a linear combination of 1001 and 357 , we go back as follows:

$$
\begin{aligned}
7 & =287-70 \cdot 4 \\
& =(1001-357 \cdot 2)-(357-287 \cdot 1) \cdot 4 \\
& =(1001-357 \cdot 2)-(357-(1001-357 \cdot 2)) \cdot 4 \\
& =(1001-357 \cdot 2)-357 \cdot 4+(1001-357 \cdot 2) \cdot 4 \\
& =1001 \cdot 5-357 \cdot 14 .
\end{aligned}
$$

Thus, $7=1001 \cdot 5-357 \cdot 14$.

Remark 3.12.1

Two integers a and b are said to be relatively prime if $\operatorname{GCD}(a, b)=1$. For instance, 4 and 9 are relatively prime integers.

Example 3.12.3: Exercise 12.7 at page 69

Find the $\operatorname{GCD}(-90,1386)$ and write it as a linear combination of -90 and 1386.

Solution:

Following the Euclidean Algorithm for 1386 and 90, we get:

$$
\begin{aligned}
1386 & =90 \cdot 15+36, \\
90 & =36 \cdot 2+18, \\
36 & =18 \cdot 2
\end{aligned}
$$

Therefore, $\operatorname{GCD}(-90,1386)=18$. To write 18 as a linear combination of -90 and 1386 , we go back as follows:

$$
\begin{aligned}
18 & =90-36 \cdot 2 \\
& =90-(1386-90 \cdot 15) \cdot 2 \\
& =90 \cdot 31-1386 \cdot 2 \\
& =(-90) \cdot(-31)-1386 \cdot 2
\end{aligned}
$$

Thus, $18=(-90) \cdot(-31)-1386 \cdot 2$.

Example 3.12.4: Exercise 12.21 at page 69

Prove that if $\operatorname{GCD}(a, m)=1$, then there is a solution (for x) to the congruence $a x \equiv$ $b(\bmod m)$.

Solution:

Since $\operatorname{GCD}(a, m)=1$, we have $a u+m v=1$ for some $u, v \in \mathbb{Z}$. Then

$$
a(u b)+m(v b)=b \quad \Rightarrow \quad a(u b) \equiv b(\bmod m)
$$

That is $x=u b$ is a solution.

Exercise 3.12.1

Solve the following exercises from the book at page 69:

- 12.1-12.7,
- 12.21.

Section 3.13: Factorization. Euler's Phi-Function

Theorem 3.13.1

If $a, b, c \in \mathbb{Z}$, with $a \mid b c$ and $\operatorname{GCD}(a, b)=1$, then $a \mid c$.

Proof:

Since $\operatorname{GCD}(a, b)=1$, then there is $m, n \in \mathbb{Z}$ such that $a m+b n=1$. Thus, $a m c+b n c=c$. Clearly $a \mid a m c$ and $a \mid b n c$ because $a \mid b c$. Thus, $a \mid(a m c+b n c)=c$.

Theorem 3.13.2: Fundamental Theorem of Arithmetic

Each integer $n>1$ can be written as a product of primes in one way. That is $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are primes and $e_{1}, e_{2}, \cdots, e_{k}$ are positive integers.

Definition 3.13.1

For each integer $n>1$, let $\phi(n)$ denote the number of positive integers that are less than n and relatively prime to n. Also, let $\phi(1)=1$. The function ϕ is called the Euler phi-function.

Example 3.13.1

Find $\phi(n)$ for $n=5,6$, and 7 .

Solution:

- $n=5, \phi(5)=4$, since 5 is relatively prime (and less than) to the set $\{1,2,3,4\}$.
- $n=6, \phi(6)=2$, since 6 is relatively prime (and less than) to the set $\{1,5\}$.
- $n=7, \phi(7)=6$, since 7 is relatively prime (and less than) to the set $\{1,2,3,4,5,6\}$.

Theorem 3.13.3

Assume that p is a prime and r is a positive integer. Then

$$
\phi\left(p^{r}\right)=p^{r}-p^{r-1}=p^{r}\left(1-\frac{1}{p}\right)
$$

In particular, $\phi(p)=p-1$.

Theorem 3.13.4
If p and q are distinct primes, then

$$
\phi(p q)=(p-1)(q-1) .
$$

Theorem 3.13.5

If $m, n \in \mathbb{Z}^{+}$with $\operatorname{GCD}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.

Theorem 3.13.6

If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ with $p_{1}<p_{2}<\cdots<p_{k}$ are primes and $e_{1}, e_{2}, \cdots, e_{k}$ are positive integers, then

$$
\begin{aligned}
\phi(n) & =\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right)\left(p_{2}^{e_{2}}-p_{2}^{e_{2}-1}\right) \cdots\left(p_{k}^{e_{k}}-p_{k}^{e_{k}-1}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
\end{aligned}
$$

Example 3.13.2
Find $\phi(12)$.

Solution:

Clearly, $12=2^{2} \cdot 3$. That is

$$
\phi(12)=12 \cdot\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=12 \cdot \frac{1}{2} \cdot \frac{2}{3}=4 .
$$

That is because 12 is relatively prime (and less than) to the set $\{1,5,7,11\}$.

Definition 3.13.2

For each positive integer n, let \mathbb{U}_{n} denote the set of congruence classes mod n defined as follows:

$$
\mathbb{U}_{n}=\{[k]: 1 \leq k<n \text { and } \operatorname{GCD}(k, n)=1\}
$$

Example 3.13.3

Find \mathbb{U}_{6}.

Solution:

Clearly 6 is relatively prime (and less than) to $\{1,5\}$ and hence $\mathbb{U}_{6}=\{[1],[5]\}$.

Example 3.13.4

Find \mathbb{U}_{9}.

Solution:

Clearly 9 is relatively prime to $\{1,2,4,5,7,8\}$ and hence $\mathbb{U}_{9}=\{[1],[2],[4],[5],[7],[8]\}$.

Theorem 3.13.7

$\left(\mathbb{U}_{n}, \odot\right)$ is an abelian group. The order of the group \mathbb{U}_{n} is $\phi(n)$.

Proof:

We first show that \mathbb{U}_{n} is closed under the operation \odot. Let $[a],[b] \in \mathbb{U}_{n}$, then $\operatorname{GCD}(a, n)=$ $\operatorname{GCD}(b, n)=1$. Hence there are r, s, t, u such that $a r+n s=1$ and $b t+n u=1$. Thus

$$
\begin{aligned}
& (a r+n s)(b t+n u)=a b r t+a r n u+n s b t+n^{2} s u=1 \\
& \Rightarrow a b(r t)+n(a r u+s b t+n s u)=1 \quad \Rightarrow \quad \operatorname{GCD}(a b, n)=1 .
\end{aligned}
$$

That is $[a b] \in \mathbb{U}_{n}$. We now show that $\left(\mathbb{U}_{n}, \odot\right)$ is abelian group.
$\mathcal{G}_{1}: \odot$ is associative and commutative on \mathbb{Z}_{n} and hence it is associative and commutative on \mathbb{U}_{n}.
\mathcal{G}_{2} : Clearly, $[1] \in \mathbb{U}_{n}$ is the identity element.
$\mathcal{G}_{3}:$ Let $[a] \in \mathbb{U}_{n}$. Then $\operatorname{GCD}(a, n)=1$ and $a r+n s=1$ for some $r, s \in \mathbb{Z}$. That is $a r=1+(-s) n$ and $a r \equiv 1(\bmod n)$. Therefore, $[a] \odot[r]=[a r]=[1]$ which implies that $[r]$ is the inverse of $[a]$.

The order of \mathbb{U}_{n} is $\phi(n)$ by the definition of \mathbb{U}_{n} and $\phi(n)$.

Example 3.13.5

Find the inverse of $[37]$ in \mathbb{U}_{50}.

Solution:

Clearly, $\operatorname{GCD}(37,50)=1$, then $37 r+50 s=1$ for some $r, s \in \mathbb{Z}$. That is $37 r=1+(-s) 50$ which implies that $37 r \equiv 1(\bmod 50)$. Therefore,

$$
\begin{aligned}
50 & =37 \cdot 1+13 \\
37 & =13 \cdot 2+11 \\
13 & =11 \cdot 1+2 \\
11 & =2 \cdot 5+1 \\
2 & =1 \cdot 2
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1 & =11-2 \cdot 5 \\
& =11-(13-11 \cdot 1) \cdot 5 \\
& =-13 \cdot 5+11 \cdot 6 \\
& =-13 \cdot 5+(37-13 \cdot 2) \cdot 6 \\
& =-13 \cdot 5+37 \cdot 6-13 \cdot 12 \\
& =37 \cdot 6-13 \cdot 17 \\
& =37 \cdot 6-(50-37 \cdot 1) \cdot 17 \\
& =(-17) \cdot 50+37 \cdot 6+37 \cdot 17 \\
& =(-17) \cdot 50+37 \cdot(23)
\end{aligned}
$$

Thus, the inverse of [37] is [23] in \mathbb{U}_{50}.

Exercise 3.13.1

Solve the following exercises from the book at pages 72-73:

- 13.1-13.4,
- $13.7-13.10$,
- 13.13 - 13.14 .

Exercise 3.13.2

Find the least non-negative integer x so that:

1. $17 x \equiv 3(\bmod 29)$. Solution: Note that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod n)$. Therefore, to find x, we do:

$$
17 x \equiv 3(\bmod 29) \Rightarrow x \equiv 17^{-1} 3(\bmod 29)
$$

We use Euclid's Algorithm to find 17^{-1} :

$$
\begin{aligned}
29 & =17 \cdot 1+12 \\
17 & =12 \cdot 1+5 \\
12 & =5 \cdot 2+2 \\
5 & =2 \cdot 2+1 \\
2 & =1 \cdot 2
\end{aligned}
$$

Therefore,

$$
1=\cdots=(12) 17+29(-7)
$$

Therefore, $17^{-1}=12$ and hence $x \equiv 12 \cdot 3(\bmod 29)$. That is $x \equiv 36(\bmod 29)$. Therefore, $x \equiv 7(\bmod 29)$.
2. $17 x \equiv 1(\bmod 43)$. Solution: $\quad x \equiv(-5) \equiv 38(\bmod 43)$.

Section 4.14: Elementary Properties

Theorem 4.14.1

Let $(G, *)$ be a group. Then:
a. If $a, b, c \in G$ and $a * b=a * c$, then $b=c$.
b. If $a, b, c \in G$ and $b * a=c * a$, then $b=c$.
"left cancelation law"
"right cancelation law"
c. If $a, b \in G$, then each of the equation $a * x=b$ and $x * a=b$ has a unique solution. In the first, $x=a^{-1} * b$; in the second, $x=b * a^{-1}$.
d. If $a \in G$, then $\left(a^{-1}\right)^{-1}=a$.
e. If $a, b \in G$, then $(a * b)^{-1}=b^{-1} * a^{-1}$.

Proof:

a. Assume that $a * b=a * c$ for $a, b, c \in G$. We multiply both sides from left by a^{-1} :

$$
\begin{aligned}
a^{-1} * a * b & =a^{-1} * a * c \\
e * b & =e * c \\
b & =c .
\end{aligned}
$$

b. Similar to part "a.".
c. Consider the equation $a * x=b$ and multiply both sides from left by $a^{-1} \in G$:

$$
\begin{aligned}
a^{-1} * a * x & =a^{-1} * b \\
e * x & =a^{-1} * b \\
x & =a^{-1} * b .
\end{aligned}
$$

Uniqueness: If x_{1} and x_{2} are two solutions to the equation $a * x=b$, then

$$
\begin{aligned}
a^{-1} * a * x_{1} & =a^{-1} * b=a^{-1} * a * x_{2} \\
e * x_{1} & =a^{-1} * b=e * x_{2} \\
x_{1} & =a^{-1} * b=x_{2} .
\end{aligned}
$$

The second equation " $x * a=b$ " can be proved in a similar way by multiplying both sides from right by a^{-1}.
d. The inverse of a^{-1} is the unique element $b \in G$ such that $a^{-1} * b=e$. But clearly, $a^{-1} * a=e$; thus, $b=a$ is the inverse of a^{-1}.
e. Clearly,

$$
\begin{aligned}
& (a * b) *\left(b^{-1} * a^{-1}\right)=a *\left(b * b^{-1}\right) * a^{-1}=a * a^{-1}=e, \quad \text { and } \\
& \left(b^{-1} * a^{-1}\right) *(a * b)=b^{-1} *\left(a^{-1} * a\right) * b=b^{-1} * b=e .
\end{aligned}
$$

Thus, $(a * b)^{-1}=b^{-1} * a^{-1}$.

Definition 4.14.1

Let G be a group and $a \in G$. Then we define the integral power as follows:

$$
a^{0}=e, a^{1}=a, a^{2}=a * a, \cdots, a^{n+1}=a^{n} * a .
$$

Moreover, $a^{-n}=\left(a^{-1}\right)^{n}$ for each positive integer n.

Remark 4.14.1

$$
\begin{array}{ll}
\star \text { Multiplicative notation: } & \star \text { Additive notation } \\
a^{m} a^{n}=a^{m+n} & m a+n a=(m+n) a \\
\left(a^{m}\right)^{n}=a^{m n} & n(m a)=(m n) a \\
\left(a^{-1}\right)^{n}=a^{-n} & n(-a)=(-n) a .
\end{array}
$$

Example 4.14.1

Consider some powers for the elements of $\mathbb{Z}_{4}=\{0,1,2,3\}$ with the operation " + ".

Solution:

Consider 1 for instance to get

$$
\left.\begin{array}{ll}
1^{1} & =1 \\
1^{2}=1+1 & =2 \\
1^{3}=1+1+1 & =3 \\
1^{4}=1+1+1+1 & =4
\end{array}\right\} \quad \text { all } \mathbb{Z}_{4} \text { elements. }
$$

While

$$
\left.\begin{array}{ll}
2^{1} & =2 \\
2^{2}=2+2 & =4=0 \\
2^{3}=2+2+2 & =6=2
\end{array}\right\} \quad \text { elements of }\{0,2\} \text { in } \mathbb{Z}_{4} .
$$

For 3, we have

$$
\left.\begin{array}{ll}
3^{1} & =3 \\
3^{2}=3+3 & =6=2 \\
3^{3}=3+3+3 & =9=1 \\
3^{4}=3+3+3+3 & =12=0
\end{array}\right\} \quad \text { all } \mathbb{Z}_{4} \text { elements. }
$$

Note that,

$$
\left.\begin{array}{ll}
1^{-1} & =3 \\
1^{-2}=1^{-1}+1^{-1} & =3+3=6=2 \\
1^{-3}=1^{-1}+1^{-1}+1^{-1} & =3+3+3=9=1 \\
1^{-4}=1^{-1}+1^{-1}+1^{-1}+1^{-1} & =3+3+3+3=12=0
\end{array}\right\} \quad \text { all } \mathbb{Z}_{4} \text { elements. }
$$

Definition 4.14.2

Let G be a group and $a \in G$. Then $\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}$. That is

$$
\langle a\rangle=\left\{\cdots, a^{-2}, a^{-1}, a^{0}=e, a^{1}, a^{2}, \cdots\right\} .
$$

Definition 4.14.3

A group G is called cyclic if there is some element $a \in G$ such that $\langle a\rangle=G$.

Definition 4.14.4

An element a of a group G generates G and is a generator of G if $\langle a\rangle=G$.

Definition 4.14.5

The group $\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}$ is the cyclic subgroup of G generated by a.

Theorem 4.14.2

Let G be a group with $a \in G$. Then $\langle a\rangle$ is a subgroup of G. In fact, it is the smallest subgroup of G containing a.

Proof:

\mathcal{S}_{1} : Clearly, $a \in\langle a\rangle$ and hence $\langle a\rangle$ is nonempty.
\mathcal{S}_{2} : Let $b, c \in\langle a\rangle$, then $b=a^{m}$ and $c=a^{n}$ for some $m, n \in \mathbb{Z}$. Clearly, $m+n \in \mathbb{Z}$ and thus $b c=a^{m} a^{n}=a^{m+n} \in\langle a\rangle$. Therefore, $\langle a\rangle$ is closed.
$\mathcal{S}_{3}:$ Let $a^{t} \in\langle a\rangle$ for some $t \in \mathbb{Z}$. Then $-t \in \mathbb{Z}$ and $a^{-t} \in\langle a\rangle$ where $a^{t} a^{-t}=e$. Thus each element in $\langle a\rangle$ has inverse.

Note that $a \in\langle a\rangle$ and since it is a subgroup of G,

$$
a a=a^{2} \in\langle a\rangle, a^{2} a=a^{3} \in\langle a\rangle, \text { and so on. }
$$

That is a subgroup containing a must contain $\left\{a^{n}: n \in \mathbb{Z}\right\}=\langle a\rangle$. Thus, it is the smallest subgroup of G containing a.

Example 4.14.2

Example of some cyclic groups:

1. $\langle 2\rangle=\{\cdots,-6,-4,-2,0,2,4,6, \cdots\}=2 \mathbb{Z} \leq \mathbb{Z}$ is cyclic.
2. $\langle 1\rangle=\mathbb{Z}$ is cyclic.
3. $\langle-1\rangle=\mathbb{Z}$ is cyclic.
4. \mathbb{Z} has only two generators which are 1 and -1 .
5. $\mathbb{Z}_{4}=\langle 1\rangle=\langle 3\rangle$ is cyclic.
6. $\langle 2\rangle=\{0,2\} \leq \mathbb{Z}_{4}$ is cyclic.

Theorem 4.14.3

Every cyclic group is abelian.

Proof:

Let G be a cyclic group and say $G=\langle a\rangle$ for some $a \in G$. Thus, for $g, h \in G$, there are $r, s \in \mathbb{Z}$ such that $g=a^{r}$ and $h=a^{s}$. Then,

$$
g h=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=h g .
$$

Thus G is abelian.

Definition 4.14.6

Let a be an element of a group G. If the cyclic subgroup $\langle a\rangle$ of G is finite, then the order of a, denoted by $o(a)$, is the order $|\langle a\rangle|$ of this cyclic subgroup. Otherwise, we say that a is of infinite order.

Remark 4.14.2

If $a \in G$ is of finite order m, then m is the smallest positive integer such that $a^{m}=e$. In that case, $\langle a\rangle=\left\{a^{0}=e, a, a^{2}, \cdots, a^{m-1}\right\}$.

Example 4.14.3
Let $G=\langle a\rangle, a \in G$ and $|G|=5$. So, $a^{5}=e$. Therefore, $G=\left\{e, a, a^{2}, a^{3}, a^{4}\right\}$.

Remark 4.14.3

If G is a cyclic group with $G=\langle a\rangle$, then $G=\left\langle a^{-1}\right\rangle$.

Example 4.14.4
S_{3} is not cyclic since there is no $a \in S_{3}$ with $\langle a\rangle=S_{3}$. Moreover, if S_{3} is cyclic, then it is abelian which is not the case.

Example 4.14.5

Compute $A_{3}=\left\langle\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\rangle$ in S_{3}.

Solution:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{0}=i d \\
& \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{1}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{3}=\left(\begin{array}{llll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=i d
\end{aligned}
$$

Thus, $A_{3}=\left\langle\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\rangle=\left\{\begin{array}{lll}i d,\left(\begin{array}{lll}1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\end{array}\right\}$, and the order of $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ in S_{3} is 3 .

4.14.1 Solving Book Problems from Section 14

Exercise 4.14.1

Q.14.1: Solve the equation $\left(\begin{array}{ll}1 & 2\end{array}\right) x=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ in S_{3}.

Solution:

$$
\begin{aligned}
x & =\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right) .
\end{aligned}
$$

Exercise 4.14.2

Q.14.14(a): Prove that if a and b are elements of an abelian group G with $o(a)=m$ and $o(b)=n$, then $(a b)^{m n}=e$.

Solution:

We have $o(a)=m$ and $o(b)=n$ which implies that $a^{m}=e$ and $b^{n}=e$. Thus,

$$
\begin{array}{rlr}
(a b)^{m n} & =a b \cdot a b \cdots a b, & m n \text {-times } \\
& =\left(a^{m n}\right)\left(b^{m n}\right)=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}, & G \text { is abelian } \\
& =e^{n} e^{m}=e . &
\end{array}
$$

Exercise 4.14.3

Q.14.18: Assume that a and b are elements of a group G.

1. Prove that $a b=b a$ if and only if $a^{-1} b^{-1}=b^{-1} a^{-1}$.
2. Prove that $a b=b a$ if and only if $(a b)^{2}=a^{2} b^{2}$.

Solution:

(1.) Clearly, $a b=b a \Leftrightarrow(a b)^{-1}=(b a)^{-1} \Leftrightarrow b^{-1} a^{-1}=a^{-1} b^{-1}$.
(2.) $" \Rightarrow$ ": Assume that $a b=b a$, then

$$
(a b)^{2}=(a b)(a b)=a \underline{b a} b=a a b b=a^{2} b^{2} .
$$

$" \Leftarrow ":$ Assume that $(a b)^{2}=a^{2} b^{2}$. Thus, $(\not \subset b)(a \not b)=\not \alpha a b b b$, implies that $b a=a b$.

Exercise 4.14.4

Q.14.23: Prove that a non-identity element of a group has order 2 if and only if it is its own inverse.

Solution:

$" \Rightarrow ":$ Assume that $a \neq e$ such that $o(a)=2$. Then,

$$
a^{2}=e \Leftrightarrow a^{-1} a^{2}=a^{-1} e \Leftrightarrow a=a^{-1} .
$$

$" \Leftarrow ":$ If $a=a^{-1}$, then $a \cdot a=a \cdot a^{-1}$ and hence $a^{2}=e$. That is $o(a)=2$.

Exercise 4.14.5

Q.14.24: Prove that every group of even order has an element of order 2.

Solution:

Assume that G is a group of even order. Let $A=\left\{a \in G: a \neq a^{-1}\right\} \subseteq G$. Clearly, $e \notin A$ since $e=e^{-1}$. Also, if $a \in A$, then $a^{-1} \in A$. Thus, $\{e\} \cup A$ has an odd number of elements, but $\{e\} \cup A \varsubsetneqq G$ "because $|G|$ is even". Therefore there exists $x \in G$ such that $x \neq e$ and $x \notin A$ with $x=x^{-1}$. Thus, $x^{2}=e$ which means $o(x)=2$.

Exercise 4.14.6

Q.14.29: Prove that a group G is abelian if each of its non-identity elements has order 2 .

Solution:

Suppose that G is a group so that if $a \in G$ and $a \neq e$, then $o(a)=2$. Thus, $a^{2}=e$ and $a=a^{-1}$. If $a, b \in G$, then $a b \in G$ and hence $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$.

Exercise 4.14.7

Q.14.33: Prove or give a counterexample: If a group G has a subgroup of order n, then G has an element of order n.

Solution:

False. Consider $S_{3} \leq S_{3}$ where both are of order $3!=6$ but no element in S_{3} has order 6 .

Exercise 4.14.8

Q.14.34: Prove that if a group G has no subgroup other than G and $\{e\}$, then G is cyclic.

Solution:

Let $a \in G$ so that $a \neq e$. Then $\langle a\rangle$ is a subgroup of G. Then $\langle a\rangle=e$ or $\langle a\rangle=G$. But since $a \neq e$, we have $\langle a\rangle \neq e$. Therefore, $\langle a\rangle=G$ and hence G is a cyclic group.

Exercise 4.14.9

Q.14.38: Prove that if A and B are subgroups of a group G, and $A \cup B$ is also a subgroup of G, then $A \subseteq B$ or $B \subseteq A$.

Solution:

A proof by contradiction: Assume that $A \nsubseteq B$ and $B \nsubseteq A$. Then, there is $x \in(A-B)$ and there is $y \in(B-A)$. But $x, y \in A \cup B$ (which is a subgroup). Thus, $x y \in A \cup B$. Hence, $x y \in A$ or $x y \in B$.

Case 1: $x y \in A$ where $x \in A$. Then $x^{-1} \in A$ and hence $x^{-1} x y=y \in A$ (contradiction).
Case 1: $x y \in B$ where $y \in B$. Then $y^{-1} \in B$ and hence $x y y^{-1}=x \in B$ (contradiction). Therefore, $A \subseteq B$ or $B \subseteq A$.

Exercise 4.14.10

Solve the following exercises from the book at pages 79-81:

- 14.1 - 14.6,
- 14.13,
- 14.14(a),
- 14.18,
- 14.23 - 14.26 ,
- $14.28-14.30$,
- $14.33-14.34$,
- 14.38.

Section 4.15: Direct Products

Definition 4.15.1

Let G and H be two groups. Then $G \times H$ is the (Cartesian) product of G and H and is defined by

$$
G \times H=\{(g, h): g \in G \text { and } h \in H\}
$$

Theorem 4.15.1

If G and H are groups, then $G \times H$ is a group with the operation defined by

$$
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)
$$

for all $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$. The group $G \times H$ is called the direct product of G and H.

Remark 4.15.1

To prove the previous theorem, we need to note that:

1. The identity element of $G \times H$ is $\left(e_{G}, e_{H}\right)$ where e_{G} is the identity element of G and e_{H} is the identity element of H.
2. The inverse of the element $(g, h) \in G \times H$ is the element $\left(g^{-1}, h^{-1}\right) \in G \times H$.

Remark 4.15.2

Note that in $\mathbb{Z} \times \mathbb{Z}$ we have $(a, b)(c, d)=(a+c, b+d)$ for all $a, b, c, d \in \mathbb{Z}$.

Remark 4.15.3

Note that if A and B are finite, then so is $A \times B$ with $|A \times B|=|A| \cdot|B|$.

Example 4.15.1

Compute $\mathbb{Z}_{3} \times S_{2}$ and compute $([1],(12))([2], e)$ in $\mathbb{Z}_{3} \times S_{2}$.

Solution:

Note that $\mathbb{Z}_{3}=\{[0],[1],[2]\}$ and $S_{2}=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$. Thus,

$$
\mathbb{Z}_{3} \times S_{2}=\left\{([0], e),\left([0],\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right),([1], e),([1],(12)),([2], e),([2],(1 \quad 2))\right\}
$$

Moreover,

$$
([1],(1 \quad 2))([2], e)=\left([1] \oplus[2],\left(\begin{array}{ll}
1 & 2
\end{array}\right) e\right)=([0],(1 \quad 2)) .
$$

Example 4.15.2

Simplify $\left([2],\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right)^{-1}\left([1],\left(\begin{array}{ll}2 & 4\end{array}\right)\right)\left(\left[\begin{array}{ll}\left.2],\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right) \text { in } \mathbb{Z}_{4} \times S_{4} \text {. } \text {. }\end{array}\right.\right.$

Solution:

$$
\begin{aligned}
\left([2],\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right)^{-1}\left([1],\left(\begin{array}{ll}
2 & 4
\end{array}\right)\right)\left([2],\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right) & =\left(\left[\begin{array}{ll}
2
\end{array}\right],\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right)\left(\left[\begin{array}{lll}
3
\end{array}\right],\left(\begin{array}{llll}
1 & 4 & 2 & 3
\end{array}\right)\right) \\
& =\left([1],\left(\begin{array}{ll}
1 & 4
\end{array}\right)\right) .
\end{aligned}
$$

Example 4.15.3: Exercise 15.17 at page 84

Let G and H be two groups. Show that $G \times\left\{e_{H}\right\}$ and $\left\{e_{G}\right\} \times H$ are both subgroups of $G \times H$.

Solution:

Note that $G \times\left\{e_{H}\right\}=\left\{\left(g, e_{H}\right): g \in G\right\}$. Thus
$\mathcal{S}_{1}:$ Clearly, $\left(e_{G}, e_{H}\right) \in G \times\left\{e_{H}\right\}$ and hence $G \times\left\{e_{H}\right\}$ is nonempty.
$\mathcal{S}_{2}:$ Let $\left(g_{1}, e_{H}\right),\left(g_{2}, e_{H}\right) \in G \times\left\{e_{H}\right\}$. Then

$$
\left(g_{1}, e_{H}\right)\left(g_{2}, e_{H}\right)=\left(g_{1} g_{2}, e_{H}\right) \in G \times\left\{e_{H}\right\} \text { since } g_{1} g_{2} \in G .
$$

$\mathcal{S}_{3}:$ Let $\left(g, e_{H}\right) \in G \times\left\{e_{H}\right\}$. Then $g^{-1} \in G$ since $g \in G$ and hence

$$
\left(g, e_{H}\right)\left(g^{-1}, e_{H}\right)=\left(g g^{-1}, e_{H}\right)=\left(e_{G}, e_{H}\right)
$$

That is $\left(g^{-1}, e_{H}\right)$ is the inverse of $\left(g, e_{H}\right)$ and it is in $G \times\left\{e_{H}\right\}$.
Therefore, $G \times\left\{e_{H}\right\}$ is a subgroup of $G \times H$. The other part can be preved in a similar way.

Example 4.15.4: Exercise 15.18 at page 84

Let G and H be two groups. Show that $G \times H$ is abelian group if and only if both G and H are abelian.

Solution:

$" \Rightarrow$ ": Assume that $G \times H$ is abelian group and let $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$. Then

$$
\begin{aligned}
\left(g_{1} g_{2}, h_{1} h_{2}\right) & =\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \\
& =\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right)=\left(g_{2} g_{1}, h_{2} h_{1}\right) .
\end{aligned}
$$

Thus, $g_{1} g_{2}=g_{2} g_{1}$ and G is abelian; and $h_{1} h_{2}=h_{2} h_{1}$ and H is abelian.
$" \Leftarrow ":$ Assume that G and H are abelian groups and that $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times H$. Then,

$$
\begin{aligned}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) & =\left(g_{1} g_{2}, h_{1} h_{2}\right) \\
& =\left(g_{2} g_{1}, h_{2} h_{1}\right)=\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right) .
\end{aligned}
$$

Thus, $G \times H$ is abelian.

Exercise 4.15.1

Solve the following exercises from the book at pages 84-85:

- 15.9,
- 15.16 - 15.18,
- 15.20 - 15.21 .

Exercise 4.15.2

Simplify $\left([2],\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right)^{-1}\left([1],\left(\begin{array}{ll}2 & 4\end{array}\right)\right)\left(\left[\begin{array}{ll}\left.2],\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right) \text { in } \mathbb{Z}_{4} \times S_{4} \text {. } \text {. } \text {. }\end{array}\right.\right.$

Section 4.16: Cosets

Recall that if $n \in \mathbb{Z}$, then $\langle n\rangle$ is the subgroup consisting of all multiples of n. Because

$$
a \equiv b(\bmod n) \Leftrightarrow n \mid a-b \Leftrightarrow a-b=k n, \text { for some } k \in \mathbb{Z}
$$

Thus, $a \equiv b(\bmod n) \Leftrightarrow a-b \in\langle n\rangle$.

Theorem 4.16.1

Let H be a subgroup of a group G and define a relation \sim on G by $a \sim b$ if and only if $a b^{-1} \in H$. Then \sim is an equivalence relation on G.

Proof:

Reflexive: If $a \in G$, then $a \sim a$ because $a a^{-1}=e \in H$.
Symmetric: If $a \sim b$, then $a b^{-1} \in H$ and so is $\left(a b^{-1}\right)^{-1}=b a^{-1} \in H$ because H contains the inverse of any of its elements. Thus $b \sim a$.
Transitive: If $a \sim b$ and $b \sim c$, then $a b^{-1}, b c^{-1} \in H$. Since H is a subgroup of G, it contains the product of $a b^{-1}$ and $b c^{-1}$. Thus, $a b^{-1} \cdot b c^{-1}=a c^{-1} \in H$. Hence $a \sim c$. Therefore, \sim is an equivalence relation on G.

Definition 4.16.1

Let G be a group with a subgroup H. For any $a \in G$, define:

1) the left coset of H in G by $a H=\{a h: h \in H\}$,
2) the right coset of H in G by $H a=\{h a: h \in H\}$.

Note that, if the group operation is + , then $H+a$ and $a+H$ is used instead of $H a$ and $a H$, respectively.

Example 4.16.1
Let $G=\mathbb{Z}$ and $H=\langle 7\rangle$. Compute $H+3$

Solution:

$$
H+3=\langle 7\rangle+3=\{\cdots,-14,-7,0,7,14, \cdots\}+3=\{\cdots,-11,-4,3,10,17, \cdots\} .
$$

Note that $H+3$ is the congruence class $[3]$ in \mathbb{Z}_{7}. In $\mathbb{Z}_{7},[3]=\{k: k \equiv 3(\bmod 7)$ iff $7 \mid 3-k\}$.

Example 4.16.2

Let $G=S_{3}$ and $H=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$. Compute $H e, H\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, and $H\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$.

Solution:

$$
\left.\begin{array}{rl}
H e & =\left\{e e,\left(\begin{array}{ll}
1 & 2
\end{array}\right) e\right\}=\left\{e,\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right.
\end{array}\right\}
$$

Note that these three sets form a partition of G.

Example 4.16.3

Let $G=S_{3}$ and $H=\left\{e,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. Find $\left(\begin{array}{ll}1 & 2\end{array}\right) H, H\left(\begin{array}{ll}1 & 2\end{array}\right)$, and $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) H$.

Solution:

$S_{3}=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$. So,

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2
\end{array}\right) H=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \quad H\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} \text {, and } \\
& \left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) H=\left\{\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\} \text {. }
\end{aligned}
$$

Remark 4.16.1

Considering the previous example, we conclude:

1. Cosets are not subgroups in general.
2. $a H$ might be the same as $b H$ even though $a \neq b$. For instance, (1) $\left.\begin{array}{l}1\end{array}\right) H=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) H$ in the previous example.
3. $a H$ need not be equal to $H a$, in general. From the previous example we conclude that $\left(\begin{array}{ll}1 & 2\end{array}\right) H=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$ is not the same as $H\left(\begin{array}{ll}1 & 2\end{array}\right)=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\}$.
4. Cosets have the same number of elements as H, i.e. $|a H|=|H|=|H a|$ for any $a \in G$.

Theorem 4.16.2

If H is a subgroup of a group G, and $a, b \in G$, then the following conditions are equivalent:

1. $a^{-1} b \in H$.
2. $b=a h$ for some $h \in H$.
3. $b \in a H$.
4. $b H=a H$.

Proof:

We show that the conditions are equivalent by showing that $1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4$, and $4 \rightarrow 1$.
a. $1 \rightarrow 2$: Let $a^{-1} b=h \in H$, then $a a^{-1} b=a h$ and hence $b=a h$ with $h \in H$.
b. $2 \rightarrow 3$: If $b=a h$ for some $h \in H$, then $b \in a H$ by the definition of $a H$.
c. $3 \rightarrow 4$: If $b \in a H$, then $b=a h$ for some $h \in H$. We show that $b H \subseteq a H$ and $a H \subseteq b H$. First, Let $s \in b H$ with $s=b r$ for some $r \in H$. Then

$$
s=b r=(a h) r=a(h r) \text { with } h r \in H .
$$

Therefore,

$$
s \in a H \text {, and hence } b H \subseteq a H \text {. }
$$

Now, let $t \in a H$ with $t=a s$ for some $s \in H$. Note that $b=a h$ implies that $a=b h^{-1}$. Thus

$$
t=a s=\left(b h^{-1}\right) s=b\left(h^{-1} s\right) \text { with } h^{-1} s \in H
$$

Therefore,

$$
t \in b H \text {, and hence } a H \subseteq b H \text {. }
$$

Therefore, $a H=b H$.
d. $4 \rightarrow 1$: If $b H=a H$, then $b=a h$ for some $h \in H$. Hence $a^{-1} b=a^{-1} a h$ and hence $a^{-1} b=h \in H$.

Remark 4.16.2

To compute all of the right cosets of a subgroup H in a finite group G, we do the following:

1. First write H as $H=H e$.
2. Next choose $a_{1} \in G-H$ and compute $H a_{1}$.
3. Next choose $a_{2} \in G-\left(H \cup H a_{1}\right)$ and compute $H a_{2}$.
4. Continue in this way until the elements of G have been considered.
5. Finally $G=H \cup H a_{1} \cup H a_{2} \cup \cdots \cup H a_{n}$ for some n.

Example 4.16.4

Let $G=\mathbb{Z}_{9}$ and $H=\langle 3\rangle$. Find all right cosets of H in G.

Solution:

$$
\begin{aligned}
H=H+0 & =\{3,6,0\}, & H+1=\{4,7,1\}, \\
H+2 & =\{5,8,2\} . &
\end{aligned}
$$

Note that $G=\mathbb{Z}_{9}=H \cup H+1 \cup H+2$.

Theorem 4.16.3

Let H be a subgroup of a group G and let $a, b \in G$. Then

1. $a \in a H$.
2. $a H=H$ if and only if $a \in H$.
3. It is either $a H=b H$ or $a H \cap b H=\phi$.
4. $a H=b H$ if and only if $a^{-1} b \in H$.
5. $|a H|=|H|$ for finite subgroup H.
6. $a H=H a$ if and only if $H=a H a^{-1}$.
7. $a H$ is a subgroup of G if and only if $a \in H$.

Proof:

1. Clearly $e \in H$, then $a e=a \in a H$.
2. $" \Rightarrow$ " By 1, we have $a \in a H=H$, then $a \in H$.
$" \Leftarrow$ "Assume that $a \in H$. For any $h \in H$, we have $a h \in a H$ (by definition of $a H$). But also $a h \in H$ (since H is a subgroup) and hence $a H \subseteq H$.

Let $h \in H$. If $a \in H$, then $a^{-1} \in H$ (H is a subgroup) and hence $a^{-1} h \in H$. Therefore, $a\left(a^{-1} h\right)=h \in a H$ (by definition of $a H$). That is $H \subseteq a H$ and hence $a H=H$.
3. Assume that there is $x \in a H \cap b H$, then $x \in a H$ and $x \in b H$. That is $a h_{1}=x=b h_{2}$ and hence $b h_{2} \in a H$ and $a h_{1} \in b H$ which implies that $a H=b H$. Otherwise, there is no $x \in a H \cap b H$ and hence $a H \cap b H=\phi$.
4. $a H=b H$ if and only if $a^{-1} b H=H$ if and only if $a^{-1} b=h \in H$ (by (2)).
5. There is a bijection $\alpha: H \rightarrow a H$ which is defined by $\alpha(h)=a h$.
6. Clearly, $a H=H a$ if and only if $a H a^{-1}=H$.
7. $" \Rightarrow$ ": Since $a \in a H$ (by (1)), then $a^{2} \in a H$ and hence $a^{2}=a h$ for some $h \in H$ and hence $a=h \in H$.
$" \Leftarrow ":$ If $a \in H$, then $a H=H$ (by (2)). Thus $a H \leq G$.

4.16.1 Solving Book Problems from Section 16

Exercise 4.16.1

Q.16.1: Determine the right cosets of $\langle 4\rangle$ in \mathbb{Z}_{8}.

Solution:

Note that $\langle 4\rangle=\{4,0\}$. Therefore,
$\langle 4\rangle=\{4,0\}$,
$\langle 4\rangle+1=\{5,1\}$,
$\langle 4\rangle+2=\{6,2\}$,
$\langle 4\rangle+3=\{7,3\}$.

Thus, $\mathbb{Z}_{8}=\langle 4\rangle \cup\langle 4\rangle+1 \cup\langle 4\rangle+2 \cup\langle 4\rangle+3$.

Exercise 4.16.2

Q.16.5: Determine the right cosets of $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$ in S_{3}.

Solution:

Let $H=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$. Therefore,

$$
H=\left\{e,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \quad \text { and } \quad H\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} .
$$

Thus, $S_{3}=H \cup H\left(\begin{array}{ll}1 & 2\end{array}\right)$.

Exercise 4.16.3

Q.16.11: If H is a subgroup of a group G and $a, b \in G$, then the following four conditions are equivalent:

1. $a^{-1} b \in H$.
2. $b=a h$ for some $h \in H$.
3. $b \in a H$.
4. $a H=b H$.

Solution:

We proof that the four conditions are equivalent by showing that 1 implies 2 , 2 implies 3 , 3 implies 4, and 4 implies 1.

1. Suppose that $a^{-1} b \in H$. Then, there is $h \in H$ with $a^{-1} b=h$ and hence $b=a h$.
2. Assume that $b=a h$ for some $h \in H$. Therefore, $b \in a H$.
3. Suppose that $b \in a H$. Then, there is $h \in H$ with $b=a h$. Thus $a^{-1} b=h \in H$. Hence $a^{-1} b \in H$ and $a^{-1} b H=H$ which implies that $a H=b H$.
4. Assume that $a H=b H$. Thus, $H=a^{-1} b H$, and hence $a^{-1} b \in H$.

Exercise 4.16.4

Q.16.12: Verify that if H is a subgroup of an abelian group G, and $a \in G$, then $a H=H a$.

Solution:

First, $a h \in a H$ and hence (since G is abelian) $h a \in a H$ but $h a \in H a$. Thus, $a H \subseteq H a$. Second, $h a \in H a$ and hence (since G is abelian) $a h \in H a$, but $a h \in a H$. Then $H a \subseteq a H$. Therefore, $a H=H a$.

Exercise 4.16.5

Q.16.17: Compute the left cosets (or right) of $\left\langle\left(\left(\begin{array}{ll}1 & 2\end{array}\right), 1\right)\right\rangle$ in $S_{3} \times \mathbb{Z}_{2}$.

Solution:

Let $H=\left\langle\left(\left(\begin{array}{ll}1 & 2\end{array}\right), 1\right)\right\rangle=\{(e, 0),((12), 1)\}$. Then the left cosets are:

$$
\begin{aligned}
& H=\left\{(e, 0),\left(\left(\begin{array}{ll}
1 & 2), 1)\}
\end{array}\right.\right.\right. \\
& (e, 1) H=\left\{(e, 1),\left(\left(\begin{array}{ll}
1 & 2), 0)\},
\end{array}\right.\right.\right. \\
& \left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 0\right) H=\left\{\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 0\right),\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), 1\right)\right\}, \\
& \left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 1\right) H=\left\{\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 1\right),\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), 0\right)\right\}, \\
& ((23), 0) H=\left\{\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 0\right),\left(\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), 1\right)\right\}, \\
& \left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 1\right) H=\left\{\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 1\right),\left(\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), 0\right)\right\},
\end{aligned}
$$

Hence

$$
S_{3} \times \mathbb{Z}_{2}=H \cup(e, 1) H \cup((13), 0) H \cup((13), 1) H \cup((23), 0) H \cup((23), 1) H
$$

Exercise 4.16.6

Q.16.18: Compute the left cosets (or right) of $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \times\langle 1\rangle$ in $S_{3} \times \mathbb{Z}_{2}$.

Solution:

Let $H=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \times\langle 1\rangle=\{e,(1 \quad 2)\} \times\{0,1\}=\left\{(e, 0),(e, 1),\left(\left(\begin{array}{ll}1 & 2\end{array}\right), 0\right),\left(\left(\begin{array}{ll}1 & 2\end{array}\right), 1\right)\right\}$. Then the left cosets are:

$$
\begin{aligned}
& H=\left\{(e, 0),(e, 1),\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right), 0\right),\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right), 1\right)\right\}, \\
& ((13), 0) H=\left\{\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 0\right),\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right), 1\right),\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), 0\right),\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), 1\right)\right\}, \\
& \left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 0\right) H=\left\{\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 0\right),\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right), 1\right),\left(\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), 0\right),\left(\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), 1\right)\right\} .
\end{aligned}
$$

Hence

$$
S_{3} \times \mathbb{Z}_{2}=H \cup((1 \quad 3), 0) H \cup((2 \quad 3), 0) H
$$

Exercise 4.16.7

Q.16.21: Prove that if H and K are subgroups of a group G, then any left (right, respectively) coset of $H \cap K$ in G is the intersection of a left (right) coset of H in G and a left (right) coset of K in G.

Solution:

First note that since H and K are both subgroups of G, then $H \cap K$ is also a subgroup of G. Assume that $a(H \cap K)$ be any left coset of $H \cap K$ in G. Then

$$
\begin{aligned}
& w \in a(H \cap K) \Leftrightarrow a^{-1} w \in H \cap K \text { (this is by Q.16.11) } \\
\Leftrightarrow & \exists h \in H \text { and } \exists k \in K \text { such that } a^{-1} w=h=k \\
\Leftrightarrow & \exists h \in H \text { and } \exists k \in K \text { such that } w=a h=a k \\
\Leftrightarrow & w \in a H \text { and } w \in a K \\
\Leftrightarrow & w \in a H \cap a K .
\end{aligned}
$$

Therefore, $a(H \cap K)=a H \cap a K$.

Exercise 4.16.8

Solve the following exercises from the book at pages 87-88:

- $16.1-16.2$,
- $16.5-16.6$,
- 16.12 - 16.12,
- 16.17 - 16.18,
- 16.21.

Section 4.17: Lagrange's Theorem. Cyclic Groups

Definition 4.17.1

If G is a finite group and H is a subgroup of G, then the number of distinct left cosets of H in G, denoted by $[G: H]$, is called the index of H in G.

Theorem 4.17.1: Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$. Moreover $[G: H]=$ $\frac{|G|}{|H|}$.

Proof:

Recall that two left cosets of H in G are either equal or disjoint. That is, the left cosets of H, being equivalence classes, form a partition of G. Note that $|a H|=|H|$. Thus all cosets have the same number of elements as H. Thus, $G=a_{1} H \cup a_{2} H \cup \cdots \cup a_{r} H$, where $r=\frac{|G|}{|H|}$ as $\left\{a_{1} H, \ldots, a_{r} H\right\}$ is a partitioning of G. Therefore,

$$
\begin{aligned}
|G| & =\left|a_{1} H\right|+\left|a_{2} H\right|+\cdots+\left|a_{r} H\right| \\
& =|H|+|H|+\cdots+|H| \\
& =r|H| .
\end{aligned}
$$

Hence| $H \mid$ divides $|G|$.

Theorem 4.17.2

If G is a finite group and $a \in G$, then $o(a)$ divides $|G|$.

Proof:

Clearly, $o(a)=|\langle a\rangle|$ where $\langle a\rangle \leq G$. Thus, by Lagrange's Theorem, o(a) divides $|G|$.

Theorem 4.17.3

If G is a finite group and $a \in G$, then $a^{|G|}=e$.

Proof:

Clearly, $o(a)||G|$, then $| G \mid=k \cdot o(a)$ for some $k \in \mathbb{Z}$. Therefore, $a^{|G|}=a^{k \cdot o(a)}=\left(a^{o(a)}\right)^{k}=$ $e^{k}=e$.

Theorem 4.17.4: Euler's Theorem

If n is a positive integer and a and n are relatively prime, then $a^{\phi(n)} \equiv 1(\bmod n)$.

Proof:

Note that the group \mathbb{U}_{n} has order $\phi(n)$. Thus, $[a]^{\phi(n)}=[1]$ in \mathbb{U}_{n}. But $[a]^{\phi(n)}=\left[a^{\phi(n)}\right]$, which implies that $a^{\phi(n)} \equiv 1(\bmod n)$.

Theorem 4.17.5: Fermat's Little Theorem

Assume that p is a prime. If $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$. For all $a, a^{p} \equiv a(\bmod p)$.

Proof:

If p-prime and $p \nmid a$, then $\phi(p)=p-1$ and $\operatorname{GCD}(a, p)=1$. By Euler's Theorem, we have $a^{p-1} \equiv 1(\bmod p)$. Multiplying a in both sides we get $a^{p} \equiv a(\bmod p)$. Note that if $p \mid a$, then $a^{p} \equiv 0(\bmod p)$ and $a \equiv 0(\bmod p)$.

Theorem 4.17.6

A group G of a prime order contains no subgroups other than $\{e\}$ and G.

Proof:

Let $H \leq G$, then by Lagrange's Theorem $|H|$ divides $|G|=p$, and p is a prime. Then, $|H|=1$ or $|H|=|G|$. That is $H=\{e\}$ or $H=G$.

Theorem 4.17.7

Every group of prime order is cyclic, generated by one of its non-identity elements.

Proof:

If $a \in G \neq\{e\}$ (since it has a prime order) and $a \neq e$ then $\langle a\rangle \neq\{e\}$. Thus $\langle a\rangle=G$ (by the previous Theorem).

Example 4.17.1

Show that any non-abelian group has at least six elements. That is, any group of order less than 6 is an abelian group.

Solution:

We show the statement by showing that all groups of order at most 5 are abelian.

- order 1: Then $G=\{e\}$ which is abelian.
- prime order: If the order is 2,3 , or 5 , then the order is a prime and hence G is abelian.
- order 4: Then $|G|=4$ and hence (by Lagrange's Theorem) if $a \neq e \in G$ then $o(a)=$ 1,2 , or 4. Case 1: If $o(a)=4$ then G is cyclic since $G=\langle a\rangle$. Case 2: Note that $o(a) \neq 1$ since $a \neq e$. Case 3: If $o(a)=2$, then $a^{2}=e$ which means that $a=a^{-1}$ and hence $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$. Thus G is abelian.

Example 4.17.2

Suppose that G is a non-abelian group of order 14 . Show that G has an element of order 7 .

Solution:

Let $a \neq e$ in G. Then by Lagrange's Theorem $o(a)=7$ or 2 (this is because $a \neq e$ so $o(a) \neq 1$ and $o(a) \neq 14$ since G is not cyclic as it is not abelian). If all $a \in G$ is of order 2 , then G is abelian which is not the case. Therefore, there is $a \neq e$ in G with $o(a)=7$.

Theorem 4.17.8: Fundamental Theorem of Finite Cyclic Groups

Let G be a cyclic group of a finite order n with $G=\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$. Then

1. Every subgroup of G is cyclic.
2. If $1 \leq k<n$, then a^{k} generates a subgroup of order $\frac{n}{\operatorname{gcd}(k, n)}$.
3. If $1 \leq k<n$, then a^{k} is a generator of G if and only if $\operatorname{gcd}(k, n)=1$. [How many generators we have].
4. For each positive divisor d of n, G has exactly one subgroup of order d.

Example 4.17.3

Consider \mathbb{Z}_{24}. Find the orders of $\langle 3\rangle,\langle 4\rangle,\langle 5\rangle$, and $\langle 9\rangle$.

Solution:

- $|\langle 3\rangle|=\frac{24}{\operatorname{gcd}(3,24)}=\frac{24}{3}=8$.
- $|\langle 4\rangle|=\frac{24}{\operatorname{gcd}(4,24)}=\frac{24}{4}=6$.
- $|\langle 5\rangle|=\frac{24}{\operatorname{gcd}(5,24)}=\frac{24}{1}=24$.
- $|\langle 9\rangle|=\frac{24}{\operatorname{gcd}(9,24)}=\frac{24}{3}=8$.

Example 4.17.4

If G is a cyclic group of order 10, find the generators of G and find the orders of all subgroups of G.

Solution:

Assume that a is a generator for G. That is, $G=\langle a\rangle$. If $1 \leq k<10$ is the order of a generator, then it must satisfies $\operatorname{gcd}(k, 10)=1$. That is, a^{1}, a^{3}, a^{7}, and a^{9} are the generators of G. The order of any subgroup of G must divides the order of G which is 10 . Therefore, the orders of all subgroups are $1,2,5$, and 10 .

Example 4.17.5

List all subgroups of \mathbb{Z}_{12}.

Solution:

\mathbb{Z}_{12} is a cyclic group and hence it has exactly one cyclic subgroup of order $k>0$ where $k \mid 12$. That is $k=1,2,3,4,6$, or 12 .

4.17.1 Solving Book Problems from Section 17

Exercise 4.17.1

Q.17.1: Find $\left[\begin{array}{ll}\left.S_{3}:\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle\right] \text {. } \text {. } \text {. } \text {. }\end{array}\right.$

Solution:

Clearly, $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$. Thus $\left|\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle\right|=2$. Therefore, $\left[\begin{array}{ll}\left.\left.\left.S_{3}:\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle\right]=\frac{\left|S_{3}\right|}{\mid\langle(1} 2\right)\right\rangle \mid\end{array}\right.$ $\frac{6}{2}=3$.

Exercise 4.17.2

Q.17.3: Find the index of $\langle[2]\rangle$ in \mathbb{Z}_{10}, i.e. $\left[\mathbb{Z}_{10}:\langle 2\rangle\right]$.

Solution:

Clearly $\langle 2\rangle=\{2,4,6,8,0\}$ and hence $|\langle 2\rangle|=5$. Thus, $\left[\mathbb{Z}_{10}:\langle 2\rangle\right]=\frac{\left|\mathbb{Z}_{10}\right|}{|\langle 2\rangle|}=\frac{10}{5}=2$.

Exercise 4.17.3

Q.17.24: Prove that if G is a group of order p^{2} (p-prime) and G is not cyclic, then $a^{p}=e$ for each $a \in G$.

Solution:

Let $a \in G$, then by Lagrange's Theorem $o(a)=1, o(a)=p$, or $o(a)=p^{2}$. Clearly $o(a) \neq p^{2}$ because G is not cyclic. Thus $o(a)=1$ or $o(a)=p$ and hence $a^{p}=e$ for any $a \in G$.

Exercise 4.17.4

Q.17.18: Assume that G is a cyclic group of order n, that $G=\langle a\rangle$, that $k \mid n$, and that $H=\left\langle a^{k}\right\rangle$. Find $[G: H]$.

Solution:

Note that $\left(a^{k}\right)^{\frac{n}{\operatorname{gccd}(k, n)}}=a^{n}=e$. Then, since $|G|=n$, we have

$$
|H|=\left|\left\langle a^{k}\right\rangle\right|=\frac{n}{\operatorname{gcd}(k, n)}
$$

Thus $[G: H]=\frac{|G|}{|H|}=\frac{n}{\frac{n}{\operatorname{gcd}(k, n)}}=\operatorname{gcd}(k, n)=k$.

Exercise 4.17.5

Q.17.30: If H is a subgroup of a group G and $[G: H]=2$, then the right cosets of H in G are the same as the left cosets of H in G. Why?

Solution:

Since $[G: H]=2$, the left cosets of H in G are: H and $a H$ for $a \in G$. Also, the right cosets of H in G are: H and $H a$ for $a \in G$.
Hence $G=H \cup a H=H \cup H a$ which implies that $a H=G-H$ and that $H a=G-H$. Therefore, $a H=H a$.

Exercise 4.17.6

Q.17.32: Prove that if H is a subgroup of a finite group G, then the number of right cosets of H in G equals the number of left cosets of H in G.

Solution:

The number of right cosets of H in G is $[G: H]$ which is equal to the number of left cosets of H in G and both are equal to $\frac{|G|}{|H|}$.

Exercise 4.17.7

Use Fermat's Little Theorem to find the least non-negative integer x so that:

1. $3^{50} \equiv x(\bmod 7) . \underline{\text { Solution: }} \quad 3^{50}=\left(3^{6}\right)^{8} \cdot 3^{2} \equiv 1^{8} \cdot 9 \equiv 9(\bmod 7) \equiv 2(\bmod 7)$. Therefore, $x=2$.
2. $3^{52} \equiv x(\bmod 11) . \underline{\text { Solution: }} \quad 3^{52}=\left(3^{10}\right)^{5} \cdot 3^{2} \equiv 1^{5} \cdot 9 \equiv 9(\bmod 11)$. Therefore, $x=9$.
3. $3^{123} \equiv x(\bmod 11) . \underline{\text { Solution: }} 3^{123}=\left(3^{10}\right)^{12} \cdot 3^{3} \equiv 1^{12} \cdot 27 \equiv 27(\bmod 11) \equiv 5(\bmod 11)$.

Therefore, $x=5$.

Exercise 4.17.8

Solve the following exercises from the book at pages 92-93:

- 17.1 - 17.4 ,
- $17.7-17.8$,
- 17.13,
- 17.17 - 17.18,
- 17.24,
- 17.30,
- 17.32.

Section 4.18: Isomorphism

Example 4.18.1

Discuss the similarities between the groups $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$ and \mathbb{Z}_{3}.

Solution:

Note that $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle=\left\{\begin{array}{lll}e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\end{array}\right\}$ under the composition operation, and $\mathbb{Z}_{3}=$ $\{[0],[1],[2]\}$ under the addition operation. These two groups are alike given the corresponding

$$
e \Leftrightarrow[0], \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \Leftrightarrow[1], \quad \text { and }\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \Leftrightarrow[2] .
$$

\bigcirc	e	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	(1 3	2)	\oplus	[0]	[1]	[2]
e	e	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$(13$	2)	[0]	[0]	[1]	[2]
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right.$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	e		[1]	[1]	[2]	[0]
$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right.$	e	$(12$	3)	[2]	[2]	[0]	[1]

Definition 4.18.1

Let G be a group with operation $*$ and let H be a group with operation \#. An isomorphism of G onto H is a mapping $\theta: G \rightarrow H$ that is one-to-one and onto and satisfies

$$
\theta(a * b)=\theta(a) \# \theta(b) \quad \text { for all } a, b \in G .
$$

If there is such a mapping then we say that G and H are isomorphic and we write $G \approx H$. Moreover, θ is called an isomorhism.

Remark 4.18.1

The condition $\theta(a * b)=\theta(a) \# \theta(b)$ is sometimes described by saying that θ preserves the operation. That is, it makes no difference whether we operate in G first and then apply θ, or apply θ first and then operate in H. In either way, we get the same result.

Example 4.18.2
Show that $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \approx \mathbb{Z}_{3}$.

Solution:

Consider the mapping $\theta:\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \rightarrow \mathbb{Z}_{3}$ defined by $\theta(e)=[0] ; \theta\left(\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right)=[1]$; and $\theta\left(\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right)=[2]$. Then clearly, θ is a bijection. Moreover, for any $a, b \in\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$, we have $\theta(a \circ b)=\theta(a) \oplus \theta(b)$, for instance

$$
\theta\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\theta(e)=[0]=[1] \oplus[2]=\theta\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right) \oplus \theta\left(\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right) .\right.
$$

There are $9(3 \cdot 3)$ equations to be checked. Can you do it?

Example 4.18.3

Show that $\mathbb{Z} \approx 3 \mathbb{Z}$.

Solution:

Let $\theta: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ given by $\theta(a)=3 a$ for all $a \in \mathbb{Z}$. This mapping is clearly one-to-one and onto $3 \mathbb{Z}$. Moreover, it preserves addition:

$$
\theta(a+b)=3(a+b)=3 a+a b=\theta(a)+\theta(b) .
$$

Therefore, θ is an isomorphism and $\mathbb{Z} \approx 3 \mathbb{Z}$.

Example 4.18.4

Show that \mathbb{Z} is isomorphic to the multiplicative group of all rational numbers of the form 2^{m} for $m \in \mathbb{Z}$.

Solution:

Let $\alpha: \mathbb{Z} \rightarrow H$, where $H=\left\{2^{m}: m \in \mathbb{Z}\right\}$. Onto: Let $x \in H$, then $x=2^{n}$ for some $n \in \mathbb{Z}$. That is $\alpha(n)=2^{n}=x$ Thus α is onto H. One-to-one: Let $\alpha(a)=\alpha(b)$ for some $a, b \in \mathbb{Z}$. Then $2^{a}=2^{b}$ and hence $a=b$. Thus α is 1-1. Finally, note that for any $a, b \in \mathbb{Z}$ we have

$$
\alpha(a+b)=2^{a+b}=2^{a} \cdot 2^{b}=\alpha(a) \cdot \alpha(b) .
$$

Therefore, α is an isomorphism and $\mathbb{Z} \approx H$.

Theorem 4.18.1

If G and H are isomorphic groups and G is abelian, then H is abelian.

Proof:

Let $*$ and \# be the operations of G and H, respectively, and let $\theta: G \rightarrow H$ be an isomorphism. If $x, y \in H$, there are elements $a, b \in G$ such that $\theta(a)=x$ and $\theta(b)=y$. Since θ preserves the operation (meaning that $\theta(a * b)=\theta(a) \# \theta(b))$ and G is abelian,

$$
x \# y=\theta(a) \# \theta(b)=\theta(a * b)=\theta(b * a)=\theta(b) \# \theta(a)=y \# x .
$$

That is H is abelian.

Theorem 4.18.2

If G and H are isomorphic groups and G is cyclic, then H is cyclic.

Proof:

Exercise: Try to show that if $G=\langle a\rangle$, then $H=\langle\theta(a)\rangle$ for an isomorphism θ.

Theorem 4.18.3

Let G and H be groups with operations $*$ and $\#$, respectively, and let $\theta: G \rightarrow H$ be a mapping such that $\theta(a * b)=\theta(a) \# \theta(b)$ for all $a, b \in G$. Then,

1. $\theta\left(e_{G}\right)=e_{H}$,
2. $\theta\left(a^{-1}\right)=\theta(a)^{-1}$ for each $a \in G$,
3. $\theta\left(a^{k}\right)=\theta(a)^{k}$ for each $a \in G$ and each $k \in \mathbb{Z}$,
4. $\theta(G)=\{\theta(g): g \in G\}$, the image of θ, is a subgroup of H, and
5. if θ is one-to-one, then $G \approx \theta(G)$.

Proof:

1. Clearly, $\theta\left(e_{G}\right) \theta\left(e_{G}\right)=\theta\left(e_{G} e_{G}\right)=\theta\left(e_{G}\right) \in H$. Thus $\theta\left(e_{G}\right)=\theta\left(e_{G}\right) e_{H}$ and then $\theta\left(e_{G}\right) \theta\left(e_{G}\right)=\theta\left(e_{G}\right) e_{H}$. By left cancelation law, $\theta\left(e_{G}\right)=e_{H}$.
2. $e_{H}=\theta\left(e_{G}\right)=\theta\left(a a^{-1}\right)=\theta(a) \theta\left(a^{-1}\right)$ for each $a \in G$. Thus, $\theta\left(a^{-1}\right)=(\theta(a))^{-1}$.
3. Consider three cases of $k \in \mathbb{Z}$: Case 1: $k=0$, then $\theta\left(e_{G}\right)=e_{H}$. Case 2: $k>0$: Using induction if $k=1$, then $\theta\left(a^{1}\right)=\theta(a)^{1}$ which is true. Assume that $\theta\left(a^{k}\right)=\theta(a)^{k}$ for some k. Then $\theta\left(a^{k+1}\right)=\theta\left(a^{k} \cdot a\right)=\theta\left(a^{k}\right) \cdot \theta(a)=\theta(a)^{k} \cdot \theta(a)=\theta(a)^{k+1}$. Case 3: $k<0$: Use same idea as in case 2 , but for the negative integers.
4. We show that $\theta(G) \leq H$ by showing the following three conditions:
\mathcal{S}_{1} : (Closure of $\left.\theta(G)\right)$ Let $\theta\left(g_{1}\right), \theta\left(g_{2}\right) \in \theta(G)$ for any $g_{1}, g_{2} \in G$. Then

$$
\theta\left(g_{1}\right) \theta\left(g_{2}\right)=\theta\left(g_{1} g_{2}\right) \in \theta(G) \text { since } g_{1} g_{2} \in G
$$

\mathcal{S}_{2} : (identity) $\theta\left(e_{G}\right)=e_{H}$ by part 1.
$\mathcal{S}_{3}:$ (inverse of $\left.\theta(g)\right)$ Let $\theta(g) \in \theta(G)$ for $g \in G$, then $g^{-1} \in G$ and hence $\theta\left(g^{-1}\right)=$ $\theta(g)^{-1} \in \theta(G)$.
5. $\theta(G)$ is $1-1$ is given. Note that $\theta(a b)=\theta(a) \theta(b)$ by the assumption. Also, considering θ as a mapping from G to $\theta(G)$ shows that θ is onto. Therefore, $\theta: G \rightarrow \theta(G)$ is an isomorphism.

Definition 4.18.2

Let G and H be groups with operations $*$ and \#, respectively. Then $\theta: G \rightarrow H$ is a homomorphism if

$$
\theta(a * b)=\theta(a) \# \theta(b) \quad \text { for all } a, b \in G
$$

Example 4.18.5

Let $\theta:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$ defined by $\theta(x)=e^{x}$. Show that θ is an isomorphism.

Solution:

1-1: Let $x, y \in \mathbb{R}$ with $\theta(x)=\theta(y)$, then $e^{x}=e^{y}$ and hence $e^{x-y}=1$ which implies $x-y=0$ and hence $x=y$.
onto: Let $y \in \mathbb{R}^{+}$, then $y=e^{x}$ for some $x \in \mathbb{R}$. Then $\ln (y)=x$ and hence $\theta(\ln (y))=e^{\ln (y)}=$ y.
hom.: Let $x, y \in \mathbb{R}$, then $\theta(x+y)=e^{x+y}=e^{x} e^{y}=\theta(x) \theta(y)$. Therefore θ is homomorphism.

Therefore θ is an isomorphism, and $(\mathbb{R},+) \approx\left(\mathbb{R}^{+}, \cdot\right)$.

Exercise 4.18.1

Solve the following exercises from the book at pages 96-97:

- 18.1-18.6,
- 18.9 - 18.12 .

Section 4.19: More On Isomorphism

Theorem 4.19.1

Isomorphism, denoted by \approx, is an equivalence relation on the class of all groups.

Proof:

We simply show that \approx is reflexive, symmetric, and transitive as follows.

1. Reflexive: If G is a group, then the identity mapping $I: G \rightarrow G$ is an isomorphism and thus $G \approx G$.
2. Symmetric: Assume that $G \approx H$. Then there is an isomorphism $f: G \rightarrow H$ which is a bijection. But then f^{-1} is a bijection as well. So, we need to show that f^{-1} is a homomorphism mapping. That is, $f^{-1}(a b)=f^{-1}(a) f^{-1}(b)$ for any $a, b \in H$. Let $f^{-1}(a)=x$ and $f^{-1}(b)=y$, then $a=f(x)$ and $b=f(y)$ and hence $a b=f(x) f(y)=$ $f(x y)$. That is $f^{-1}(a b)=x y=f^{-1}(a) f^{-1}(b)$. Therefore, $H \approx G$.
3. Transitive: Let $G \approx H$ and $H \approx K$ with $f: G \rightarrow H$ and $g: H \rightarrow K$ are two isomorphisms. That is f and g are both bijection and hence $g \circ f: G \rightarrow K$ is a bijection as well. Also, for any $a, b \in G$, we have

$$
(g \circ f)(a b)=g(f(a b))=g(f(a) f(b))=g(f(a)) g(f(b))=(g \circ f)(a)(g \circ f)(b)
$$

That is $G \approx K$.

Therefore, \approx is an equivalence relation on the class of all groups.

Theorem 4.19.2

If p is a prime and G is a group of order p, then G is isomorphic to \mathbb{Z}_{p}.

Proof:

Let a be a nonidentity element of G. Then $\langle a\rangle \neq\{e\}$ is a subgroup of G. By Lagrange's Theorem, $\langle a\rangle=G$ and hence $G=\left\{e, a, a^{2}, \ldots, a^{p-1}\right\}$. Define $\theta: G \rightarrow \mathbb{Z}_{p}$ by $\theta\left(a^{k}\right)=[k]$. We next show that θ is an isomorphism.

1. θ is one-to-one: Let $\theta\left(a^{k_{1}}\right)=\theta\left(a^{k_{2}}\right)$, then

$$
\left[k_{1}\right]=\left[k_{2}\right] \text { iff } k_{1} \equiv k_{2}(\bmod p) \text { iff } p \mid\left(k_{1}-k_{2}\right) \text { iff } a^{k_{1}-k_{2}}=e \text { iff } a^{k_{1}}=a^{k_{2}}
$$

2. θ is onto: Let $[k] \in \mathbb{Z}_{p}$, then by the Division Algorithm $k=p \cdot q+r ; 0 \leq r<p$. Thus $a^{k}=\left(a^{p}\right)^{q} a^{r}=a^{r} \in G$. Then $\theta\left(a^{k}\right)=\theta\left(a^{r}\right)=[r]=[k] \in \mathbb{Z}_{p}$.
3. Let $a^{m}, a^{n} \in G$, then

$$
\theta\left(a^{m} a^{n}\right)=\theta\left(a^{m+n}\right)=[m+n]=[m] \oplus[n]=\theta\left(a^{m}\right) \oplus \theta\left(a^{n}\right) .
$$

Therefore, θ is an isomorphism and hence $G \approx \mathbb{Z}_{p}$.

Theorem 4.19.3

Every cyclic group of order n is isomorphic to \mathbb{Z}_{n}.

Proof:

Assume that G is a cyclic group of order n. Let $G=\langle a\rangle=\left\{e, a, a^{2}, \cdots, a^{n-1}\right\}$. Define $\theta: G \rightarrow \mathbb{Z}_{n}$ by $\theta\left(a^{k}\right)=[k]$. Clearly, θ is a bijection. Furthermore,

$$
\theta\left(a^{k} a^{h}\right)=\theta\left(a^{k+h}\right)=[k+h]=[k] \oplus[h]=\theta\left(a^{k}\right) \oplus \theta\left(a^{h}\right) .
$$

Therefore, $t a$ is homomorphism and hence $G \approx \mathbb{Z}_{n}$.

Theorem 4.19.4

Every cyclic group of infinite order is isomorphic to \mathbb{Z}.

Proof:

Assume that G is a cyclic group of infinite order. There is $a \in G$ with $G=\langle a\rangle$. Define $\theta: G \rightarrow \mathbb{Z}$ by $\theta\left(a^{k}\right)=k$. Clearly, θ is a bijection. Furthermore,

$$
\theta\left(a^{k} a^{h}\right)=\theta\left(a^{k+h}\right)=k+h=\theta\left(a^{k}\right) \oplus \theta\left(a^{h}\right) .
$$

Therefore, θ is homomorphism and hence $G \approx \mathbb{Z}$.

Theorem 4.19.5: Fundamental Theorem of Finite Abelian Groups

If G is a finite abelian group, then G is the direct product of cyclic groups of prime power order.

Moreover, if $G \approx A_{1} \times A_{2} \times \cdots \times A_{s}$ and $G \approx B_{1} \times B_{2} \times \cdots \times B_{t}$, where each A_{i} and each B_{j} is cyclic of prime order, then $s=t$ and after suitable relabeling of subscripts, $\left|A_{i}\right|=\left|B_{i}\right|$ for $1 \leq i \leq s$.

Example 4.19.1

If p is a prime, then there are five isomorphism classes of abelian groups of order p^{4}. Give one group from each class.

Solution:

Clearly, $p^{4}=p^{3} \cdot p=p^{2} \cdot p^{2}=p^{2} \cdot p \cdot p=p \cdot p \cdot p \cdot p$. Thus, we have

$$
\mathbb{Z}_{p^{4}} ; \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{p} ; \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}} ; \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} ; \text { and } \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

Example 4.19.2

List the isomorphism class representatives of abelian groups of order 125.

Solution:

Clearly, $125=5^{3}=5^{2} \cdot 5=5 \cdot 5 \cdot 5$. Thus, we have

$$
\mathbb{Z}_{5^{3}} ; \mathbb{Z}_{5^{2}} \times \mathbb{Z}_{5} ; \text { and } \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
$$

Example 4.19.3

List the isomorphism class representatives of abelian groups of order 200.

Solution:

Clearly, $200=2^{3} \cdot 5^{2}=2^{3} \cdot 5 \cdot 5=2^{2} \cdot 2 \cdot 5^{2}=2^{2} \cdot 2 \cdot 5 \cdot 5=2 \cdot 2 \cdot 2 \cdot 5^{2}=2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$. Thus, we have

$$
\begin{aligned}
& \mathbb{Z}_{2^{3}} \times \mathbb{Z}_{5^{2}} ; \mathbb{Z}_{2^{3}} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} ; \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5^{2}} ; \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5^{2}} ; \text { and } \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
\end{aligned}
$$

Exercise 4.19.1

Solve the following exercises from the book at pages 101:

- 19.15 - 19.18 .

Section 5.21: Homomorphism of Groups. Kernels

Remark 5.21.1

Every isomorphism is a homomorphism, but not (necessary) vice versa.

Definition 5.21.1

If $\theta: G \rightarrow H$ is a homomorphism, then the kernel of θ is the set of all elements $a \in G$ such that $\theta(a)=e_{H}$. That is

$$
\operatorname{ker} \theta=\left\{a \in G: \theta(a)=e_{H}\right\} .
$$

Example 5.21.1

Let $\theta: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\theta(a)=2 a$ for all $a \in \mathbb{Z}$. Discuss 1) homomorphismity of θ. 2) Is θ onto, 3) Is $\theta 1-1$, and 4) Find $\operatorname{ker} \theta$.

Solution:

1. Clearly, $\theta(a+b)=2(a+b)=2 a+2 b=\theta(a)+\theta(b)$ and hence θ is a homomorphism.
2. θ is not onto \mathbb{Z} since there is no element $a \in \mathbb{Z}$ with $\theta(a)=3$ for instance.
3. $\theta(a)=\theta(b)$ implies $2 a=2 b$ and hence $a=b$. Thus, θ is $1-1$.
4. $\operatorname{ker} \theta=\{a \in \mathbb{Z}: \theta(a)=2 a=0\}=\{0\}$.

Example 5.21.2

For any positive integer n, define $\theta: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ by $\theta(a)=[a]$ for each $a \in \mathbb{Z}$. Show that θ is a homomorphism, find $\operatorname{ker} \theta$, and is θ an isomorphism? Explain.

Solution:

Clearly for any $a, b \in \mathbb{Z}$ we have $\theta(a+b)=[a+b]=[a] \oplus[b]=\theta(a) \oplus \theta(b)$.
Thus, θ is a homomorphism. Also, $\operatorname{ker} \theta=\{a \in \mathbb{Z}: \theta(a)=[a]=[0]\}=\{k \cdot n: k \in \mathbb{Z}\}$.
Moreover, θ is not isomorphism since it is not one-to-one, for instance $\theta(0)=\theta(n)=[0]$.

Theorem 5.21.1

If $\theta: G \rightarrow H$ is a homomorphism and $A \leq G$, then $\theta(A) \leq H$ where $\theta(A)=\{\theta(a): a \in A\}$, the image of A under θ.

Proof:

We prove the statement by showing the three conditions of a subgroup as follows:
$\mathcal{S}_{1}:$ Closure: Let $\theta(a), \theta(b) \in \theta(A)$, then $\theta(a) \theta(b)=\theta(a b) \in \theta(A)$ since $a b \in A$.
\mathcal{S}_{2} : Identity: $\theta\left(e_{G}\right)=e_{H} \in \theta(A)$ since $e_{G} \in A$.
$\mathcal{S}_{3}:$ Inverse: Let $\theta(a) \in \theta(A)$, then $\theta\left(a^{-1}\right)=\theta(a)^{-1} \in \theta(A)$ since $a^{-1} \in A$.
Therefore, $\theta(A) \leq H$.

Exercise 5.21.1

Q.21.10: If $\theta: G \rightarrow H$ is a homomorphism and $B \leq H$, then $\theta^{-1}(B) \leq G$, where $\theta^{-1}(B)=$ $\{g \in G: \theta(g) \in B\}$, the inverse image of B under θ.

Solution:

$\mathcal{S}_{1}:$ Closure: Let $g_{1}, g_{2} \in \theta^{-1}(B)$, then $\theta\left(g_{1}\right), \theta\left(g_{2}\right) \in B$. Thus

$$
\theta\left(g_{1}\right) \theta\left(g_{2}\right)=\theta\left(g_{1} g_{2}\right) \in B \Rightarrow g_{1} g_{2} \in \theta^{-1}(B)
$$

\mathcal{S}_{2} : Identity: Clearly $\theta\left(e_{G}\right)=e_{H} \in H$ and hence $e_{G} \in \theta^{-1}(B)$.
$\mathcal{S}_{3}:$ Inverse: Let $g \in \theta^{-1}(B)$, then $\theta(g) \in B$. Therefore, $\theta(g)^{-1}=\theta\left(g^{-1}\right) \in B$. Hence $g^{-1} \in \theta^{-1}(B)$.

Therefore, $\theta^{-1}(B) \leq G$.

Theorem 5.21.2

If $\theta: G \rightarrow H$ is a homomorphism, then $\operatorname{ker} \theta \leq G$. Moreover, θ is $1-1$ if and only if $\operatorname{ker} \theta=\left\{e_{G}\right\}$.

Proof:

We show the three conditions of a subgroup as follows:
$\mathcal{S}_{1}:$ Closure: Let $a, b \in \operatorname{ker} \theta$, then $a, b \in G$ with $\theta(a)=\theta(b)=e_{H}$. Thus, $\theta(a b)=\theta(a) \theta(b)=$ $e_{H} e_{H}=e_{H}$. Thus $a b \in \operatorname{ker} \theta$.
\mathcal{S}_{2} : Identity: Clearly $e_{G} \in \operatorname{ker} \theta$ since $\theta\left(e_{G}\right)=e_{H}$.
$\mathcal{S}_{3}:$ Inverse: Let $a \in \operatorname{ker} \theta$ then $a, a^{-1} \in G$. Thus

$$
\theta\left(a^{-1}\right)=\theta(a)^{-1}=e_{H}^{-1}=e_{H} \Rightarrow a^{-1} \in \operatorname{ker} \theta .
$$

Therefore, $\operatorname{ker} \theta \leq G$. Next We show the if and only if statement:
$" \Rightarrow$ ": Assume that θ is $1-1$. Since $e_{G} \in \operatorname{ker} \theta \leq G$ and the identity is unique then $\operatorname{ker} \theta=$ $\left\{e_{G}\right\}$.
$" \Leftarrow ":$ Assume that $\operatorname{ker} \theta=\left\{e_{G}\right\}$. If $a, b \in G$ with $\theta(a)=\theta(b)$, then $\theta(a) \theta(b)^{-1}=e_{H}$ and hence $\theta(a) \theta\left(b^{-1}\right)=e_{H}$ and thus $\theta\left(a b^{-1}\right)=e_{H}$. Therefore, $a b^{-1} \in \operatorname{ker} \theta$ which implies that $a b^{-1}=e_{G}$. Hence $a=b$. Therefore θ is 1-1.

Example 5.21.3

Consider the homomorphism $\theta: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}$ defined by $\theta(x)=8 x$ for all $x \in \mathbb{Z}_{10}$. Find the $\operatorname{ker} \theta$.

Solution:

ker $\theta=\{0,5\}$ since $\theta(0)=\theta(5)=40=0$ while for instance $\theta(3)=24=4 \neq 0$ and hence $3 \notin \operatorname{ker} \theta$.

Definition 5.21.2

A subgroup N of a group G is called normal subgroup of G if $g n g^{-1} \in N$ for all $n \in N$ and all $g \in G$. In that case, we write $N \triangleleft G$.

Example 5.21.4
Show that every subgroup of an abelian group is a normal subgroup.

Solution:

If N is a subgroup of an abelian group G, then for all $n \in N$ and for all $g \in G$,

$$
g n g^{-1}=g g^{-1} n=n \in N .
$$

Thus $N \triangleleft G$.

Theorem 5.21.3

If G and H are groups and $\theta: G \rightarrow H$ is a homomorphism, then $\operatorname{ker} \theta \triangleleft G$.

Proof:

Recall that $\operatorname{ker} \theta \leq G$. Let $n \in \operatorname{ker} \theta$ and $g \in G$, then $\theta(n)=e_{H}$. So

$$
\theta\left(g n g^{-1}\right)=\theta(g) \theta(n) \theta\left(g^{-1}\right)=\theta(g) e_{H} \theta\left(g^{-1}\right)=\theta(g) \theta\left(g^{-1}\right)=e_{H} .
$$

Thus $g n g^{-1} \in \operatorname{ker} \theta$ and hence $\operatorname{ker} \theta \triangleleft G$.

Remark 5.21.2

Let H be a subgroup of a group G. Then H is normal subgroup of G iff for all $g \in G$

$$
g H=H g \Leftrightarrow g H g^{-1}=H \Leftrightarrow H=g^{-1} H g .
$$

Example 5.21.5

Let $H=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\} \leq S_{3}$. Is $H \triangleleft S_{3}$? Explain.

Solution:

Note that,

$$
\left.\left.\left.\begin{array}{rl}
e H & =\left\{e,\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\}=H e=\left\{e,\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\} \\
(1 & 2
\end{array}\right) H=\left\{\begin{array}{ll}
e,(1 & 2
\end{array}\right)\right\}=H\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left\{\begin{array}{ll}
e,\left(\begin{array}{l}
1
\end{array}\right. & 2
\end{array}\right)\right\}, ~ \$
$$

$$
\left(\begin{array}{ll}
1 & 3
\end{array}\right) H=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} \neq H\left(\begin{array}{ll}
1 & 3
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}
$$

Therefore, H is not a normal subgroup of S_{3}.

Exercise 5.21.2

 have $g H=H g$.

Example 5.21.6
Show that $H=\{0,3\} \triangleleft\left(\mathbb{Z}_{6},+\right)$.

Solution:

One way to show the statement: H is a subgroup of \mathbb{Z}_{6} which is an abelian group and hence H is normal subgroup.
Another way to show the statement: Show that H is a normal subgroup by showing that $g+H=H+g$ for all $g \in \mathbb{Z}_{6}$.

Exercise 5.21.3

Solve the following exercises from the book at pages 109-110:

- 21.2,
- $21.5-21.10$,
- 21.34.

Section 5.22: Quotient Groups

Theorem 5.22.1

Let H be a subgroup of a group G. The left cosets of H in G with multiplication is well defined by $a H b H=a b H$ if and only if $a H=H a$ for all $a, b \in G$.

Theorem 5.22.2

Let N be a normal subgroup of a group G, and let G / N denote the set of all left cosets of N in G. Then $G / N=\{g N: g \in G\}$ under the binary operation $\left(g_{1} N\right)\left(g_{2} N\right)=g_{1} g_{2} N$ is a group.

This group is called the quotient group (or factor group) of G by N. Moreover,

$$
|G / N|=\frac{|G|}{|N|}:=[G: H] .
$$

Proof:

We show that G / N is a group by showing the following three conditions:
$\mathcal{G}_{1}:$ Associative: If $a, b, c \in G$, then

$$
a N(b N c N)=a N(b c N)=(a(b c)) N=((a b) c) N=(a b) N c N=(a N b N) c N
$$

\mathcal{G}_{2} : Identity: Clearly, the identity element is $e N \in G / N$.
$\mathcal{G}_{3}:$ Inverse: For any element $g N \in G / N$, the inverse is $g^{-1} N \in G / N$.

Example 5.22.1

Let $H=\langle 2\rangle$. Show that $H \triangleleft \mathbb{Z}_{12}$. Find the order of \mathbb{Z}_{12} / H. Is $\mathbb{Z}_{12} / H \approx \mathbb{Z}_{2}$? Explain.

Solution:

Note that $H=\{0,2,4,6,8,10\}$.

- Since \mathbb{Z}_{12} is abelian, then $H \triangleleft \mathbb{Z}_{12}$.
- Note that \mathbb{Z}_{12} / H is a quotient group and hence $\left|\mathbb{Z}_{12} / H\right|=\frac{12}{6}=2$.
- Clearly $\mathbb{Z}_{12} / H=\left\{a+H: a \in \mathbb{Z}_{12}\right\}=\{H, 1+H\} \approx \mathbb{Z}_{2}$.

Example 5.22.2

Solution:

Clearly, $S_{3} / N=\left\{a N: a \in S_{3}\right\}$, but since $\left|S_{3} / N\right|=\frac{6}{3}=2$, we conclude that

$$
S_{3} / N=\left\{N,\left(\begin{array}{ll}
1 & 2
\end{array}\right) N\right\}, \text { where }\left(\begin{array}{ll}
1 & 2
\end{array}\right) N=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} .
$$

Theorem 5.22.3

If G is a group with a normal subgroup N, then the mapping $\theta: G \rightarrow G / N$ defined by $\theta(a)=a N$ for each $a \in G$ is a homomorphism of G onto G / N, and $\operatorname{ker} \theta=N$. It is called the natural homomorphism.

Proof:

Clearly the mapping θ is well defined and onto G / N. If $a, b \in G$, then

$$
\theta(a b)=a b N=a N b N=\theta(a) \theta(b) .
$$

Thus θ is a homomorphism. Finally, if $a \in G$, then

$$
a \in \operatorname{ker} \theta \Leftrightarrow \theta(a)=a N=e N=N
$$

because $e N$ is the identity element of G / N. Therefore, $a \in \operatorname{ker} \theta$ if and only if $a N=N$ and hence if and only if $a \in N$.

Theorem 5.22.4

Let G be a group with a normal subgroup N. Let G / N be a quotient group. Then,

1. If G is finite, then $|G / N|=\frac{|G|}{|N|}$.
2. If G is cyclic, then G / N is cyclic.
3. If G is abelian, then G / N is abelian.
4. If a has a finite order in G, then the order of $a N$ in G / N divides the order of a.

Theorem 5.22.5

Every quotient group of a cyclic group is cyclic.

Proof:

Let G / N be a quotient group of a cyclic group G. Assume that $G=\langle a\rangle$ for some $a \in G$. If $g \in G$, then $g=a^{n}$ for some $n \in \mathbb{Z}$ since G is cyclic. Hence $g N=a^{n} N=(a N)^{n}$ for any element $g N \in G / N$. Thus, $G / N=\langle a N\rangle$ and so G / N is cyclic.

Theorem 5.22.6

If H and K are normal subgroups of a group G, then $H \cap K \triangleleft G$.

Proof:

For all $g \in G$ and for all $x \in H \cap K$, we have $x \in H$ and $x \in K$; hence $g x g^{-1} \in H$ and $g x g^{-1} \in K$ and hence $g x g^{-1} \in H \cap K$. Therefore, $H \cap K$ is normal.

Theorem 5.22.7

If H and K are normal subgroup of a group G and $H \cap K=\{e\}$, then $h k=k h$ for all $h \in H$ and $k \in K$.

Proof:

Let $g=h k h^{-1} k^{-1} \in G$. But K is normal and hence $h k h^{-1} \in K$ and $k^{-1} \in K$ and thus $g=h k h^{-1} k^{-1} \in K$. Also H is normal and hence $h^{-1} \in H$ which implies that $k h^{-1} k^{-1} \in H$ and hence $g=h k h^{-1} k^{-1} \in H$. Therefore, $g \in H \cap K=\{e\}$; hence $g=e$ and hence $h k=k h$ for all $h \in H$ and $k \in K$.

Example 5.22.3

Prove that if $N \triangleleft G$ and H is any subgroup of G, then $N \cap H \triangleleft H$.

Solution:

Note that $N \cap H \leq G$ and $N \cap H \subseteq H$ implies that $N \cap H \leq H$. Let $h \in H$ and $x \in N \cap H$. Then $x \in N$ and $x \in H$ and $h^{-1} \in H$ and hence $h x h^{-1} \in H$ since $H \leq G$. Also $h x h^{-1} \in N$ since $N \triangleleft G$. Therefore, $h x h^{-1} \in N \cap H$. That is $N \cap H \triangleleft H$.

Theorem 5.22.8: The Fundamental Homomorphism Theorem

Let G and H be groups and let $\theta: G \rightarrow H$ be a homomorphism from G onto H with $\operatorname{ker} \theta=K$. Then the mapping $\Phi: G / K \rightarrow H$ defined by $\Phi(a K)=\theta(a)$ for each $a K \in G / K$ is an isomorphism of G / K onto H. Therefore, $G / K \approx H$.

Proof:

Onto: Clearly Φ is onto H since θ is onto H. For any $h \in H$ there is $a \in G$ such that $\theta(a)=h=\Phi(a K)$ for $a K \in G / K$.
1-1: We show that Φ is 1-1 iff $\operatorname{ker} \Phi=\{e K\}$. Let $a K \in \operatorname{ker} \Phi$, then $\Phi(a K)=\theta(a)=e_{H}$ and hence $a \in \operatorname{ker} \theta=K$ iff $a K=K=e K$. Thus, $\operatorname{ker} \Phi=\{e K\}$ and hence Φ is 1-1.
homomorphism: For any $a, b \in G$, we have:

$$
\Phi(a K b K)=\Phi(a b K)=\theta(a b)=\theta(a) \theta(b)=\Phi(a K) \Phi(b K)
$$

Therefore, $G / K \approx H$.

Example 5.22.4

For integer $n \geq 2$, show that $\mathbb{Z} / n \mathbb{Z} \approx \mathbb{Z}_{n}$; or similarly $\mathbb{Z} /\langle n\rangle \approx \mathbb{Z}_{n}$.

Solution:

Let $G=\mathbb{Z}$ and $H=\mathbb{Z}_{n}$ and $K=n \mathbb{Z}=\langle n\rangle$. Let $\theta: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ be defined by $\theta(a)=[a]$ which is onto homomorphism. Also, we know that $\operatorname{ker} \theta=\{x \in \mathbb{Z}:[x]=[0]\}=\{n k: k \in \mathbb{Z}\}=n \mathbb{Z}=$ $\langle n\rangle=K$. Therefore, by the Fundamental Homomorphism Theorem, we get $G / K \approx H$.

Exercise 5.22.1

Solve the following exercises from the book at pages 114:

- $22.5-22.6$.

The Index

Symbols
ϕ-function 60
A
abelian group 20
alternating group 36
associative 12
associative law 12
B
bijection 4
binary operation 10
closed 10
closure 10
C
Cartesian product 10
Cayley table 11
center 38
centralizaer 38
closed 10
closure 10
codomain 3
common
divisor 56
commutative 12
commutative law 12
Composition 6
congruence 43, 47
congruence class 48
congruent 47
coset 79
left 79
right 79
cycle 29
disjoint 29
cyclic 67
cyclic decomposition 29
cyclic group 88
cyclic subgroup 68
D
direct product 75
direct product group 75
disjoint cycle 29
divides 47
divisibility 43
divisible 47
division algorithm 47, 50
domain 3
E
equivalence 43
class 44
relation 43
equivalence class 44
equivalence relation 43
Euclidean algorithm 56
Euler ϕ-function 60
Euler phi-function 60

F

factor group 111
factorization 60
function 3
one-to-one 3
onto 3
G
generator 68
order 69
greatest common divisor 56
group 19, 65
abelian 20
alternating group 36
cyclic 67, 88
direct product 75
factor 111
generator 68
homomorphism 105
infinite 22
isomorphism 95
kernel 105
non-abelian 20
normal 107
order 22
infinite 22
quotient 111
subgroup 32
symmetric 27
H
homomorphism 105
natural 112

I

identity 13
image 3
improper subgroup 33
index 88
inverse 13
isomorphism 95
K
k-cycle 29
kernel 105
L
Lagrange's Theorem 88
least integer principle 49
left coset 79
M
mapping 3
bijection 4
identity 7
inverse 8
invertible 6, 8
modulo 53
N
natural homomorphism 112
non-abelian group 20
normal 107
O
operation
associative 12
binary 10
associative 12
commutative 12
commutative 12
order 22, 69
P
partition 44
permutation 27
cycle 29
cyclic 29
cyclic decomposition 29
even 35
k-cycle 29
multiplication 27
odd 35
transposition 35
phi-function 60
preimage 3
product
Cartesian 10, 75
proper subgroup 33
Q
quotient group 111
R
reflexive 43
relation 43
equivalence 43
reflexive 43
symmetric 43
transitive 43
right coset 79
S
subgroup 32
center 38
centralizer 38
cyclic 68
improper 33
index 88
normal 107
proper 33
trivial 33
symmetric 43
symmetric group 27
identity 28
inverse 28
T
table 11
Cayley 11
transitive 43
transposition 35
trivial subgroup 33

