Advanced Linear Algebra: Math 363

Dr. Abdullah Al-Azemi

Mathematics Department Kuwait University

December 21, 2019

Contents

0	Review								
	0.1	Fields	1						
	0.2	Some Facts About Complex Numbers $\mathbb C$	3						
1	Vector Spaces 5								
	1.2	Vector Spaces	5						
	1.3	Subspaces	10						
	1.4	Linear Combinations and Systems of Linear Equations	14						
	1.5	Linear Dependence and Linear Independence	21						
	1.6	Bases and Dimension	26						
2	Linear Transformations and Matrices 33								
	2.1	Linear Transformations, Null Space, and Ranges	35						
	2.2	The Matrix Representation of Linear Transformation	49						
	2.5	The Change of Coordinate Matrix	61						
5	Diagonalization								
	5.1	Eigenvalues and Eigenvectors	67						
	5.2	Diagonalizability	81						
	5.4	Invariant Subspaces and The Cayley-Hamilton Theorem	91						
6	Inne	Inner Product Spaces 99							
	6.1	Inner Product and Norms	99						
	6.2	The Gram-Schmidt Orthogonalization Process	107						

6.3	The Adjoint of a Linear Operator	114
6.4	Self-Adjoint, Normal, and Unitary Operators	119

()

Section 0.1: Fields

Definition 0.1.1

A field \mathbb{F} is a set on which two operations + and \cdot (called addition and multiplication, respectively) are defined, such that for each pair of elements $x, y \in \mathbb{F}$, there are unique elements x + y and $x \cdot y$ in \mathbb{F} for which the following properties hold for all elements $a, b, c \in \mathbb{F}$.

F1.
$$a + b = b + a$$
 and $a \cdot b = b \cdot a$ (Commutativity).

F2. (a+b) + c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativity).

F3. There are unique elements 0 and 1 in \mathbb{F} such that

(identities): 0 + a = a and $1 \cdot a = a$.

F4. For each element $a \in \mathbb{F}$ and each nonzero element $b \in \mathbb{F}$, there exist unique elements c and d in \mathbb{F} such that

(inverses): a + c = 0 and $b \cdot d = 1$.

F5. $a \cdot (b+c) = a \cdot b + a \cdot c$

(distributivity).

Example 0.1.1

The following sets are fields with the usual definitions of addition and multiplication:

1. real numbers \mathbb{R} , and rational numbers \mathbb{Q} .

2. $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \subseteq \mathbb{R}.$

Example 0.1.2

The field $\mathbb{Z}_2 = \{0, 1\}$ with the operations of addition and multiplication defined by

 $0 + 0 = 0, \qquad 0 + 1 = 1 + 0 = 1, \qquad 1 + 1 = 0,$ $0 \cdot 0 = 0, \qquad 0 \cdot 1 = 1 \cdot 0 = 0, \qquad \text{and } 1 \cdot 1 = 1.$

Remark 0.1.1

The sets \mathbb{Z}^+ , \mathbb{Z}^- , and \mathbb{Z} are not fields since the property **F4** does not hold for all of the three sets.

Theorem 0.1.1

For any elements a, b, and c in a field \mathbb{F} , the following statements hold:

1. The **Cancellation Laws** $\begin{cases} \text{If } a + c = b + c, \text{ then } a = b, \\ \text{If } ac = bc \text{ and } c \neq 0, \text{ then } a = b. \end{cases}$

2. $a \cdot 0 = 0.$

3.
$$(-a) \cdot b = a \cdot (-b) = -(a \cdot b).$$

4. $(-a) \cdot (-b) = a \cdot b$.

Definition 0.1.2

In a field \mathbb{F} , the smallest positive integer p such that the sum of p 1's is 0 is called the **characteristic** of \mathbb{F} . If no such positive integer exists, then \mathbb{F} is said to have characteristic zero.

Note that \mathbb{Z}_2 has characteristic 2, while \mathbb{R} has characteristic zero.

Section 0.2: Some Facts About Complex Numbers \mathbb{C}

Definition 0.2.1

A compleax number is an expression of the form z = a + bi, where a and b are real numbers called the real part and the imaginary part of z, respectively. Note that $i = \sqrt{-1}$ and hence $i^2 = -1$.

The sum and product of two complex numbers z = a + bi and w = c + di are defined by

z + w = (a + c) + (b + d)i, and zw = (a + bi)(c + di) = (ac - db) + (ad + bc)i.

Definition 0.2.2

The complex conjugate of a complex number z = a + bi is the complex number $\overline{z} = a - bi$. Moreover, the absolute value (or modulus) of z is the real number $\sqrt{a^2 + b^2}$.

Let $z = a + ib, w = c + di \in \mathbb{C}$ for some $a, b, c, d \in \mathbb{R}$, then the following statements are true:

Facts						
1. $\overline{\overline{z}} = z$.	$6. zw = z \cdot w .$					
2. $\overline{z+w} = \overline{z} + \overline{w}$.	7. $\left \frac{z}{w}\right = \frac{ z }{ w }$, if $w \neq 0$.					
3. $\overline{zw} = \overline{z} \cdot \overline{w}$.	8. $ z - w \le z + w \le z + w .$					
4. $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$, if $w \neq 0$.	9. $z + \overline{z} = 2Re(z) = 2a$.					
5. $z \overline{z} = z ^2$.	10. $z - \overline{z} = 2Im(z) = 2b.$					

Chapter 0. Review

1 Vector Spaces

Section 1.2: Vector Spaces

An object of the form (x_1, x_2, \dots, x_n) , where x_1, \dots, x_n are elements of a field \mathbb{F} , is called an *n*-tuple. Such object is called a **vector**. Moreover, the set of all vectors with entries from \mathbb{F} is denoted by \mathbb{F}^n . The elements x_1, \dots, x_n are called the **entries** or **components**.

Definition 1.2.1

A vector space (or linear space) \mathbb{V} over a field \mathbb{F} is a set of elements on which two operations (called addition and scalar multiplication) are defined so that

(a) If $x, y \in \mathbb{V}$, then $x + y \in \mathbb{V}$; that is, " \mathbb{V} is closed under +".

VS1. x + y = y + x for all $x, y \in \mathbb{V}$.

VS2. (x+y) + z = x + (y+z) for all $x, y, z \in \mathbb{V}$.

VS3. There exists an element **0** in \mathbb{V} such that $x + \mathbf{0} = x$ for each $x \in \mathbb{V}$.

VS4. For each $x \in \mathbb{V}$, there exists an element $y \in \mathbb{V}$ such that $x + y = \mathbf{0}$.

(β) If $x \in \mathbb{V}$ and $a \in \mathbb{F}$, then $ax \in \mathbb{V}$; that is, " \mathbb{V} is closed under \cdot ".

VS5. For each $x \in \mathbb{V}$, 1x = x.

VS6. For each pair of elements $a, b \in \mathbb{F}$ and each element $x \in \mathbb{V}$, (ab)x = a(bx).

VS7. For each $a \in \mathbb{F}$ and $x, y \in \mathbb{V}$, a(x+y) = ax + ay.

VS8. For each $a, b \in \mathbb{F}$ and $x \in \mathbb{V}$, (a+b)x = ax + bx.

Remark 1.2.1

A vector space \mathbb{V} along with operation + and \cdot is denoted by $(\mathbb{V}, +, \cdot)$.

Theorem 1.2.1

For any positive integer n, $(\mathbb{R}^n, +, \cdot)$ is a vector space.

Example 1.2.1

Let $M_{m \times n}(\mathbb{F}) = \{ \text{all } m \times n \text{ matrices over a field } \mathbb{F} \}$. Then $(M_{m \times n}(\mathbb{F}), +, \cdot)$ is a vector space where for any $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(\mathbb{F})$ and for $c \in \mathbb{F}$, we have

$$(A+B)_{ij} = (a_{ij} + b_{ij})$$
 and $(cA)_{ij} = c a_{ij}$,

for all $1 \le i \le m$ and $1 \le j \le n$.

Example 1.2.2

Let S be a nonempty set and \mathbb{F} be any field, and let $\mathcal{F}(S,\mathbb{F})$ denote the set of all functions from S to \mathbb{F} . Two functions $f, g \in \mathcal{F}(S,\mathbb{F})$ are called equal if f(x) = g(x) for each $x \in S$. The set $\mathcal{F}(S,\mathbb{F})$ is a vector space with the operations of addition and scalar multiplication defined for $f, g \in \mathcal{F}(S,\mathbb{F})$ and $c \in \mathbb{F}$ by

$$(f+g)(x) = f(x) + g(x)$$
 and $(cf)(x) = c f(x),$

for each $x \in S$.

Example 1.2.3

Let $S = \{(a, b) : a, b \in \mathbb{R}\}$. For any $(a, b), (x, y) \in S$ and $c \in \mathbb{R}$, define

 $(a,b) \oplus (x,y) = (a+x,b-y)$ and $c \odot (a,b) = (ca,cb)$.

Is (S, \oplus, \odot) a vector space?

Solution:

No. Since (VS1), (VS2), and (VS8) are not satisfied (verify!). For instace, $(1,2) \oplus (1,3) \neq (1,3) \oplus (1,2)$.

Theorem 1.2.2: Cancellation Law for Vector Addition

If x, y, and z are vectors in a vector space \mathbb{V} such that x + z = y + z, then x = y.

Proof:

There is a vector $v \in \mathbb{V}$ such that $z + v = \mathbf{0}$. Then

$$x = x + \mathbf{0} = x + (z + v) = (x + z) + v$$
$$= (y + z) + v = y + (z + v) = y + \mathbf{0} = y.$$

Theorem 1.2.3

Let $(\mathbb{V}, +, \cdot)$ be a vector space. Then

- (a) The zero vector in \mathbb{V} is unique.
- (b) The addition inverse for each element in \mathbb{V} is unique.

Proof:

(a): Assume that $\mathbf{0}_1$ and $\mathbf{0}_2$ are two zeros in \mathbb{V} , then for any $x \in \mathbb{V}$, we have $x + \mathbf{0}_1 = x = x + \mathbf{0}_2$. Thus, using the cancellation law we have

$$x + \mathbf{0}_1 = x + \mathbf{0}_2 \qquad \Rightarrow \qquad \mathbf{0}_1 = \mathbf{0}_2.$$

(b): For any $x \in \mathbb{V}$, assume that y and z are two additive inverses for x. Then, by cancellation law we have

$$x + y = \mathbf{0} = x + z \qquad \Rightarrow \qquad y = z$$

Theorem 1.2.4

In any vector space \mathbb{V} , the following statements are true.

- (a) 0 x = 0 for each $x \in \mathbb{V}$.
- (b) (-a)x = -(ax) = a(-x) for each $a \in \mathbb{F}$ and each $x \in \mathbb{V}$.
- (c) $a \mathbf{0} = \mathbf{0}$ for each $a \in \mathbb{F}$.

Proof:

(a): Clearly $0x + \mathbf{0} = 0x = (0 + 0)x = 0x + 0x$, and by cancellation law, $0x = \mathbf{0}$.

(b): The element -(ax) is the unique element in \mathbb{V} such that $ax + [-(ax)] = \mathbf{0}$. But $ax + (-a)x = (a + (-a))x = 0x = \mathbf{0}$ as well. Hence, -(ax) = (-a)x. Moreover,

$$a(-x) = a[(-1)x] = (a(-1))x = (-a)x.$$

(c): Note that $\mathbf{0} = \mathbf{0} + \mathbf{0}$. Thus,

$$a\mathbf{0} + \mathbf{0} = a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0} + a\mathbf{0}.$$

By the cancellation law, we get $a\mathbf{0} = \mathbf{0}$.

Exercise 1.2.1

Solve the following exercises from the book at pages 12 - 16:

• 13, 17, 18.

Section 1.3: Subspaces

Definition 1.3.1

A subset \mathbb{W} of a vector space \mathbb{V} over a field \mathbb{F} is called **subspace** of \mathbb{V} if \mathbb{W} is a vector space over \mathbb{F} with operations of addition and scalar multiplication defined on \mathbb{V} .

Note that, if \mathbb{V} is any vector space, then $\{\mathbf{0}\}$ and \mathbb{V} are both subspaces of \mathbb{V} .

Theorem 1.3.1

Let \mathbb{V} be a vector space over a field \mathbb{F} and \mathbb{W} is a subset of \mathbb{V} . Then, \mathbb{W} is a subspace of \mathbb{V} if and only if:

- 1. $\mathbf{0} \in \mathbb{W}$.
- 2. For any $x, y \in \mathbb{W}, x + y \in \mathbb{W}$.
- 3. For any $x \in \mathbb{W}$ and any $a \in \mathbb{F}$, $ax \in \mathbb{W}$.

Example 1.3.1

Show that the set \mathbb{W} of all symmetric matrices (that is matrices with property $A^t = A$) is a subspace of $M_{n \times n}(\mathbb{F})$.

Solution:

We need to show the three conditions of Theorem 1.3.1.

- 1. Clearly, $\mathbf{0}_{n \times n}^t = \mathbf{0}_{n \times n}$ and hence $\mathbf{0}_{n \times n} \in \mathbb{W}$.
- 2. Let $A, B \in \mathbb{W}$. Then $A^t = A$ and $B^t = B$ and hence $(A + B)^t = A^t + B^t = A + B$. Thus, $A + B \in \mathbb{W}$.
- 3. Let $A \in \mathbb{W}$ and $a \in \mathbb{F}$. Then $A^t = A$ and hence $(aA)^t = aA^t = aA$. Thus, $aA \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{F})$.

Note that the set \mathbb{W} of all non-singular matrices in $M_{n \times n}(\mathbb{F})$ is not a subspace of $M_{n \times n}(\mathbb{F})$. Can you guess why!?

Definition 1.3.2

The **trace** of an $n \times n$ matrix A, denoted tr(A), is the sum of the diagonal entries of A. That is, for $A = (a_{ij})$,

$$tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}.$$

Example 1.3.2: Exercise #6 @ page 20

Show that tr(cA + dB) = ctr(A) + dtr(B) for any $n \times n$ matrices A and B.

Solution:

If
$$A = (a_{ij})$$
 and $B = (b_{ij})$, then $c A = (c a_{ij})$ and $d B = (d b_{ij})$ for $1 \le i, j \le n$. Thus

$$tr(cA + dB) = (ca_{11} + db_{11}) + (ca_{22} + db_{22}) + \dots + (ca_{nn} + db_{nn})$$
$$= c(a_{11} + a_{22} + \dots + a_{nn}) + d(b_{11} + b_{22} + \dots + b_{nn})$$
$$= ctr(A) + dtr(B).$$

Example 1.3.3

Show that the set $\mathbb{W} = \{ A \in M_{n \times n}(\mathbb{F}) : tr(A) = 0 \}$ is a subspace of $M_{n \times n}(\mathbb{F})$.

Solution:

We need to show the three conditions of Theorem 1.3.1.

- 1. $tr(\mathbf{0}_{n \times n}) = \sum_{i=1}^{n} 0 = 0$ and hence $\mathbf{0}_{n \times n} \in \mathbb{W}$.
- 2. Let $A, B \in \mathbb{W}$. Then tr(A) = tr(B) = 0 and hence

$$tr(A+B) = tr(A) + tr(B) = 0 + 0 = 0.$$

Thus $A + B \in \mathbb{W}$.

3. Let $A \in \mathbb{W}$ and $c \in \mathbb{F}$, then tr(cA) = ctr(A) = 0 and hence $cA \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{F})$.

Example 1.3.4

Let $\mathbb{W} = \{ (x, y, z) : z = x - y \}$. Show that \mathbb{W} is a subspace of \mathbb{R}^3 .

Solution:

1. Clearly $\mathbf{0} = (0, 0, 0) \in \mathbb{W}$ since 0 = 0 - 0.

2. Let $x = (a, b, c), y = (d, e, f) \in \mathbb{W}$. Then c = a - b and f = d - e, and hence x + y = (a + d, b + e, c + f) which is in \mathbb{W} since

$$c + f = (a - b) + (d - e) = (a + d) - (b + e).$$

3. Let $x = (a, b, c) \in \mathbb{W}$ and $k \in \mathbb{F}$. Then c = a - b and hence kc = ka - kb; that is $kx = (ka, kb, kc) \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of \mathbb{R}^3 .

Definition 1.3.3

Let $\mathbb{P}(\mathbb{F})$ denote the set of all polynomials with coefficients from a field \mathbb{F} . For integer $n \ge 0$, let $\mathbb{P}_n(\mathbb{F})$ be the set of all polynomials of degree less than or equal n with coefficients from \mathbb{F} .

For instance, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{P}_n(\mathbb{F})$. Note that f(x) = 0 means that $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$ and hence f is called the **zero polynomial**. For our convenience, we define the degree of the zero polynomial as -1.

Example 1.3.5

Show that $\mathbb{P}_n(\mathbb{F})$ is a subspace of $\mathbb{P}(\mathbb{F})$.

Solution:

- 1. Note that the zero polynomial is of degree -1 and hence it is in $\mathbb{P}_n(\mathbb{F})$.
- 2. Clearly the sum of two polynomial of degrees less than or equal n is another polynomial of degree less than or equal n.
- 3. The product of a scalar and a polynomial of degree less than or equal n is a polynomial of degree less than or equal n.

Therefore, $\mathbb{P}_n(\mathbb{F})$ is a subspace of $\mathbb{P}(\mathbb{F})$.

Exercise 1.3.1

Solve the following exercises from the book at pages 19 - 23:

- 6, 8 : a, b, c.
- 11.

Section 1.4: Linear Combinations and Systems of Linear Equations

Definition 1.4.1

Let $S = \{x_1, x_2, \dots, x_n\}$ be a nonempty subset of vectors in a vector space \mathbb{V} over a field \mathbb{F} . A vector $x \in \mathbb{V}$ is called a **linear combination** of vectors in S if there exist $c_1, c_2, \dots, c_n \in \mathbb{F}$ such that

$$x = c_1 x_1 + c_2 x_2 + \dots + c_n x_n. \tag{1.4.1}$$

In that case, the scalars c_1, c_2, \cdots, c_n are called the **coefficients** of the linear combination.

Recall from Math-111: To solve a system of linear equations Ax = B, we simplify the original system [A|B] to its *reduced row echelon form* (r.r.e.f for short) using the following elementary row operations:

- 1. Interchanging two rows.
- 2. Multiplying a row by a nonzero scalar.
- 3. Adding a multiple of a row to another.

Example 1.4.1

Is x = (2, 1, 5) a linear combination of $S = \{x_1, x_2, x_3\} \subseteq \mathbb{R}^3$, where $x_1 = (1, 2, 1), x_2 = (1, 0, 2)$, and $x_3 = (1, 1, 0)$? Explain.

Solution:

Note that x is a linear combination of $\{x_1, x_2, x_3\}$ if we find scalars $c_1, c_2, c_3 \in \mathbb{R}$ such that $x = c_1x_1 + c_2x_2 + c_3x_3$. Thus, we consider

$$(2,1,5) = c_1(1,2,1) + c_2(1,0,2) + c_3(1,1,0).$$

That is

```
c_1 + c_2 + c_3 = 2
2c_1 + 0 + c_3 = 1
c_1 + 2c_2 + 0 = 5
```

We then find the r.r.e.f. of that system as follows:

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 0 & 1 & 1 \\ 1 & 2 & 0 & 5 \end{bmatrix} \xrightarrow{\text{r.r.e.f.}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

That is, $c_1 = 1$, $c_2 = 2$, and $c_3 = -1$ and therefore $x = x_1 + 2x_2 - x_3$.

Definition 1.4.2

Let $S = \{x_1, x_2, \dots, x_n\}$ be a nonempty subset of vectors in a vector space \mathbb{V} over a field \mathbb{F} . The **span** of *S*, denoted **span** *S*, is the set of all linear combinations of the vectors in *S*. For convenience, we define **span** $\phi = \{0\}$, where ϕ is the empty set.

Theorem 1.4.1

Let $S = \{x_1, x_2, \dots, x_n\}$ be a subset of vectors in a vector space \mathbb{V} . The **span** S is a subspace of \mathbb{V} .

Proof:

Proved in Math 111. Let $\mathbb{W} = \operatorname{span} S = \{ z : z = c_1 x_1 + \cdots + c_n x_n \} \subseteq \mathbb{V}$. Then

- 1. $0z = 0x_1 + 0x_2 + \dots + 0x_n = 0 \in \mathbb{W}.$
- 2. Let $z_1 = c_1 x_1 + \dots + c_n x_n, z_2 = d_1 x_1 + \dots + d_n x_n \in \mathbb{W}$. Then,

$$z_1 + z_2 = (c_1x_1 + \dots + c_nx_n) + (d_1x_1 + \dots + d_nx_n) = (c_1 + d_1)x_1 + \dots + (c_n + d_n)x_n \in \mathbb{W}.$$

3. Let $z = c_1 x_1 + \cdots + c_n x_n \in \mathbb{W}$ and let a be any scalar. Then

$$az = a(c_1x_1 + \dots + c_nx_n) = ac_1x_1 + \dots + ac_nx_n \in \mathbb{W}.$$

Therefore, \mathbb{W} is a subspace of \mathbb{V} .

Example 1.4.2

Let $S = \{1 + x, 2 - x^2, 1 + x + x^2\}$ be a subset of $\mathbb{P}_2(\mathbb{R})$. Is x^2 a linear combination of S? Explain.

Solution:

Considering the system $x^2 = c_1(1+x) + c_2(2-x^2) + c_3(1+x+x^2)$, we get

$$x^{2} = (c_{1} + 2c_{2} + c_{3}) \cdot 1 + (c_{1} + c_{3}) \cdot x + (-c_{2} + c_{3}) \cdot x^{2}.$$

Hence

 $c_1 + 2c_2 + c_3 = 0$ $c_1 + 0 + c_3 = 0$ $0 - c_2 + c_3 = 1$

We then find the r.r.e.f. of that system as follows:

1	2	1	0		1	0	0	-1
1	0	1	0	$\xrightarrow{\text{r.r.e.f.}}$	0	1	0	0
0	-1	1	1		0	0	1	$\begin{bmatrix} -1\\0\\1\end{bmatrix}$

Therefore, $x^2 = -1 \cdot (1+x) + 0 \cdot (2-x^2) + 1 \cdot (1+x+x^2)$, and x^2 is a linear combination of S.

Example 1.4.3: Solving Example 1.3.4 in a different way

Show that $\mathbb{W} = \{ (x, y, z) : z = x - y \}$ is a subspace of \mathbb{R}^3 .

Solution:

Note that
$$\mathbb{W} = \{ (x, y, x - y) : x, y \in \mathbb{R} \} = \{ x(1, 0, 1) + y(0, 1, -2) : x, y \in \mathbb{R} \}.$$
 That is,
 $\mathbb{W} = \text{span} \{ (1, 0, 1), (0, 1, -1) \}.$ Therefore, \mathbb{W} is a subspace of \mathbb{R}^3 .

Example 1.4.4

Show that
$$\mathbb{W} = \left\{ \begin{pmatrix} a & a-b \\ a+b & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
 is a subspace of $M_{2\times 2}(\mathbb{R})$.
Solution:
Clearly $\mathbb{W} = \left\{ a \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} : a, b \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\}$ and therefore it is a subspace of $M_{2\times 2}(\mathbb{R})$.

Example 1.4.5
Determine whether
$$x = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$$
 is in the span *S*, where $S = \begin{cases} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \rbrace$.
Solution:
Consider the system $\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Thus,
 $1 = a + c, 2 = b + c, -3 = -a, \text{ and } 4 = b.$

Therefore, a = 3, b = 4, c = -2 and hence $x \in \text{span } S$ since it is a linear combination of S.

Definition 1.4.3

Let $S = \{x_1, x_2, \dots, x_n\}$ be a subset of a vector space \mathbb{V} . If every vector in \mathbb{V} is a linear combination of S, we say that S spans (or generates) \mathbb{V} or that \mathbb{V} is spanned (or generated) by S.

Example 1.4.6

Show that $S = \{x_1, x_2, x_3\}$ spans \mathbb{R}^3 , where $x_1 = (1, 1, 0), x_2 = (1, 0, 1)$, and $x_3 = (0, 1, 1)$.

Solution (1):

Let $x = (a, b, c) \in \mathbb{R}^3$ by an arbitrary vector. Consider the system $x = c_1 x_1 + c_2 x_2 + c_3 x_3$ and work its matrix form to get the system in its reduced form as follows:

$$\begin{bmatrix} 1 & 1 & 0 & a \\ 1 & 0 & 1 & b \\ 0 & 1 & 1 & c \end{bmatrix} \xrightarrow{\text{r.r.e.f.}} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2}(a+b-c) \\ 0 & 1 & 0 & \frac{1}{2}(a-b+c) \\ 0 & 0 & 1 & \frac{1}{2}(-a+b+c) \end{bmatrix}$$

Thus, $c_1 = \frac{1}{2}(a+b-c), c_2 = \frac{1}{2}(a-b+c), c_3 = \frac{1}{2}(-a+b+c)$ and hence S generates \mathbb{R}^3 .

Solution (2):

We can solve the problem if we know that this system has at least one solution. So, we

compute the determinant of the associate matrix to the system

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0$$

Therefore, the system has a unique solution and hence S spans \mathbb{R}^3 .

Remark 1.4.1

For any nonnegative $n, S = \{1, x, x^2, \cdots, x^n\}$ spans $\mathbb{P}_n(\mathbb{R})$.

Example 1.4.7

Does the set $S = \{1 - x, x - x^2, 1 + x^2\}$ spans $\mathbb{P}_2(\mathbb{R})$? Explain.

Solution:

Consider any polynomial $ax^2 + bx + c \in \mathbb{P}_2(\mathbb{R})$. Then

$$ax^{2} + bx + c = c_{1}(1 - x) + c_{2}(x - x^{2}) + c_{3}(1 + x^{2}) = (c_{1} + c_{3}) \cdot 1 + (-c_{1} + c_{2}) \cdot x + (-c_{2} + c_{3}) \cdot x^{2}.$$
Thus
$$\begin{bmatrix} 1 & 0 & 1 & | & c \\ -1 & 1 & 0 & | & b \\ 0 & -1 & 1 & | & a \end{bmatrix}$$
has a unique solution since
$$\begin{vmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 2 \neq 0.$$

Thus, S spans $\mathbb{P}_2(\mathbb{R})$.

Example 1.4.8: Exercise #13 @ page 34

Show that if S_1 and S_2 are subsets of a vector space \mathbb{V} such that $S_1 \subseteq S_2$, then **span** $S_1 \subseteq$ **span** S_2 . If moreover, **span** $S_1 = \mathbb{V}$, then **span** $S_2 = \mathbb{V}$.

Solution:

Let $S_1 = \{x_1, x_2, \dots, x_k\} \subseteq S_2$ and let $x \in \text{span } S_1$. Then x can be written as a linear

combination of vectos of S_1 ; that is

$$x = c_1 x_1 + c_2 x_2 + \dots + c_k x_k,$$

for some scalars c_1, \dots, c_k . But then x is also a linear combination of vectors in S_2 since all vectors $x_1, \dots, x_k \in S_2$. Thus **span** $S_1 \subseteq$ **span** S_2 .

If span $S_1 = \mathbb{V}$, then we know that span S_2 is a subspace of \mathbb{V} containing span $S_1 = \mathbb{V}$. Therefore, span $S_2 = \mathbb{V}$.

Exercise 1.4.1

Solve the following exercises from the book at pages 32 - 35:

- 2: a, b, c, 3: a, b, c, 4: a, b.
- 5: a, b, e, f, g, h.
- 6 − 9.
- 13.

Section 1.5: Linear Dependence and Linear Independence

It is clear that there are many different subsets that generates a subspace \mathbb{W} of a vector space \mathbb{V} . In this section, we will try to get these subsets as small as possible by removing unnecessary vectors from those subsets.

Remark 1.5.1

 \mathbb{R}^n is generated by $\{E_1, E_2, \cdots, E_n\}$ where E_i is the vector whose all entries are 0 except for entry at position *i* which equals 1.

Definition 1.5.1

The set of vectors $S = \{x_1, x_2, \dots, x_n\}$ in a vector space \mathbb{V} is said to be **linearly dependent** if there exist scalars c_1, c_2, \dots, c_n , not all zero, such that

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n = 0. (1.5.1)$$

Otherwise, S is said to be **linearly independent**. That is, if whenever Equation (1.5.1) hold, we must have $c_1 = c_2 = \cdots = c_n = 0$. In that case, we say that the zero vector has only the **trivial representation** as a linear combination of the vectors of S.

Remark 1.5.2

The homogenous system Ax = 0 (with a square matrix A) has only trivial solution if and only if $|A| \neq 0$.

Example 1.5.1

Determine whether the set $S = \{ x_1 = (1, 0, 1), x_2 = (2, 1, 2), x_3 = (1, 1, 1) \}$ is linearly dependent or independent in \mathbb{R}^3 .

Solution (1):

We consider the homogenous system: $c_1x_1 + c_2x_2 + c_3x_3 = 0$. Solving this system, we see that

1	2 1 2	1	0	. [1	0	-1 1 0	0
0	1	1	0	$\xrightarrow{\text{r.r.e.f.}}$	0	1	1	0
[1	2	1	0		0	0	0	0

That is, $c_1 - c_3 = 0$ and $c_2 + c_3 = 0$. If $c_3 = t \in \mathbb{R}$, the system has non-trivial solutions $c_1 = t, c_2 = -t, c_3 = t$ and hence S is linearly dependent.

Solution (2):

Note that the determinant of matrix A (the matrix whose columns are the vectors of S) is 0, and hence the set S is linearly dependent.

Example 1.5.2

Find the values, if any, of α so that the set S is linearly independent in \mathbb{R}^3 , where

$$S = \{ x_1 = (-1, 0, -1), x_2 = (2, 1, 2), x_3 = (\alpha, 1, 1) \}$$

Solution:

Simply use the determinant of a matrix whose columns are the vectors of S. Consider the homogenous system Ax = 0 where $A = \begin{bmatrix} -1 & 2 & \alpha \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{bmatrix}$. Thus the system has only trivial solution if and only if S is linearly independent. Therefore, the $|A| \neq 0$. That is,

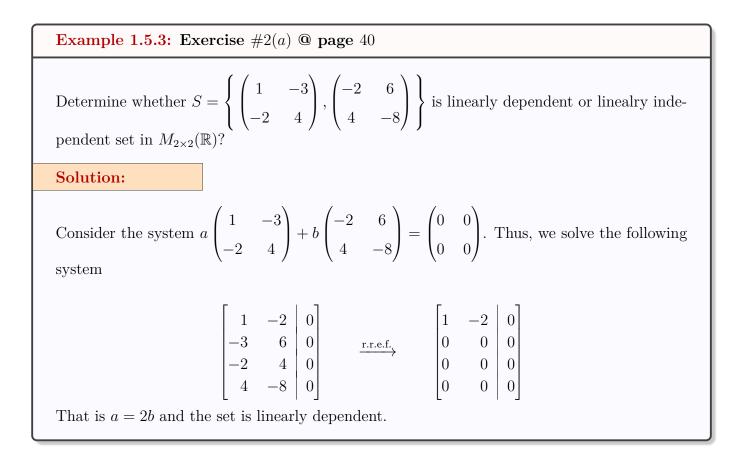
$$\begin{vmatrix} -1 & 2 & \alpha \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} \neq 0 \iff -1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - \begin{vmatrix} 2 & \alpha \\ 1 & 1 \end{vmatrix} \neq 0 \iff 1 - (2 - \alpha) \neq 0 \iff \alpha \neq 1.$$

Thus, S is linearly independent only if $\alpha \neq 1$.

Theorem 1.5.1

Let S_1 and S_2 be two subsets of a vector space \mathbb{V} with $S_1 \subseteq S_2$. Then

- 1. If S_1 is linearly dependent, then S_2 is linearly dependent.
- 2. If S_2 is linearly independent, then S_1 is linearly independent.



Example 1.5.4

Let $S = \{1 - x, x - x^2, -1 + x^2\} \subseteq \mathbb{P}_2(\mathbb{R})$. Determine whether or not S is linearly dependent.

Solution:

Consider

$$c_1(1-x) + c_2(x-x^2) + c_3(-1+x^2) = 0$$
$$(c_1 - c_3) \cdot 1 + (-c_1 + c_2) \cdot x + (-c_2 + c_3) \cdot x^2 = 0$$

By equating the coefficients of x^n on both sides of the equation for n = 0, 1, 2, we obtain the following homogenous system:

$$c_1 - c_3 = 0$$

 $-c_1 + c_2 = 0$
 $-c_2 + c_3 = 0$

That is $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$ But $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = 0.$ Which implies that the system has a non-trivial solution and hence S is linearly dependent.

Exercise 1.5.1

Solve the following exercises from the book at pages 40 - 42:

- 2: a, b, c, d, e, f.
- 4, 5, 6, 9

Exercise 1.5.2

Let x and y be two linearly independent vectors in a vector space \mathbb{V} . Show that the condition for the vectors ax + by and cx + dy to be linearly dependent is ad - bc = 0.

Solution:

Consider

$$r_1(ax + by) + r_2(cx + dy) = 0.$$

Then, $(r_1a + r_2c)x + (r_1b + r_2d)y = 0$ and hence $(r_1a + r_2c) = (r_1b + r_2d) = 0$ since x and y are linearly independent. Considering the second system

$$ar_1 + cr_2 = 0 (1.5.2)$$
$$br_1 + dr_2 = 0$$

For ax + by and cx + dy to be linear dependent, we must have nontrivial solutions to the system represented in (1.5.2). That is, $\begin{vmatrix} a & c \\ b & d \end{vmatrix} = 0$. That is ad - bc = 0.

Section 1.6: Bases and Dimension

Let \mathbb{V} be a vector space with a subspace \mathbb{W} . We note that if S is a generating set for \mathbb{W} and no proper subset of S is a generating set for \mathbb{W} , then S must be a linearly independent set.

Definition 1.6.1

A set β of distinct nonzero vectors in a vector space \mathbb{V} is called a **basis** for \mathbb{V} if and only if

- 1. β spans (generates) \mathbb{V} , and
- 2. β is linearly independent set in \mathbb{V} .

Moreover, the **dimension** of \mathbb{V} is the number of vectors in its finite basis β , denoted by $\dim(\mathbb{V})$. In that case, we say that \mathbb{V} is a **finite-dimensional vector space**.

Remark 1.6.1

- 1. In \mathbb{F}^n , the set $\{E_1 = (1, 0, \dots, 0), E_2 = (0, 1, 0, \dots, 0), \dots, E_n = (0, \dots, 0, 1)\}$ is a basis for \mathbb{F}^n . This basis is called **the standard basis** for \mathbb{F}^n . Therefore, $\dim(\mathbb{F}^n) = n$.
- 2. Let E^{ij} denote the matrix in $M_{m \times n}(\mathbb{F})$ whose all entries are 0 except the *ij*-entry is 1. The set $\{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$ is the standard basis for $M_{m \times n}(\mathbb{F})$. Therefore, $\dim(M_{m \times n}(\mathbb{F})) = mn$.
- 3. The set $\beta = \{1, x, x^2, \dots, x^n\}$ is the standard basis for the vector space $\mathbb{P}_n(\mathbb{F})$, and therefore $\dim(\mathbb{P}_n(\mathbb{F})) = n + 1$.

Theorem 1.6.1

Let \mathbb{V} be a vector space and $\beta = \{x_1, x_2, \cdots, x_n\}$ be a nonempty subset of \mathbb{V} . Then β is a basis for \mathbb{V} if and only if each $x \in \mathbb{V}$ can be uniquely expressed as a linear combination of vectors in β , that is, can be expressed in the form

 $x = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$, for unique scalars a_1, a_2, \cdots, a_n .

Proof:

Proved in Math-111. " \Rightarrow ": Let β be a basis for \mathbb{V} . If $x \in \mathbb{V}$, then $x \in \operatorname{span} \beta = \mathbb{V}$, and hence

$$x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

for some scalars a_1, \dots, a_n . Assume that x has another expression as

$$x = b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

for some scalars b_1, \dots, b_n . Thus

$$0 = x - x = (a_1 - b_1)x_1 + (a_2 - b_2)x_2 + \dots + (a_n - b_n)x_n.$$

But β is linearly independent set and hence $a_i - b_i = 0$ and therefore $a_i = b_i$ for $i = 1, \dots, n$. Thus, x has a unique expression as a linear combination of vectors in β .

" \Leftarrow ": Assume that every vector $x \in \mathbb{V}$ can be uniquely expressed as a linear combination of vectors in β . Then $\mathbb{V} = \operatorname{span} \beta$.

Also, $0 \in \mathbb{V}$, and there is unique scalars a_1, \dots, a_n such that $0 = a_1 x_1 + \dots + a_n x_n$. Note that multiplying both sides by a constant does not change the expression by assumption. Hence, $a_1 = a_2 = \dots = a_n = 0$. Thus β is linearly independent and hence β is a basis for \mathbb{V} .

Theorem 1.6.2

If a vector space \mathbb{V} is generated by a finite set S, then some subset of S is a basis for \mathbb{V} .

Corollary 1.6.1

Every basis for a finite-dimensional vector space $\mathbb V$ contains the same number of vectors.

Theorem 1.6.3

Let \mathbb{V} be an *n*-dimensional vector space and let $\beta = \{x_1, x_2, \cdots, x_n\}$ be a subset (with *n* vectors) of \mathbb{V} . Then,

- 1. If β spans \mathbb{V} , then β is a basis for \mathbb{V} .
- 2. If β is linearly independent, then β is a basis for \mathbb{V} .

Theorem 1.6.4

Let \mathbb{W} be a subspace of a finite-dimensional vector space \mathbb{V} . Then \mathbb{W} is finite-dimensional subspace and $\dim(\mathbb{W}) \leq \dim(\mathbb{V})$. Moreover, if $\dim(\mathbb{W}) = \dim(\mathbb{V})$, then $\mathbb{W} = \mathbb{V}$.

Example 1.6.1

Determine whether $S = \{ x_1 = (1, 0, -1), x_2 = (2, 5, 1), x_3 = (0, -4, 3) \}$ is a basis for \mathbb{R}^3 .

Solution:

Note that S contains $3 = \dim(\mathbb{R}^3)$, and thus it is enough to show that S is linearly independent (or S spans \mathbb{R}^3). In either cases, we can simply show that the associate matrix of the system is not equal to zero. That is

$$\begin{vmatrix} 1 & 2 & 0 \\ 0 & 5 & -4 \\ -1 & 1 & 3 \end{vmatrix} = (15+4) - (-8) = 27 \neq 0.$$

Thus S is a basis for \mathbb{R}^3 .

Example 1.6.2

Let $\mathbb{W} = \{ (x, y, z) : 2x + 3y - z = 0 \}$. Show that \mathbb{W} is a subspace of \mathbb{R}^3 and find its dimension.

Solution:

Clearly, $\mathbb{W} = \{(x, y, 2x + 3y) : x, y \in \mathbb{R}\} = \{x(1, 0, 2) + y(0, 1, 3)\}$. Therefore, $\mathbb{W} =$ **span** $\{(1, 0, 2), (0, 1, 3)\}$ which shows that \mathbb{W} is a subspace of \mathbb{R}^3 . Moreover, the set $\{(1, 0, 2), (0, 1, 3)\}$ is linearly independent set and hence it is a basis for \mathbb{W} . Therefore, $\dim(\mathbb{W}) = 2$.

Example 1.6.3

Let $\mathbb{W} = \{ (x, y, z, w) : x + y + z = 0 \text{ and } w = 2x \}.$

- 1. Show that \mathbb{W} is a subspace of \mathbb{R}^4 .
- 2. Find a basis for \mathbb{W} .

Solution:

(1): Clearly,

$$W = \{ (x, y, -x - y, 2x) : x, y \in \mathbb{R} \} = \{ x(1, 0, -1, 2) + y(0, 1, -1, 0) : x, y \in \mathbb{R} \}$$
$$= \mathbf{span} \{ (1, 0, -1, 2), (0, 1, -1, 0) \}$$

Therefore, \mathbb{W} is a subspace of \mathbb{R}^4 .

(2): Consider the system $c_1(1, 0, -1, 2) + c_2(0, 1, -1, 0) = (0, 0, 0, 0)$. It is clear that $c_1 = c_2 = 0$ and hence $\{(1, 0, -1, 2), (0, 1, -1, 0)\}$ is linearly independent set and is a basis for \mathbb{W} .

Example 1.6.4

Let
$$\mathbb{W} = \left\{ \begin{pmatrix} a+b & c \\ 2c & a-b \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) \right\}.$$

1. Show that \mathbb{W} is a subspace of $M_{2\times 2}(\mathbb{R})$.

2. What is $\dim(\mathbb{W})$?

Solution:

(1): Note that

$$\mathbb{W} = \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\}$$
$$= \mathbf{span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\}.$$

So, \mathbb{W} is a subspace of $M_{2\times 2}(\mathbb{R})$. (2): Consider the homogenous system $c_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Thus,

$$c_1 + c_2 = 0, \ c_3 = 0, \ 2c_3 = 0, \ \text{and} \ c_1 - c_2 = 0.$$

Hence $c_1 = c_2 = c_3 = 0.$ Therefore, $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\}$ is a basis for \mathbb{W} and $\dim(\mathbb{W}) = 3.$

Example 1.6.5

Let $\mathbb{W} = \{ f(x) \in \mathbb{P}_2(\mathbb{R}) : f(1) = 0 \}.$

- 1. Show that \mathbb{W} is a subspace of $\mathbb{P}_2(\mathbb{R})$.
- 2. What is $\dim(\mathbb{W})$?

Solution:

Note that $f(x) = a + bx + cx^2$ so that f(1) = a + b + c = 0. That is c = -a - b. Hence $f(x) = a + bx + (-a - b)x^2 = a(1 - x^2) + b(x - x^2)$. Therefore, $\mathbb{W} = \operatorname{span} S$, where $S = \{1 - x^2, x - x^2\}$. Clearly, S is linearly independent (each element is not a composite of the other). Hence S is a basis for \mathbb{W} and $\operatorname{dim}(\mathbb{W}) = 2$.

Definition 1.6.2

Let \mathbb{V} be a vector space with a basis $\beta = \{x_1, x_2, \dots, x_n\}$. If $x \in \mathbb{V}$, then $x = c_1x_1 + c_2x_2 + \dots + c_nx_n$ is uniquely represented with scalars c_1, c_2, \dots, c_n . We call the scalars the **coordinates** of x in the basis β , denoted by

$$[x]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Example 1.6.6

Let $\beta = \{ E_1, E_2, E_3 \}$ be the standard basis for \mathbb{R}^3 , and let $\gamma = \{ x_1, x_2, x_3 \}$, where $x_1 = (1, 1, 1), x_2 = (0, 1, 1), \text{ and } x_3 = (0, 0, 1).$

- 1. Show that γ is another basis for \mathbb{R}^3 .
- 2. Find $[x]_{\beta}$ and $[x]_{\gamma}$ for x = (2, -1, 4).

Solution:

(1): Note that $|\beta| = |\gamma| = 3 = \dim(\mathbb{R}^3)$. So, we only need to show that γ is linearly independent (or γ spans \mathbb{R}^3). Consider $c_1x_1 + c_2x_2 + c_3x_3 = 0$ which is a homogenous system with Ax = 0, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$. Clearly then $|A| = 1 \neq 0$ and hence γ is linearly independent and it is a basis for \mathbb{R}^3 . (2): Note that $[x]_{\beta} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$ since $x = 2E_1 - E_2 + 4E_3$. Now consider $c_1(1, 1, 1) + c_2(0, 1, 1) + c_3(0, 0, 1) = (2, -1, 4)$ to get $c_1 = 2, c_1 + c_2 = -1$, and

$$c_1 + c_2 + c_3 = 4$$
. Therefore, $x = 2x_1 + (-3)x_2 + 5x_3$ and hence $[x]_{\gamma} = \begin{bmatrix} 2\\ -3\\ 5 \end{bmatrix}$.

ь

Exercise 1.6.1

Solve the following exercises from the book at pages 53 - 58:

- 2: a, b, 3: a, b.
- 4, 5, 7.
- 11, 12.

Exercise 1.6.2

Let $\mathbb{W} = \{ f(x) \in \mathbb{P}_3(\mathbb{R}) : f(0) = f'(0) \text{ and } f(1) = f'(1) \}$. Find a basis for \mathbb{W} .

Solution:

Note that any $f(x) \in \mathbb{W}$ is of the form $f(x) = a + bx + cx^2 + dx^3$. Thus, f(0) = f'(0) implies that a = b. Also, f(1) = f'(1) implies a + b + c + d = b + 2c + 3d. These two equations implies a = b = c + 2d. Thus

$$f(x) = (c+2d) + (c+2d)x + cx^{2} + dx^{3} = c(1+x+x^{2}) + d(2+2x+x^{3}).$$

Therefore, $\mathbb{W} = \text{span} \{ 1 + x + x^2, 2 + 2x + x^3 \}$. Clearly $S = \{ 1 + x + x^2, 2 + 2x + x^3 \}$ is a basis for \mathbb{W} .

Exercise 1.6.3

Let $\mathbb{W} = \{ a + bx + cx^2 \in \mathbb{P}_2(\mathbb{R}) : a = b = c \}$. Show that \mathbb{W} is a subspace of $\mathbb{P}_2(\mathbb{R})$.

Solution:

Note that $\mathbb{W} = \{ a(1 + x + x^2) : a \in \mathbb{R} \}$. Thus, $\mathbb{W} = \operatorname{span} S$, where $S = \{ 1 + x + x^2 \}$ and hence \mathbb{W} is a subspace of $\mathbb{P}_2(\mathbb{R})$.

Exercise 1.6.4

Let $\mathbb{W} = \{ a + bx \in \mathbb{P}_1(\mathbb{R}) : b = a^2 \}$. Is \mathbb{W} a subspace of $\mathbb{P}_1(\mathbb{R})$? Explain your answer.

Solution:

No. Clearly f(x) = 1 + x, $g(x) = 2 + 4x \in \mathbb{W}$, but $f(x) + g(x) = 3 + 5x \notin \mathbb{W}$.

Exercise 1.6.5

Exercise #11 @ page 55: Let x and y be distinct vectors of a vector space \mathbb{V} . Show that if $\beta = \{x, y\}$ is a basis for \mathbb{V} and a and b are nonzero scalars, then both $\gamma_1 = \{x + y, ax\}$ and $\gamma_2 = \{ax, by\}$ are also bases for \mathbb{V} .

Solution:

Since β is a basis for \mathbb{V} , then $\dim(\mathbb{V}) = 2$. So it is enough to check if both γ_1 and γ_2 are linearly independent.

For γ_1 : Assume that s(x + y) + t(ax) = 0. Then, (s + ta)x + (s)y = 0, and hence s = 0 and s + ta = 0 which implies that t = 0 since $a \neq 0$. Therefore, γ_1 is linearly independent and hence it is a basis for \mathbb{V} .

For γ_2 : Assume that s(ax) + t(by) = 0. Then, (sa)x + (tb)y = 0 and hence sa = tb = 0 implies that s = t = 0 since a and b are both nonzero. Therefore, γ_2 is linearly independent and hence it is a basis for \mathbb{V} .

2

Linear Transformations and Matrices

In this chapter we consider special functions defined on vector spaces that preserve the structure. These special functions are called **linear transformations**.

The preserved structure of vector space \mathbb{V} over a field \mathbb{F} is its *addition* and *scalar multiplication* operations, or, simply, its linear combinations.

Note that we assume that all vector spaces in this chapter are over a common field \mathbb{F} .

Section 2.1: Linear Transformations, Null Space, and Ranges

Definition 2.1.1

Let \mathbb{V} and \mathbb{W} be two vector spaces. A **linear transformation** $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ is a function such that:

1.
$$\mathbf{T}(x+y) = \mathbf{T}(x) + \mathbf{T}(y)$$
 for any $x, y \in \mathbb{V}$.

2.
$$\mathbf{T}(cx) = c \mathbf{T}(x)$$
 for any $c \in \mathbb{F}$ and any $x \in \mathbb{V}$.

Note that the addition operation in x + y refers to that defined in \mathbb{V} , while the addition in $\mathbf{T}(x) + \mathbf{T}(y)$ refers to that defined in \mathbb{W} . Moreover, if $\mathbb{V} = \mathbb{W}$, we say that **T** is a **linear** operator on \mathbb{V} . We sometime simply call **T** linear.

Remark 2.1.1

Let $\mathbf{T}: \mathbb{V} \to \mathbb{W}$ be a function for vector spaces \mathbb{V} and \mathbb{W} . Then for any scalar c, and any $x, y \in \mathbb{V}$, we have

- 1. If **T** is linear, then $\mathbf{T}(0_{\mathbb{V}}) = 0_{\mathbb{W}}$: For any $x \in \mathbb{V}$, $\mathbf{T}(0) = \mathbf{T}(0x) = 0\mathbf{T}(x) = 0$.
- 2. T is linear iff T(cx + y) = cT(x) + T(y).
- 3. $\mathbf{T}(x-y) = \mathbf{T}(x) \mathbf{T}(y)$. 4. \mathbf{T} is linear iff $\mathbf{T}\left(\sum_{i=1}^{n} c_i x_i\right) = \sum_{i=1}^{n} c_i \mathbf{T}(x_i)$, for scalars c_1, \cdots, c_n and $x_1, \cdots, x_n \in \mathbb{V}$.

To see that a linear transformation $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ preserves linear combination, assume that $v \in \mathbb{V}$

such that v = 3s + 5t - 2u for some vectors $s, t, u \in \mathbb{V}$. Then, $\mathbf{T}(v) = \mathbf{T}(3s + 5t - 2u) = 3\mathbf{T}(s) + 5\mathbf{T}(t) - 2\mathbf{T}(u)$.

In what follows, we usually use property (2) above to prove that a given transformation is linear.

Definition 2.1.2

Let \mathbb{V} and \mathbb{W} be two vector spaces. We define the **trivial** linear transformation $\mathbf{T}_0 : \mathbb{V} \to \mathbb{W}$ defined by $\mathbf{T}_0(x) = 0$ for all $x \in \mathbb{V}$. Also, we define the **identity** linear transformation $\mathbf{I}_{\mathbb{V}} : \mathbb{V} \to \mathbb{V}$ defined by $\mathbf{T}(x) = x$ for all $x \in \mathbb{V}$.

Example 2.1.1

Define $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ by $\mathbf{T}(x, y) = (x, -y)$. Such linear transformation (show it) is called **reflection**.

Example 2.1.2

Define $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ by $\mathbf{T}(x, y) = (x, 0)$. Such linear transformation (show it) is called **projection**.

Example 2.1.3

Define $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\mathbf{T}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}.$$

Such linear transformation (show it) is called **rotation**.

Example 2.1.4

Define $\mathbf{T}: M_{m \times n}(\mathbb{F}) \to M_{n \times m}(\mathbb{F})$ by $\mathbf{T}(A) = A^t$. Show that \mathbf{T} is linear.

Solution (1):

We show that \mathbf{T} is linear by showing that \mathbf{T} satisfies the conditions of the definition of linear transformation.

(1): For any $A, B \in M_{m \times n}(\mathbb{F}), \mathbf{T}(A+B) = (A+B)^t = A^t + B^t = \mathbf{T}(A) + \mathbf{T}(B).$

(2): For any $c \in \mathbb{F}$ and any $A \in M_{m \times n}(\mathbb{F})$, $\mathbf{T}(cA) = (cA)^t = cA^t = c\mathbf{T}(A)$.

Therefore, \mathbf{T} is linear.

Solution (2):

We use Remark 2.1.1 to show that **T** is linear. For all $A, B \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$, we have

$$\mathbf{T}(cA+B) = (cA+B)^t = (cA)^t + B^t = cA^t + B^t = c\mathbf{T}(A) + \mathbf{T}(B).$$

Therefore, \mathbf{T} is linear.

Example 2.1.5

Show that $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$, defined by $\mathbf{T}(x, y) = (2x + y, x - y)$ is linear.

Solution:

We use Remark 2.1.1 to show that **T** is linear. Let $c \in \mathbb{R}$ and $(a, b), (x, y) \in \mathbb{R}^2$. Then

$$\begin{aligned} \mathbf{T} \Big(c(a,b) + (x,y) \Big) &= \mathbf{T} \Big((ca+x,cb+y) \Big) = \Big(2(ca+x) + (cb+y), (ca+x) - (cb+y) \Big) \\ &= \Big((2ca+cb) + (2x+y), (ca-cb) + (x-y) \Big) \\ &= (2ca+cb,ca-cb) + (2x+y,x-y) = c(2a+b,a-b) + (2x+y,x-y) \\ &= c\mathbf{T}(a,b) + \mathbf{T}(x,y). \end{aligned}$$

Therefore, \mathbf{T} is linear.

Example 2.1.6

Define $\mathbf{T}: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ by $\mathbf{T}(f(x)) = xf(x) + x^2$. Is \mathbf{T} a linear transformation? Explain.

Solution:

For any $f(x), g(x) \in \mathbb{P}_2(\mathbb{R})$ and any $c \in \mathbb{R}$, we have

$$\mathbf{T}(cf(x) + g(x)) = x(cf(x) + g(x)) + x^2 = c(xf(x)) + xg(x) + x^2,$$

but

$$c\mathbf{T}(f(x)) + \mathbf{T}(g(x)) = c(xf(x) + x^2) + xg(x) + x^2 = c(xf(x)) + xg(x) + ((c+1))x^2 + (c+1)x^2 + (c+1)x^$$

Therefore, \mathbf{T} is not linear.

Example 2.1.7

Let $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}$ be a linear transformation for which $\mathbf{T}(3, -1, 2) = 5$ and $\mathbf{T}(1, 0, 1) = 2$. What is $\mathbf{T}(-1, 1, 0)$?

Solution:

We first write (-1, 1, 0) as a linear combination of (3, -1, 2) and (1, 0, 1). Consider

 $(-1, 1, 0) = c_1(3, -1, 2) + c_2(1, 0, 1).$

Thus, $c_1 = -1$ and $c_2 = 2$. Therefore,

$$\mathbf{T}(-1,1,0) = \mathbf{T} \Big[(-1)(3,-1,2) + (2)(1,0,1) \Big]$$
$$= -\mathbf{T}(3,-1,2) + 2\mathbf{T}(1,0,1)$$
$$= -1(5) + 2(2) = -5 + 4 = -1.$$

Example 2.1.8

Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be a linear for which $\mathbf{T}(t+1) = t^2 - 1$ and $\mathbf{T}(t-1) = t^2 + t$. What is $\mathbf{T}(7t+3)$?

Solution:

Consider $7t + 3 = c_1(t + 1) + c_2(t - 1)$ which implies that $c_1 + c_2 = 7$ and $c_1 - c_2 = 3$. That is, $c_1 = 5$, and $c_2 = 2$. Therefore,

$$\mathbf{T}(7t+3) = \mathbf{T} \Big[5(t+1) + 2(t-1) \Big]$$

= 5\mathbf{T}(t+1) + 2\mathbf{T}(t-1)
= 5(t^2-1) + 2(t^2+t) = 7t^2 + 2t - 5.

Definition 2.1.3

Let \mathbb{V} and \mathbb{W} be two vector spaces (over \mathbb{F}), and let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. The **null space** (or **kernel**) of \mathbf{T} , denoted $\mathcal{N}(\mathbf{T})$, is the set of all vectors $x \in \mathbb{V}$ such that $\mathbf{T}(x) = 0$; that is

 $\mathcal{N}(\mathbf{T}) = \{ x \in \mathbb{V} : \mathbf{T}(x) = 0 \} \subseteq \mathbb{V}.$

The **range** (or **image**) of **T**, denoted $\mathcal{R}(\mathbf{T})$, is the set of all images (under **T**) of vectors in \mathbb{V} . That is

$$\mathcal{R}(\mathbf{T}) = \{ \mathbf{T}(x) : x \in \mathbb{V} \} \subseteq \mathbb{W}.$$

Example 2.1.9

Find the null space and the range of: (1) $\mathbf{I}_{\mathbb{V}} : \mathbb{V} \to \mathbb{V}$. (2) $\mathbf{T}_0 : \mathbb{V} \to \mathbb{V}$.

Solution:

(1):
$$\mathcal{N}(\mathbf{I}_{\mathbb{V}}) = \{ x \in \mathbb{V} : \mathbf{I}_{\mathbb{V}}(x) = 0 \} = \{ 0 \}.$$

(1): $\mathcal{R}(\mathbf{I}_{\mathbb{V}}) = \{ \mathbf{I}_{\mathbb{V}}(x) : x \in \mathbb{V} \} = \mathbb{V}.$

$$(2): \mathcal{N}(\mathbf{T}_0) = \{ x \in \mathbb{V} : \mathbf{T}_0(x) = 0 \} = \mathbb{V}.$$
$$(2): \mathcal{R}(\mathbf{T}_0) = \{ \mathbf{T}_0(x) : x \in \mathbb{V} \} = \{ 0 \}.$$

Theorem 2.1.1

Let \mathbb{V} and \mathbb{W} be vector spaces and $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be linear. Then $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$ are subspaces of \mathbb{V} and \mathbb{W} , respectively.

Proof:

We first show that $\mathcal{N}(\mathbf{T})$ is a subspace of \mathbb{V} :

- 1. $\mathbf{T}(0_{\mathbb{V}}) = 0_{\mathbb{W}}$ and hence $0_{\mathbb{V}} \in \mathcal{N}(\mathbf{T})$.
- 2. Let $x, y \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(x) = \mathbf{T}(y) = 0_{\mathbb{W}}$ and

$$\mathbf{T}(x+y) = \mathbf{T}(x) + \mathbf{T}(y) = 0_{\mathbb{W}} + 0_{\mathbb{W}} = 0_{\mathbb{W}} \qquad \Rightarrow \qquad x+y \in \mathcal{N}(\mathbf{T}).$$

3. Let $c \in \mathbb{F}$ and $x \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(cx) = c\mathbf{T}(x) = c\mathbf{0}_{\mathbb{W}} = \mathbf{0}_{\mathbb{W}}$, and hence $cx \in \mathcal{N}(\mathbf{T})$.

Therefore, $\mathcal{N}(\mathbf{T})$ is a subspace of \mathbb{V} .

Next we show that $\mathcal{R}(\mathbf{T})$ is a subspace of \mathbb{W} .

1. $\mathbf{T}(0_{\mathbb{V}}) = 0_{\mathbb{W}}$ and hence $0_{\mathbb{W}} \in \mathcal{R}(\mathbf{T})$.

2. Let $x, y \in \mathcal{R}(\mathbf{T})$, then there exist $u, v \in \mathbb{V}$ such that $\mathbf{T}(u) = x$ and $\mathbf{T}(v) = y$ and hence

$$\mathbf{T}(u+v) = \mathbf{T}(u) + \mathbf{T}(v) = x + y \qquad \Rightarrow \qquad x + y \in \mathcal{R}(\mathbf{T}).$$

3. Let $c \in \mathbb{F}$ and $x \in \mathcal{R}(\mathbf{T})$, then there exists $u \in \mathbb{V}$ such that $\mathbf{T}(u) = x$, and as $cu \in \mathbb{V}$, we have $\mathbf{T}(cu) = c\mathbf{T}(u) = cx \in \mathcal{R}(\mathbf{T})$.

Therefore, $\mathcal{R}(\mathbf{T})$ is a subspace of \mathbb{W} .

Remark 2.1.2

The next theorem provides a method for finding a spanning set (and therefore a basis) for the range of \mathbf{T} , namely for $\mathcal{R}(\mathbf{T})$.

Theorem 2.1.2

Let $\mathbf{T}: \mathbb{V} \to \mathbb{W}$ be a linear transformation. If $\beta = \{x_1, x_2, \cdots, x_n\}$ is a basis for \mathbb{V} , then

$$\mathcal{R}(\mathbf{T}) = \mathbf{span} \ \mathbf{T}(\beta) = \mathbf{span} \ \{ \mathbf{T}(x_1), \mathbf{T}(x_2), \cdots, \mathbf{T}(x_n) \}$$

Proof:

Since $x_i \in \mathbb{V}$, then $\mathbf{T}(x_i) \in \mathcal{R}(\mathbf{T})$ for each *i*. Because $\mathcal{R}(\mathbf{T})$ is a subspace of \mathbb{W} , $\mathcal{R}(\mathbf{T})$ contains **span** $\{\mathbf{T}(x_1), \mathbf{T}(x_2), \cdots, \mathbf{T}(x_n)\} = \mathbf{span} \mathbf{T}(\beta)$. Thus, **span** $\mathbf{T}(\beta) \subseteq \mathcal{R}(\mathbf{T})$. Now suppose that $y \in \mathcal{R}(\mathbf{T})$. Then $y = \mathbf{T}(x)$ for some $x \in \mathbb{V}$. But because β is a basis for \mathbb{V} , we have $x = \sum_{i=1}^{n} c_i x_i$, for $c_1, c_2, \cdots, c_n \in \mathbb{F}$. Thus,

$$y = \mathbf{T}(x) = \mathbf{T}(c_1 x_1 + c_2 x_2 + \dots + c_n x_n)$$

= $c_1 \mathbf{T}(x_1) + c_2 \mathbf{T}(x_2) + \dots + c_n \mathbf{T}(x_n).$

Thus, $y \in \operatorname{span} \mathbf{T}(\beta)$. Hence $\mathcal{R}(\mathbf{T}) \subseteq \operatorname{span} \mathbf{T}(\beta)$. Therefore, $\mathcal{R}(\mathbf{T}) = \operatorname{span} \mathbf{T}(\beta)$.

Let $\mathbf{T}: \mathbb{P}_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by $\mathbf{T}(f(x)) = \begin{pmatrix} f(1) - f(2) & 0\\ 0 & f(0) \end{pmatrix}.$ Find a basis for $\mathcal{R}(\mathbf{T})$. Solution: Consider the standard basis $\beta = \{1, x, x^2\}$ for $\mathbb{P}_2(\mathbb{R})$. Then $\mathcal{R}(\mathbf{T}) = \mathbf{span} \ \mathbf{T}(\beta) = \mathbf{span} \left\{ \mathbf{T}(1), \mathbf{T}(x), \mathbf{T}(x^2) \right\}$ $= \operatorname{span} \left\{ \begin{pmatrix} 1-1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1-2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1-4 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ $= \operatorname{\mathbf{span}} \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$ Considering the system $c_1 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_2 \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} + c_3 \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, we note that $c_2 = -3c_3$. Thus $\mathcal{R}(\mathbf{T}) = \mathbf{span} \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$ Therefore, $\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and $\operatorname{dim}(\mathcal{R}(\mathbf{T})) = 2$.

Definition 2.1.4

Let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. If $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$ are finite-dimensional, then we define the **nullity** of \mathbf{T} , denoted $nullity(\mathbf{T})$, and the **rank** of \mathbf{T} , denoted rank(\mathbf{T}), to be the dimensions of $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$, respectively.

Theorem 2.1.3

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. If \mathbb{V} is finite-demensional, then

 $nullity(\mathbf{T}) + rank(\mathbf{T}) = \dim(\mathbb{V}).$

Definition 2.1.5

Let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then \mathbf{T} is said to be **one-to-one** (or simply 1-1) if for all $x, y \in \mathbb{V}$, if $\mathbf{T}(x) = \mathbf{T}(y)$, then x = y. Moreover, \mathbf{T} is said to be **onto** \mathbb{W} if $\mathcal{R}(\mathbf{T}) = \mathbb{W}$. That is for all $y \in \mathbb{W}$, there is $x \in \mathbb{V}$ such that $\mathbf{T}(x) = y$.

Theorem 2.1.4

Let \mathbb{V} and \mathbb{W} be two vector spaces, and let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then, \mathbf{T} is ono-to-one iff $\mathcal{N}(\mathbf{T}) = \{0\}$.

Proof:

" \Rightarrow ": Assume that **T** is 1-1. If $x \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(x) = 0 = \mathbf{T}(0)$, and hence x = 0. Therefore, $\mathcal{N}(\mathbf{T}) = \{0\}$.

" \Leftarrow ": Now let $\mathcal{N}(\mathbf{T}) = \{0\}$. Assume that $\mathbf{T}(x) = \mathbf{T}(y)$ for $x, y \in \mathbb{V}$. Then,

$$\mathbf{T}(x) - \mathbf{T}(y) = \mathbf{T}(x - y) = 0.$$

Hence $x - y \in \mathcal{N}(\mathbf{T}) = \{0\}$ and thus x - y = 0 which implies that x = y. Therefore, **T** is 1-1.

Theorem 2.1.5

Let \mathbb{V} and \mathbb{W} be two vector spaces <u>of equal finite dimension</u>, and $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then the following statements are equivalent:

- 1. **T** is 1-1
- 2. \mathbf{T} is onto.
- 3. $\mathcal{N}(\mathbf{T}) = \{0\}.$
- 4. $rank(\mathbf{T}) = \operatorname{dim}(\mathbb{V}).$
- 5. $nullity(\mathbf{T}) = 0.$

Proof:

Note that $nullity(\mathbf{T}) + rank(\mathbf{T}) = \operatorname{dim}(\mathbb{V})$. Then,

Example 2.1.11

Let $\mathbf{T}:\mathbb{R}^2\to\mathbb{R}^2$ be linear transformation defined by

$$\mathbf{T}(x,y) = (2x - 3y, y).$$

Show that \mathbf{T} is 1-1 and onto.

Solution:

We simply show that $\mathcal{N}(\mathbf{T}) = \{(0,0)\}.$

$$\mathcal{N}(\mathbf{T}) = \left\{ (x, y) \in \mathbb{R}^2 : \mathbf{T}(x, y) = (0, 0) \right\}$$

= $\left\{ (x, y) \in \mathbb{R}^2 : (2x - 3y, y) = (0, 0) \right\}$
= $\left\{ (x, y) \in \mathbb{R}^2 : 2x - 3y = 0 \text{ and } y = 0 \right\}$
= $\left\{ (0, 0) \right\}.$

Therefore, \mathbf{T} is 1-1 and onto.

Example 2.1.12

Let $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by $\mathbf{T}(x, y, z) = (x, y)$. Find $\mathcal{N}(\mathbf{T}), \mathcal{R}(\mathbf{T}), nullity(\mathbf{T})$ and $rank(\mathbf{T})$.

Solution:

First,

$$\mathcal{N}(\mathbf{T}) = \left\{ (x, y, z) \in \mathbb{R}^3 : \mathbf{T}(x, y, z) = (x, y) = (0, 0) \right\} = \left\{ (0, 0, z) : z \in \mathbb{R} \right\}.$$

Thus $\{(0,0,1)\}$ is a basis for $\mathcal{N}(\mathbf{T})$ and hence $nullity(\mathbf{T}) = 1$.

Next,

$$\mathcal{R}(\mathbf{T}) = \left\{ \mathbf{T}(x, y, z) = (x, y) \in \mathbb{R}^2 \right\} = \left\{ x(1, 0) + y(0, 1) : x, y \in \mathbb{R} \right\} = \mathbb{R}^2$$

Thus, $rank(\mathbf{T}) = 2$.

Example 2.1.13

Let $\mathbf{T} : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ be the linear transformation defined by $\mathbf{T}(f(x)) = f'(x) + \int_0^x f(t) dt$. (1) Is \mathbf{T} one-to-one? (2) Is \mathbf{T} onto? Explain.

Solution:

(1): We show that **T** is 1-1 iff $\mathcal{N}(\mathbf{T}) = \{0\}$. Consider the basis $\beta = \{1, x, x^2\}$ for $\mathbb{P}_2(\mathbb{R})$. Then,

$$\mathcal{R}(\mathbf{T}) = \mathbf{span} \left\{ \mathbf{T}(1), \mathbf{T}(x), \mathbf{T}(x^2) \right\} = \mathbf{span} \left\{ x, 1 + \frac{x^2}{2}, 2x + \frac{x^3}{3} \right\}.$$

Since $\left\{x, 1 + \frac{x^2}{2}, 2x + \frac{x^3}{3}\right\}$ is linearly independent set (It can be shown easily), it is a basis for $\mathcal{R}(\mathbf{T})$. Thus, $rank(\mathbf{T}) = \dim(\mathcal{R}(\mathbf{T})) = 3 = \dim(\mathbb{P}_2(\mathbb{R}))$. Therefore, $nullity(\mathbf{T}) = 0$ and hence $\mathcal{N}(\mathbf{T}) = \{0\}$ and then \mathbf{T} is 1-1. (2): $rank(\mathbf{T}) = 3 < \dim(\mathbb{P}_3(\mathbb{R}))$ and hence $\mathcal{R}(\mathbf{T}) \neq \mathbb{P}_3(\mathbb{R})$. Therefore, \mathbf{T} is not onto.

Example 2.1.14

For each of the following linear transformations, determine $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$; find their bases; is **T** 1-1 or onto? Explain.

1.
$$\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $\mathbf{T}(x, y, z) = (x - y, 2z)$.
2. $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^3$ given by $\mathbf{T}(x, y) = (x + y, 0, 2x - y)$
3. $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^2$ given by $\mathbf{T}(x, y, z) = (x + y, x - y)$.
4. $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^3$ given by $\mathbf{T}(x, y) = (x + y, x - y, x)$.
Solution:

(1):

$$\mathcal{N}(\mathbf{T}) = \{ (x, y, z) : \mathbf{T}(x, y, z) = (0, 0) \}$$
$$= \{ (x, y, z) : x - y = 0 \text{ and } 2z = 0 \}$$
$$= \{ (x, x, 0) : x \in \mathbb{R} \} = \{ x(1, 1, 0) \}.$$

Then, $nullity(\mathbf{T}) = 1$ since $\{(1, 1, 0\} \text{ is a basis for } \mathcal{N}(\mathbf{T}), \text{ and } \mathbf{T} \text{ is not 1-1.}$ Note that $rank(\mathbf{T}) = 3 - nullity(\mathbf{T}) = 2$. Thus, $rank(\mathbf{T}) = 2$ and hence $\mathcal{R}(\mathbf{T}) = \mathbb{R}^2$. Therefore, $\{(1, 0), (0, 1)\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and \mathbf{T} is onto. We note that we can compute $\mathcal{R}(\mathbf{T})$ by considering

$$\mathcal{R}(\mathbf{T}) = \mathbf{span} \{ \mathbf{T}(1,0,0), \mathbf{T}(0,1,0), \mathbf{T}(0,0,1) \}.$$

Parts (2), (3), and (4) are left as exercises. (2):

$$\mathcal{N}(\mathbf{T}) = \{ (x, y) : \mathbf{T}(x, y) = (0, 0, 0) \}$$
$$= \{ (x, y) : x + y = 0 \text{ and } 2x - y = 0 \} = \{ (0, 0, 0) \}$$

Thus, $nullity(\mathbf{T}) = 0$ and \mathbf{T} is 1-1 and basis for $\mathcal{N}(\mathbf{T}) = \phi$. The $rank(\mathbf{T}) = \dim(\mathcal{R}(\mathbf{T})) = 2 < \dim(\mathbb{R}^3)$ and hence \mathbf{T} is not onto.

$$\mathcal{R}(\mathbf{T}) = \mathbf{span} \{ \mathbf{T}(1,0), \mathbf{T}(0,1) \}$$

= span { (1,0,2), (1,0,-1) }

It is clear that $\{(1,0,2), (1,0,-1)\}$ is linearly independent and hence is a basis for $\mathcal{R}(\mathbf{T})$.

Theorem 2.1.6

Let \mathbb{V} and \mathbb{W} be two vector spaces, and suppose that $\{x_1, x_2, \dots, x_n\}$ is a basis for \mathbb{V} . For any vectors $y_1, y_2, \dots, y_n \in \mathbb{W}$, there exists exactly one linear transformation $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ such that $\mathbf{T}(x_i) = y_i$ for $i = 1, \dots, n$.

Corollary 2.1.1

Let \mathbb{V} and \mathbb{W} be vector spaces, and suppose that \mathbb{V} has a finite basis $\{x_1, x_2, \dots, x_n\}$. If $\mathbf{T}, \mathbf{U} : \mathbb{V} \to \mathbb{W}$ are linear transformations and $\mathbf{U}(x_i) = \mathbf{T}(x_i)$ for $i = 1, \dots, n$, then $\mathbf{U} = \mathbf{T}$.

Example 2.1.15

Let $\mathbf{U}, \mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformations and let \mathbf{T} be defined by $\mathbf{T}(x, y) = (2y - x, 3x)$. If $\mathbf{U}(1, 2) = (3, 3)$ and $\mathbf{U}(1, 1) = (1, 3)$, show that $\mathbf{T} = \mathbf{U}$.

Solution:

Note that $\{(1,1), (1,2)\}$ is a basis for \mathbb{R}^2 and that $\mathbf{T}(1,1) = (1,3) = \mathbf{U}(1,1)$ and $\mathbf{T}(1,2) = (3,3) = \mathbf{U}(1,2)$. Therefore, $\mathbf{U} = \mathbf{T}$.

Exercise 2.1.1

Solve the following exercises from the book at pages 74 - 79:

- 2, 3, 4, 5.
- 8, 11, 12, 13.

Exercise 2.1.2

Show that $\mathbf{T}: \mathbb{R}^4 \to \mathbb{R}^2$ defined by $\mathbf{T}(x, y, z, w) = (x, y)$ is linear.

Solution:

Let $k \in \mathbb{R}$ and $(a, b, c, d), (x, y, z, w) \in \mathbb{R}^4$. Then

$$\begin{aligned} \mathbf{T} \Big(k(a,b,c,d) + (x,y,z,w) \Big) &= \mathbf{T} \Big((ka,kb,kc,kd) + (x,y,z,w) \Big) \\ &= \mathbf{T} (ka+x,kb+y,kc+z,kd+w) = (ka+x,kb+y) \\ &= k(a,b) + (x,y) \\ &= k \mathbf{T} (a,b,c,d) + \mathbf{T} (x,y,z,w). \end{aligned}$$

Exercise 2.1.3

Show that $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\mathbf{T}(x, y) = (x + y, 3x)$ is linear.

Solution:

Let $k \in \mathbb{R}$ and $(a, b), (x, y) \in \mathbb{R}^2$. Then

$$\mathbf{T} (k(a, b) + (x, y)) = \mathbf{T} ((ka, kb) + (x, y))$$

= $\mathbf{T} (ka + x, kb + y) = ((ka + x) + (kb + y), 3ka + 3x)$
= $(ka + kb, 3ka) + (x + y, 3x)$
= $k\mathbf{T}(a, b) + \mathbf{T}(x, y)$

Exercise 2.1.4

Let $\mathbf{C}(\mathbb{R})$ denote the set of all real valued continuous functions on \mathbb{R} . Define $\mathbf{T} : \mathbf{C}(\mathbb{R}) \to \mathbb{R}$ by $\mathbf{T}(f(x)) = \int_{a}^{b} f(x) dx$ for all $a, b \in \mathbb{R}$ with a < b. Show that \mathbf{T} is linear.

Solution:

For any $f(x), g(x) \in \mathbf{C}(\mathbb{R})$ and any $c \in \mathbb{R}$, we have

$$\mathbf{T}(cf(x) + g(x)) = \int_a^b \left(cf(x) + g(x)\right) \, dx = c \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$$
$$= c\mathbf{T}(f(x)) + \mathbf{T}(g(x)).$$

Therefore, \mathbf{T} is linear.

Exercise 2.1.5

Let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $\mathbf{T}(x, y) = (2x + y, x - y)$. Find $\mathcal{N}(\mathbf{T}), \mathcal{R}(\mathbf{T}), nullity(\mathbf{T})$ and $rank(\mathbf{T})$.

Solution:

 $\mathcal{N}(\mathbf{T}) = \{ (x, y) \in \mathbb{R}^2 : \mathbf{T}(x, y) = (2x + y, x - y) = (0, 0) \}.$ Thus, 2x + y = 0 and x - y = 0which implies that x = y = 0. Thus, $\mathcal{N}(\mathbf{T}) = \{(0, 0)\}.$ Therefore, $nullity(\mathbf{T}) = 0$ and hence $rank(\mathbf{T}) = 2 = \dim(\mathbb{R}^2).$ Therefore, $\mathcal{R}(\mathbf{T}) = \mathbb{R}^2$, and we are done.

Or, we can compute the basis of $\mathcal{R}(\mathbf{T})$ as follows

$$\mathcal{R}(\mathbf{T}) = \left\{ \mathbf{T}(x, y) = (2x + y, x - y) \in \mathbb{R}^2 \right\} = \left\{ x(2, 1) + y(1, -1) \right\}.$$

Therefore, $\{(2,1), (1,-1)\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and $rank(\mathbf{T}) = 2$.

Section 2.2: The Matrix Representation of Linear Transformation

In this section, we consider the *representation* of a linear transformation by a matrix. That is, we develope a one-to-one correspondence between matrices and linear transformations that allows us to utilize properties of one to study properties of the other.

Definition 2.2.1

Let \mathbb{V} be a finite-dimensional vector space. An **ordered basis** for \mathbb{V} is a finite sequence of linearly independent vectors in \mathbb{V} that generates \mathbb{V} .

Remark 2.2.1

Note that $\beta_1 = \{E_1, E_2, E_3\}$ can be considered as ordered basis for \mathbb{R}^3 , while $\beta_2 = \{E_2, E_1, E_3\}$ is also an ordered basis for \mathbb{R}^3 , but $\beta_1 \neq \beta_2$ as ordered basis. In particular, $\{E_1, \dots, E_n\}$ is the **standard ordered basis** for \mathbb{R}^n . Also, $\{1, x, x^2, \dots, x^n\}$ is the **standard ordered basis** for $\mathbb{P}_n(\mathbb{R})$.

Definition 2.2.2

Let $\beta = \{x_1, \dots, x_n\}$ be an ordered basis for a finite-dimensional vector space \mathbb{V} . For $x \in \mathbb{V}$, let $c_1, \dots, c_n \in \mathbb{F}$ be the unique scalars such that $x = c_1x_1 + c_2x_2 + \dots + c_nx_n$. We define the **coordinate vector of** x **relative to** β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Example 2.2.1

Consider the vector space $\mathbb{P}_3(\mathbb{R})$ and the standard ordered basis $\beta = \{1, x, x^2, x^3\}$. Find the coordinate vector of $f(x) = 3 + 7x - 9x^2$ relative to β .

Solution:

Clearly $f(x) = 3 + 7x - 9x^2 = 3 \cdot 1 + 7 \cdot x + (-9) \cdot x^2 + 0 \cdot x^3$, and hence

 $[f(x)]_{\beta} = (3, 7, -9, 0) = [3 \ 7 \ -9 \ 0]^{t}.$

Definition 2.2.3

Let \mathbb{V} and \mathbb{W} be two finite-dimensional vector spaces with ordered bases $\beta = \{x_1, x_2, \cdots, x_n\}$ and $\gamma = \{y_1, y_2, \cdots, y_m\}$, respectively, and let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be a linear transformation. For each $j, 1 \leq j \leq n$, we have $\mathbf{T}(x_j) \in \mathbb{W}$ and there exist unique scalars $c_{ij} \in \mathbb{F}, 1 \leq i \leq m$, such that

$$\mathbf{T}(x_j) = \sum_{i=1}^m c_{ij} \ y_i$$

Then the $m \times n$ matrix $A = (c_{ij})$ is called the **matrix representation of T in the ordered bases** β and γ and is written $A = [\mathbf{T}]^{\gamma}_{\beta}$. If $\mathbb{V} = \mathbb{W}$ and $\beta = \gamma$, then we write simply $A = [\mathbf{T}]_{\beta}$. Note that the j^{th} column of $A = [\mathbf{T}]^{\gamma}_{\beta}$ then is simply $[\mathbf{T}(x_j)]_{\gamma}$. That is,

$$A = \begin{bmatrix} [\mathbf{T}(x_1)]_{\gamma} & [\mathbf{T}(x_2)]_{\gamma} & \cdots & [\mathbf{T}(x_n)]_{\gamma} \end{bmatrix}.$$

Remark 2.2.2

Following Definition 2.2.3, the following statements hold:

- 1. If $\mathbf{U}: \mathbb{V} \to \mathbb{W}$ is a linear transformation such that $[\mathbf{U}]^{\gamma}_{\beta} = [\mathbf{T}]^{\gamma}_{\beta}$, then $\mathbf{U} = \mathbf{T}$.
- 2. If $x \in \mathbb{V}$, then $[\mathbf{T}(x)]_{\gamma} = A \ [x]_{\beta}$, where $[x]_{\beta}$ and $[\mathbf{T}(x)]_{\gamma}$ are the coordinate vectors of x and $\mathbf{T}(x)$, respectively, with respect to the respective bases β and γ .

3. If $x \in \mathbb{V}$, then $\mathbf{T}(x) = \sum_{i=1}^{m} \left([\mathbf{T}(x)]_{\gamma} \right)_{i} y_{i} = \sum_{i=1}^{m} c_{i} y_{i}$.

Remark 2.2.3

* Finding $[\mathbf{T}]^{\gamma}_{\beta}$:

Let $\mathbf{T} : \mathbb{V} \to \mathbb{W}$ be linear transformation from *n*-dimensional vector space \mathbb{V} into *m*dimensional vector space \mathbb{W} , and let $\beta = \{x_1, \dots, x_n\}$ and $\gamma = \{y_1, \dots, y_m\}$ be bases for \mathbb{V} and \mathbb{W} , respectively. Then we compute the matrix representation of \mathbf{T} as follows:

- 1. Compute $\mathbf{T}(x_j)$ for $j = 1, 2, \cdots, n$.
- 2. Find the coordinate vector $[\mathbf{T}(x_j)]_{\gamma}$ for $\mathbf{T}(x_j)$ with respect to γ . That is, express $\mathbf{T}(x_j)$ as a linear combination of vectors in γ .
- 3. Form the matrix representation A of **T** with respect to β and γ by choosing $[\mathbf{T}(x_j)]_{\gamma}$ as the j^{th} column of A.

Example 2.2.2

Let $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear defined by $\mathbf{T}(x, y, z) = (x+y, y-z)$. Find a matrix representation A for \mathbf{T} . Use A to evaluate $\mathbf{T}(u)$, where u = (1, 2, 3).

Solution:

We use the method described in Remark 2.2.3 and consider $\beta = \{ (1,0,0), (0,1,0), (0,0,1) \}$ and $\gamma = \{ (1,0), (0,1) \}$ as standard ordered bases for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Then

$$\begin{aligned} \mathbf{T}(1,0,0) &= (1,0) = 1 \cdot (1,0) + 0 \cdot (0,1) & \Rightarrow & [\mathbf{T}(1,0,0)]_{\gamma} = (1,0) \\ \mathbf{T}(0,1,0) &= (1,1) = 1 \cdot (1,0) + 1 \cdot (0,1) & \Rightarrow & [\mathbf{T}(0,1,0)]_{\gamma} = (1,1) \\ \mathbf{T}(0,0,1) &= (0,-1) = 0 \cdot (1,0) + (-1) \cdot (0,1) & \Rightarrow & [\mathbf{T}(0,0,1)]_{\gamma} = (0,-1). \end{aligned}$$

Therefore, $A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Note that (1, 2, 3) = (1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1), and that $\mathbf{T}(E_i) = column_i(A)$, for i = 1, 2, 3. Hence, we can compute $\mathbf{T}(1, 2, 3)$ as follows:

$$\mathbf{T}(1,2,3) = \mathbf{T}(E_1) + 2\mathbf{T}(E_2) + 3\mathbf{T}(E_3) = (3,-1).$$

On the other hand, we simply can use Remark 2.2.2 as follows:

$$[\mathbf{T}(1,2,3)]_{\gamma} = A \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0\\0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}.$$

Therefore, $\mathbf{T}(1, 2, 3) = (3, -1)$.

Example 2.2.3

Let $\mathbf{T} : \mathbb{P}_1(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be a linear defined by $\mathbf{T}(f(x)) = x f(x)$. (1): Find the matrix representation A for \mathbf{T} . (2): If $f(x) = 3x - 2 \in \mathbb{P}_1(\mathbb{R})$, compute $[\mathbf{T}(f(x))]_{\gamma}$, where γ is the standard ordered basis in $\mathbb{P}_2(\mathbb{R})$. (3): Evaluate $\mathbf{T}(f(x))$ using A.

Solution:

(1): We use the method described in Remark 2.2.3 and consider $\beta = \{1, x\}$ and $\gamma = \{1, x, x^2\}$ as standard ordered bases for $\mathbb{P}_1(\mathbb{R})$ and $\mathbb{P}_2(\mathbb{R})$, respectively. Then

$$\mathbf{T}(f(x) = 1) = x \cdot 1 = x = 0 \cdot 1 + 1 \cdot x + 0 \cdot x^2 \quad \Rightarrow \ [\mathbf{T}(1)]_{\gamma} = (0, 1, 0)$$
$$\mathbf{T}(f(x) = x) = x \cdot x = x^2 = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^2 \quad \Rightarrow \ [\mathbf{T}(x)]_{\gamma} = (0, 0, 1).$$

Therefore, $A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(2): We can simply compute $[\mathbf{T}(f(x))]_{\gamma}$ directly:

$$\mathbf{T}(f(x)) = xf(x) = x(3x-2) = 3x^2 - 2x = 0 \cdot 1 + (-2) \cdot x + 3 \cdot x^2 \implies [\mathbf{T}((f(x)))]_{\gamma} = (0, -2, 3).$$

Or, we can use Remark 2.2.2 part(2) using A. We first write f(x) as a linear combination of β :

$$f(x) = -2 \cdot 1 + 3 \cdot x \qquad \Rightarrow \qquad [f(x)]_{\beta} = (-2, 3).$$

Then using Remark 2.2.2 part(2), we have

$$\left[\mathbf{T}(f(x))\right]_{\gamma} = A \left[f(x)\right]_{\beta} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}.$$

Hence $[\mathbf{T}(f(x))]_{\gamma} = (0, -2, 3).$ (3): Use the result in part (2), to get $\mathbf{T}(f(x)) = -2x + 3x^2$.

Definition 2.2.4

Let $\mathbf{T}, \mathbf{U} : \mathbb{V} \to \mathbb{W}$ be arbitrary functions where \mathbb{V} and \mathbb{W} are vector spaces over \mathbb{F} , and let $a \in \mathbb{F}$. We define the usual addition of functions $\mathbf{T} + \mathbf{U} : \mathbb{V} \to \mathbb{W}$ by

$$(\mathbf{T} + \mathbf{U})(x) = \mathbf{T}(x) + \mathbf{U}(x)$$
 for all $x \in \mathbb{V}$,

and $a \mathbf{T} : \mathbb{V} \to \mathbb{W}$ by

$$(a \mathbf{T})(x) = a \mathbf{T}(x)$$
 for all $x \in \mathbb{V}$.

Theorem 2.2.1

Let \mathbb{V} and \mathbb{W} be two vector spaces over \mathbb{F} , and let $\mathbf{T}, \mathbf{U} : \mathbb{V} \to \mathbb{W}$ be linear transformations. Then

- 1. For all $a \in \mathbb{F}$, $(a\mathbf{T} + \mathbf{U})$ is linear transformation.
- 2. The collection of all linear transformations from \mathbb{V} to \mathbb{W} is a vector space over \mathbb{F} .

Proof:

(1) Let $x, y \in \mathbb{V}$ and $c \in \mathbb{F}$. Then

$$\begin{aligned} (a\mathbf{T} + \mathbf{U})(cx + y) &= a\mathbf{T}(cx + y) + \mathbf{U}(cx + y) = a\left[\mathbf{T}(cx + y)\right] + c\mathbf{U}(x) + \mathbf{U}(y) \\ &= a\left[c\mathbf{T}(x) + \mathbf{T}(y)\right] + c\mathbf{U}(x) + \mathbf{U}(y) \\ &= ac\mathbf{T}(x) + a\mathbf{T}(y) + c\mathbf{U}(x) + \mathbf{U}(y) \\ &= c\left(a\mathbf{T}(x) + \mathbf{U}(x)\right) + a\mathbf{T}(y) + \mathbf{U}(y) \\ &= c(a\mathbf{T} + \mathbf{U})(x) + (a\mathbf{T} + \mathbf{U})(y). \end{aligned}$$

Thus, $a\mathbf{T} + \mathbf{U}$ is linear transformation.

(2): Note that the zero transformation \mathbf{T}_0 is the zero vector. The other conditions of a vector space can be easily proved.

Definition 2.2.5

Let \mathbb{V} and \mathbb{W} be two vector spaces over \mathbb{F} . We denote the vector space of all linear transformation from \mathbb{V} into \mathbb{W} by $\mathcal{L}(\mathbb{V}, \mathbb{W})$. If $\mathbb{V} = \mathbb{W}$, we simply write $\mathcal{L}(\mathbb{V})$.

Theorem 2.2.2

Let \mathbb{V} and \mathbb{W} be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let $\mathbf{T}, \mathbf{U} : \mathbb{V} \to \mathbb{W}$ be linear transformations. Then

- 1. $[\mathbf{T} + \mathbf{U}]^{\gamma}_{\beta} = [\mathbf{T}]^{\gamma}_{\beta} + [\mathbf{U}]^{\gamma}_{\beta}$, and
- 2. $[a\mathbf{T}]^{\gamma}_{\beta} = a [\mathbf{T}]^{\gamma}_{\beta}$ for all scalars a.

Example 2.2.4

Define
$$\mathbf{T} : M_{2\times 2}(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$$
 by $\mathbf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + 2dx + bx^2$.
Let $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ and $\gamma = \{1, x, x^2\}$ be ordered bases for $M_{2\times 2}(\mathbb{R})$ and $\mathbb{P}_2(\mathbb{R})$, respectively. Find $[\mathbf{T}]_{\beta}^{\gamma}$. Use $[\mathbf{T}]_{\beta}^{\gamma}$ to evaluate $\mathbf{T}(D)$, where $D = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$.

Solution:

We use the method described in Remark 2.2.3. That is,

$$\begin{aligned} \mathbf{T} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} &= 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \implies [\mathbf{T}]_{\gamma} = (1, 0, 0), \\ \mathbf{T} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} &= 1 + x^2 = 1 \cdot 1 + 0 \cdot x + 1 \cdot x^2 \implies [\mathbf{T}]_{\gamma} = (1, 0, 1), \\ \mathbf{T} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} &= 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \implies [\mathbf{T}]_{\gamma} = (0, 0, 0), \\ \mathbf{T} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} &= 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2 \implies [\mathbf{T}]_{\gamma} = (0, 2, 0). \end{aligned}$$

Thus,

$$A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Note that $[D]_{\beta} = (1, 3, -1, 2)$, and hence $[\mathbf{T}(D)]_{\gamma} = A[D]_{\beta} = (4, 4, 3)$. Hence, $\mathbf{T}(D) = 4 + 4x + 3x^2$.

Example 2.2.5

Let $\beta = \{x^4, x^3, x^2, x, 1\}$ be an ordered basis for $\mathbb{P}_4(\mathbb{R})$ and let γ be the standard ordered basis for \mathbb{R}^3 . Define $\mathbf{T} : \mathbb{P}_4(\mathbb{R}) \to \mathbb{R}^3$ by $\mathbf{T}(f(x)) = (f(1) - f(0), f'(0), f''(1))$, and let $\mathbf{U} : \mathbb{P}_4(\mathbb{R}) \to \mathbb{R}^3$ be a linear transformation having the matrix representation

$$[\mathbf{U}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 & 2 \\ 1 & -1 & 1 & 1 & 1 \end{bmatrix}$$

- 1. Find $U(x^4 x^2 + 1)$.
- 2. Find the matrix representation of $\mathbf{T} + \mathbf{U}$; that is, $[\mathbf{T} + \mathbf{U}]_{\beta}^{\gamma}$.
- 3. Find the rank and the nullity of U. Exercise!!

Solution:

(1): Let $f(x) = x^4 - x^2 + 1$. We compute $\left[\mathbf{U}(f(x))\right]_{\gamma} = [\mathbf{U}]_{\beta}^{\gamma} [f(x)]_{\beta}$ using Remark 2.2.2: $f(x) = x^4 - x^2 + 1 = 1 \cdot x^4 + 0 \cdot x^3 + (-1) \cdot x^2 + 0 \cdot x + 1 \cdot 1 \implies [f(x)]_{\beta} = (1, 0, -1, 0, 1).$

Thus

$$\begin{bmatrix} \mathbf{U}(f(x)) \end{bmatrix}_{\gamma} = \begin{bmatrix} \mathbf{U} \end{bmatrix}_{\beta}^{\gamma} \begin{bmatrix} f(x) \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 & 2 \\ 1 & -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} \in \mathbb{R}^{3}.$$

We note that, this can be computed directly as follows:

$$\begin{split} \left[\mathbf{U}\left(x^4 - x^2 + 1\right)\right]_{\gamma} &= \left[\mathbf{U}\left(x^4\right) - \mathbf{U}\left(x^2\right) + \mathbf{U}\left(1\right)\right]_{\gamma} = \left[\mathbf{U}\left(x^4\right)\right]_{\gamma} - \left[\mathbf{U}\left(x^2\right)\right]_{\gamma} + \left[\mathbf{U}\left(1\right)\right]_{\gamma} \\ &= col_1([\mathbf{U}]_{\beta}^{\gamma}) - col_3([\mathbf{U}]_{\beta}^{\gamma}) + col_5([\mathbf{U}]_{\beta}^{\gamma}) = (1, 3, 1). \end{split}$$

Therefore, $\mathbf{U}(x^4 - x^2 + 1) = (1, 3, 1).$ (2): Note that $[\mathbf{T} + \mathbf{U}]^{\gamma}_{\beta} = [\mathbf{T}]^{\gamma}_{\beta} + [\mathbf{U}]^{\gamma}_{\beta}$. Thus,

$$\begin{aligned} \mathbf{T} \left(x^4 \right) &= (1,0,12) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 12 \cdot (0,0,1) \implies \left[\mathbf{T} (x^4) \right]_{\gamma} = (1,0,12) \\ \mathbf{T} \left(x^3 \right) &= (1,0,6) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 6 \cdot (0,0,1) \implies \left[\mathbf{T} (x^3) \right]_{\gamma} = (1,0,6) \\ \mathbf{T} \left(x^2 \right) &= (1,0,2) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 2 \cdot (0,0,1) \implies \left[\mathbf{T} (x^2) \right]_{\gamma} = (1,0,2) \\ \mathbf{T} \left(x \right) &= (1,1,0) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 0 \cdot (0,0,1) \implies \left[\mathbf{T} (x) \right]_{\gamma} = (1,1,0) \\ \mathbf{T} \left(1 \right) &= (0,0,0) = 0 \cdot (1,0,0) + 0 \cdot (0,1,0) + 0 \cdot (0,0,1) \implies \left[\mathbf{T} (1) \right]_{\gamma} = (0,0,0) \end{aligned}$$

Hence,
$$[\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 12 & 6 & 2 & 0 & 0 \end{bmatrix}$$
 and therefore
 $[\mathbf{T} + \mathbf{U}]_{\beta}^{\gamma} = [\mathbf{T}]_{\beta}^{\gamma} + [\mathbf{U}]_{\beta}^{\gamma} = \begin{bmatrix} 2 & 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 2 & 2 \\ 13 & 5 & 3 & 1 & 1 \end{bmatrix}$.

(3): $\mathcal{R}(\mathbf{U}) = \operatorname{span} \{ \mathbf{U}(x^4), \mathbf{U}(x^3), \mathbf{U}(x^2), \mathbf{U}(x), \mathbf{U}(1) \}, \text{ and hence } \operatorname{rank}(\mathbf{U}) = \operatorname{rank}([\mathbf{U}]^{\gamma}_{\beta})$ and $\operatorname{nullity}(\mathbf{U}) = \operatorname{nullity}([\mathbf{U}]^{\gamma}_{\beta})$

1	0	1	0	1	[1	0	0	2	$ \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} $
0	1	-1	1	2	$\xrightarrow{\text{r.r.e.f.}} 0$	1	0	-1	0
1	-1	1	1	1	0	0	1	-2	-2

That is $rank(\mathbf{U}) = 3$ and hence $nullity(\mathbf{U}) = 2$. Also note that $\{(1,0,1), (0,1,-1), (1,-1,1)\}$ is a basis for $\mathcal{R}(\mathbf{U})$. Also, \mathbf{U} is not 1-1 since its nullity $\neq 0$.

Example 2.2.6

- Let $\mathbf{T} : \mathbb{P}_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$, defined by $\mathbf{T}(f(x)) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{pmatrix}$.
 - 1. Compute $[\mathbf{T}]^{\gamma}_{\beta}$ where β and γ are the standard ordered bases for $\mathbb{P}_2(\mathbb{R})$ and $M_{2\times 2}(\mathbb{R})$, respectively. Use $[\mathbf{T}]^{\gamma}_{\beta}$ to compute $\mathbf{T}(g(x))$, where $g(x) = x^2 + 2x$.
 - 2. Is **T** 1-1? Explain. Exercise!!
 - 3. Is **T** onto? Explain. Exercise!!

Solution:

(1): Let
$$\beta = \{1, x, x^2\}$$
 and $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. Then

$$\mathbf{T}(1) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{T}(x) = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{T}(x^2) = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus

$$A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Note that $[g(x)]_{\beta} = (0, 2, 1)$, and hence $[\mathbf{T}(g(x))]_{\beta}^{\gamma} = A[g(x)]_{\beta} = (2, 6, 0, 2)$. Therefore,

$$\mathbf{T}(g(x)) = \begin{pmatrix} 2 & 6\\ 0 & 2 \end{pmatrix}$$

(2): Note that $rank(\mathbf{T}) = rank([\mathbf{T}]^{\gamma}_{\beta})$. Thus

$$\begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{\text{r.r.e.f.}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, $rank(\mathbf{T}) = 3$ and hence $nullity(\mathbf{T}) = 0$. Thus, **T** is 1-1.

(3): **T** is not onto since $rank(\mathbf{T}) = 3 < rank(M_{2 \times 2}(\mathbb{R})) = 4$.

Example 2.2.7

Let $\mathbf{T}: \mathbb{P}_2(\mathbb{R}) \to \mathbb{R}^3$ be a linear transformation satisfying:

$$\mathbf{T}(1) = (1, 1, 1), \ \mathbf{T}(1+x) = (1, 2, 1), \ \text{and} \ \mathbf{T}(1+x+x^2) = (1, 0, 1).$$

1. Find a matrix representation of **T** relative to the standard ordered bases for $\mathbb{P}_2(\mathbb{R})$ and \mathbb{R}^3 . Evaluate **T** (g(x)), where $g(x) = x^2 - 3x + 1$.

2. Find bases for $\mathcal{R}(\mathbf{T})$ and $\mathcal{N}(\mathbf{T})$. Exercise!!

Solution:

(1): Consider $\beta = \{1, x, x^2\}$ and $\gamma = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. Then

$$\begin{aligned} \mathbf{T}(1) &= (1,1,1) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 1 \cdot (0,0,1) \implies [\mathbf{T}(1)]_{\gamma} = (1,1,1) \\ \mathbf{T}(x) &= \mathbf{T}(1+x) - \mathbf{T}(1) = (0,1,0) \implies [\mathbf{T}(x)]_{\gamma} = (0,1,0) \\ \mathbf{T}(x^2) &= \mathbf{T}(1+x+x^2) - \mathbf{T}(1+x) = (0,-2,0) \implies [\mathbf{T}(x^2)]_{\gamma} = (0,-2,0). \end{aligned}$$

Thus

$$A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ 1 & 0 & 0 \end{bmatrix}.$$

Note that, $[g(x)]_{\beta} = (1, -3, 1)$ and hence $[\mathbf{T}(g(x))]_{\gamma} = A[g(x)]_{\beta} = (1, -4, 1)$. Therefore, $\mathbf{T}(g(x)) = (1, -4, 1)$.

(2): Note that

$$\mathcal{R}(\mathbf{T}) = \mathbf{span} \left\{ \mathbf{T}(1), \mathbf{T}(x), \mathbf{T}(x^2) \right\}$$

= span { (1, 1, 1), (0, 1, 0), (0, -2, 0) } = span { (1, 1, 1), (0, 1, 0) }.

Therefore, $\{(1, 1, 1), (0, 1, 0)\}$ is a basis for $\mathcal{R}(\mathbf{T})$.

$$\mathcal{N}(\mathbf{T}) = \left\{ f(x) = a + bx + cx^2 \in \mathbb{P}_2(\mathbb{R}) : \mathbf{T}(a + bx + cx^2) = (0, 0, 0) \right\}$$

= $\left\{ a + bx + cx^2 : a\mathbf{T}(1) + b\mathbf{T}(x) + c\mathbf{T}(x^2) = (0, 0, 0) \right\}$
= $\left\{ a + bx + cx^2 : a(1, 1, 1) + b(0, 1, 0) + c(0, -2, 0) = (0, 0, 0) \right\}$
= $\left\{ a + bx + cx^2 : (a, a + b - 2c, a) = (0, 0, 0) \right\}$
= $\left\{ a + bx + cx^2 : a = 0 \text{ and } b = 2c \right\}$
= $\left\{ 2cx + cx^2 : c \in \mathbb{R} \right\} = \mathbf{span} \left\{ 2x + x^2 \right\}.$

Thus, $\{2x + x^2\}$ is a basis for $\mathcal{N}(\mathbf{T})$.

Note that we could use Remark 2.2.3 to find a basis for $\mathcal{N}(\mathbf{T})$ using the following technique:

$$\begin{bmatrix} \mathbf{T}(a+bx+cx^2) \end{bmatrix}_{\beta} = A \begin{bmatrix} \mathbf{T}(a+bx+cx^2) \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ a+b-2c \\ a \end{bmatrix}$$

Therefore,

$$\begin{bmatrix} a \\ a+b-2c \\ a \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

implies that a = 0 and b = 2c. Hence, $f(x) = 0 + 2cx + cx^2$ and thus $\{2x + x^2\}$ is a basis for $\mathcal{N}(\mathbf{T})$.

Exercise 2.2.1

Solve the following exercises from the book at pages 84 - 86:

- 2: a, b, c, and d.
- 3, 4, 5.
- 8.

Exercise 2.2.2

Let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear defined by $\mathbf{T}(x, y) = (2x - 3y, -x, x + 4y)$. Find a matrix representation A for **T**. Use A to evaluate $\mathbf{T}(u)$, where u = (2, 4).

Solution:

We use the method described in Remark 2.2.3 and consider $\beta = \{(1,0), (0,1)\}$ and $\gamma = \{(1,0,0), (0,1,0), (0,0,1)\}$ as standard ordered bases for \mathbb{R}^2 and \mathbb{R}^3 , respectively. Then

 $\begin{aligned} \mathbf{T}(1,0) &= (2,-1,1) = 2 \cdot (1,0,0) + (-1) \cdot (0,1,0) + 1 \cdot (0,0,1) & \Rightarrow [\mathbf{T}(1,0)]_{\gamma} = (2,-1,1) \\ \mathbf{T}(0,1) &= (-3,0,4) = -3 \cdot (1,0,0) + 0 \cdot (0,1,0) + 4 \cdot (0,0,1) & \Rightarrow [\mathbf{T}(0,1)]_{\gamma} = (-3,0,4). \end{aligned}$

Therefore, $A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 2 & -3 \\ -1 & 0 \\ 1 & 4 \end{bmatrix}$. Simply, $[\mathbf{T}(u)]_{\gamma} = A [u]_{\beta} = (-8, -2, 18)$. Hence, $\mathbf{T}(u) = (-8, -2, 18)$.

Exercise 2.2.3

Let $\mathbf{T} : \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be the linear defined by $\mathbf{T}(f(x)) = f'(x)$. Let β and γ be the standard ordered bases for $\mathbb{P}_3(\mathbb{R})$ and $\mathbb{P}_2(\mathbb{R})$, respectively. Find the matrix representation A for \mathbf{T} with respect to β and γ . Use A to evaluate $\mathbf{T}(f(x))$, where $f(x) = 3x^2 + 1$.

Solution:

Let $\beta = \{1, x, x^2, x^3\}$ and $\gamma = \{1, x, x^2\}$. Thus $\begin{aligned}
\mathbf{T}(1) &= & 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \Rightarrow [\mathbf{T}(1)]_{\gamma} = (0, 0, 0) \\
\mathbf{T}(x) &= & 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \Rightarrow [\mathbf{T}(x)]_{\gamma} = (1, 0, 0) \\
\mathbf{T}(x^2) &= & 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2 \Rightarrow [\mathbf{T}(x^2)]_{\gamma} = (0, 2, 0) \\
\mathbf{T}(x^3) &= & 3x^2 = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2 \Rightarrow [\mathbf{T}(x^3)]_{\gamma} = (0, 0, 3).
\end{aligned}$ Therefore, $A = [\mathbf{T}]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$. Note that $[f(x)]_{\beta} = (1, 0, 3, 0)$ and hence $[\mathbf{T}(f(x))]_{\gamma} = A [f(x)]_{\beta} = (0, 6, 0)$. Therefore, $\mathbf{T}(f(x)) = 6x$.

Exercise 2.2.4

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$. Assume that $\mathbf{T} : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_1(\mathbb{R})$ is the linear transformation defined by A using the standard ordered bases β and γ for $\mathbb{P}_2(\mathbb{R})$ and $\mathbb{P}_1(\mathbb{R})$, respectively. Evaluate $\mathbf{T}(g(x))$, where $g(x) = 2x^2 - 3x + 1$.

Solution:

We solve in two methods: 1. Note that $[\mathbf{T} (2x^2 - 3x + 1)]_{\gamma} = 2 [\mathbf{T}(x^2)]_{\gamma} - 3 [\mathbf{T}(x)]_{\gamma} + [\mathbf{T}(1)]_{\gamma} = 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$. Hence, $\mathbf{T} (g(x)) = 8 + 7x$. 2. Another way: Note that $[g(x)]_{\beta} = (1, -3, 2)$ and hence $[\mathbf{T} (g(x))]_{\gamma} = A [g(x)]_{\beta} = (8, 7)$. Thus, $\mathbf{T} (g(x)) = 8 + 7x$.

Section 2.5: The Change of Coordinate Matrix

Definition 2.5.1

Let β and γ be ordered bases for a finite-dimensional vector space \mathbb{V} , and let $Q = [\mathbf{I}_{\mathbb{V}}]_{\gamma}^{\beta}$, where $\mathbf{I}_{\mathbb{V}} : \mathbb{V} \to \mathbb{V}$ is the identity linear transformation. Then Q is called the **change of coordinate matrix** (it changes γ -coordinate into β -coordinate). Moreover, Q is invertible and Q^{-1} changes β -coordinate into γ -coordinate.

Theorem 2.5.1

Let **T** be a linear operator on a finite-dimensional vector space \mathbb{V} . Let β and γ be two ordered bases for \mathbb{V} , and let Q be the change of coordinate matrix that changes γ -coordinates into β -coordinates. Then

- 1. For any $x \in \mathbb{V}$, $[x]_{\beta} = Q \ [x]_{\gamma}$, and
- 2. $[\mathbf{T}]_{\gamma} = Q^{-1} \ [\mathbf{T}]_{\beta} \ Q.$

Example 2.5.1

Let $\beta = \{(1,0), (0,1)\}$ and $\gamma = \{(1,-1), (2,1)\}$ be two ordered bases for \mathbb{R}^2 , and let $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{T}(a,b) = (a+b, a-2b)$. Find the change of coordinate matrix Q, that changes γ -coordinates into β -coordinates, and use it to find $[\mathbf{T}]_{\gamma}$. Find $[(5,1)]_{\beta}$ using Q.

Solution:

Note that

$$\mathbf{I}_{\mathbb{R}^2}(1,-1) = (1,-1) = 1 \cdot (1,0) + (-1) \cdot (0,1) \quad \& \quad \mathbf{I}_{\mathbb{R}^2}(2,1) = (2,1) = 2 \cdot (1,0) + 1 \cdot (0,1).$$

Thus, the matrix that changes γ -coordinates into β -coordinates is

$$Q = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \quad \Rightarrow \quad Q^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}.$$

To find $[\mathbf{T}]_{\gamma}$, we use $[\mathbf{T}]_{\gamma} = Q^{-1} \ [\mathbf{T}]_{\beta} \ Q$ and

$$\begin{aligned} \mathbf{T}(1,0) &= (1,1) = 1 \cdot (1,0) + 1 \cdot (0,1) \\ \mathbf{T}(0,1) &= (1,-2) = 1 \cdot (1,0) + (-2) \cdot (0,1) \end{aligned} \right\} \Rightarrow \begin{bmatrix} \mathbf{T} \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \end{aligned}$$

Thus,
$$[\mathbf{T}]_{\gamma} = Q^{-1} [\mathbf{T}]_{\beta} Q = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}$$
.
 \star Confirmation:

 \star Confirmation

$$\mathbf{\Gamma}(1,-1) = (0,3) = -2 \cdot (1,-1) + 1 \cdot (2,1), \text{ and}$$

 $\mathbf{T}(2,1) = (3,0) = 1 \cdot (1,-1) + 1 \cdot (2,1).$

Finally, note that $[(5,1)]_{\beta} = Q[(5,1)]_{\gamma}$, where $[(5,1)]_{\gamma} = (1,2)$ since $(5,1) = 1 \cdot (1,-1) + 2 \cdot (2,1)$. Therefore, $[(5,1)]_{\beta} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ which is true since $(5,1) = 5 \cdot (1,0) + 1 \cdot (0,1)$.

Example 2.5.2

Let $\beta = \{ (1,1), (1,-1) \}$ and $\gamma = \{ (2,4), (3,1) \}$ be bases for \mathbb{R}^2 . ⓐ What is the matrix Q that changes γ -coordinates into β -coordinates, and use it to find $[(1,7)]_{\beta}$ and $[(1,7)]_{\gamma}$. ⓑ If $\mathbf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear operator on \mathbb{R}^2 defined by $\mathbf{T}(a,b) = (3a-b,a+3b)$, find $[\mathbf{T}]_{\gamma}$.

Solution:

(a): We first consider:

$$\mathbf{I}_{\mathbb{R}^2}(2,4) = (2,4) = c_1(1,1) + c_2(1,-1) = 3(1,1) + (-1)(1,-1), \text{ and}$$
$$\mathbf{I}_{\mathbb{R}^2}(3,1) = (3,1) = c_1(1,1) + c_2(1,-1) = 2(1,1) + 1(1,-1).$$

Thus, the matrix that changes γ -coordinates into β -coordinates is

$$Q = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix} \quad \Rightarrow \quad Q^{-1} = \frac{1}{5} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}.$$

To compute $[(1,7)]_{\beta}$, consider (1,7) = 2(2,4) + (-1)(3,1); hence $[(1,7)]_{\gamma} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$. Therefore,

$$[(1,7)]_{\beta} = Q \ [(1,7)]_{\gamma} = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

which is true since (1,7) = 4(1,1) + (-3)(1,-1).

To compute $[(1,7)]_{\gamma}$, consider (1,7) = 4(1,1) + (-3)(1,-1); hence $[(1,7)]_{\beta} = \begin{vmatrix} 4 \\ -3 \end{vmatrix}$. Therefore,

$$[(1,7)]_{\gamma} = Q^{-1} \ [(1,7)]_{\beta} = \frac{1}{5} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} \begin{bmatrix} 4 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

which is true since (1,7) = 2(2,4) + (-1)(3,1). (b): Note that $\mathbf{T}(1,1) = (2,4) = 3 \cdot (1,1) + (-1) \cdot (1,-1),$ $\mathbf{T}(1,-1) = (4,-2) = 1 \cdot (1,1) + 3 \cdot (1,-1).$ Thus $[\mathbf{T}]_{\beta} = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix}$ and hence $[\mathbf{T}]_{\gamma} = Q^{-1} \ [\mathbf{T}]_{\beta} \ Q = \dots = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}.$

Which can be seen if we consider

$$\begin{aligned} \mathbf{T}(2,4) &= (2,14) = \underbrace{4} \cdot (2,4) + \underbrace{-2} \cdot (3,1) \ \Rightarrow \ [\mathbf{T}(2,4)]_{\gamma} = (4,-2). \quad \text{``1}^{st} \text{ column of } [\mathbf{T}]_{\gamma} \text{''} \\ \mathbf{T}(3,1) &= (8,6) = \underbrace{1} \cdot (2,4) + \underbrace{2} \cdot (3,1) \ \Rightarrow \ [\mathbf{T}(3,1)]_{\gamma} = (1,2). \quad \text{``2}^{nd} \text{ column of } [\mathbf{T}]_{\gamma} \text{''} \end{aligned}$$

Example 2.5.3

Let \mathbf{T} be the linear operator on \mathbb{R}^3 defined by

$$\mathbf{T}(a, b, c) = (2a + b, a + b + 3c, -b),$$

and let $\beta = \{ (1,0,0), (0,1,0), (0,0,1) \}$ and $\gamma = \{ (-1,0,0), (2,1,0), (1,1,1) \}$ be bases for \mathbb{R}^3 . Find $[\mathbf{T}]_{\beta}, [\mathbf{T}]_{\gamma}$, and the matrix Q that changes the γ -coordinates into β -coordinates.

Solution:

Clearly,

$$\mathbf{I}_{\mathbb{R}^3}(-1,0,0) = (-1,0,0) = -1(1,0,0) + 0(0,1,0) + 0(0,0,1)$$
$$\mathbf{I}_{\mathbb{R}^3}(2,1,0) = (2,1,0) = 2(1,0,0) + 1(0,1,0) + 0(0,0,1)$$
$$\mathbf{I}_{\mathbb{R}^3}(1,1,1) = (1,1,1) = 1(1,0,0) + 1(0,1,0) + 1(0,0,1).$$

Hence

$$Q = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow Q^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{split} \underline{\text{Computing }[\mathbf{T}]_{\beta}:} \\ & \mathbf{T}(1,0,0) = (2,1,0) = 2(1,0,0) + 1(0,1,0) + 0(0,0,1) \\ & \mathbf{T}(0,1,0) = (1,1,-1) = 1(1,0,0) + 1(0,1,0) + (-1)(0,0,1) \\ & \mathbf{T}(0,0,1) = (0,3,0) = 0(1,0,0) + 3(0,1,0) + 0(0,0,1). \end{split}$$

$$\begin{aligned} \text{Thus } [\mathbf{T}]_{\beta} &= \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 3 \\ 0 & -1 & 0 \end{pmatrix}, \text{ and hence } [\mathbf{T}]_{\gamma} = Q^{-1} [\mathbf{T}]_{\beta} Q = \begin{pmatrix} 0 & 2 & 8 \\ -1 & 4 & 6 \\ 0 & -1 & -1 \end{pmatrix}. \end{aligned}$$

$$\begin{aligned} \underline{\text{Confirming:}} \\ \mathbf{T}(-1,0,0) &= (-2,-1,0) = 0(-1,0,0) + (-1)(2,1,0) + 0(1,1,1) \\ & \mathbf{T}(2,1,0) = (5,3,-1) = 2(-1,0,0) + 4(2,1,0) + (-1)(1,1,1) \\ & \mathbf{T}(1,1,1) = (3,5,-1) = 8(-1,0,0) + 6(2,1,0) + (-1)(1,1,1). \end{split}$$

Exercise 2.5.1

Solve the following exercises from the book at pages 116 - 117:

• 2, 3, 4, 5, 6.

5

Section 5.1: Eigenvalues and Eigenvectors

Definition 5.1.1

Let $A \in M_{m \times n}(\mathbb{F})$. We define the mapping $\mathbf{L}_A : \mathbb{F}^n \to \mathbb{F}^m$ by $\mathbf{L}_A(x) = A x$ for every column vector $x \in \mathbb{F}^n$. We call \mathbf{L}_A , the **left multiplication transformation**.

Example 5.1.1

Let
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{L}_A : \mathbb{R}^3 \to \mathbb{R}^2$. Find $\mathbf{L}_A(x)$ where $x = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.
Solution:
 $\mathbf{L}_A(x) = Ax = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix} \in \mathbb{R}^2$.

Remark 5.1.1

Let $A, B \in M_{m \times n}(\mathbb{F})$ and let $c \in \mathbb{F}$. Then

- 1. \mathbf{L}_A is a linear transformation.
- 2. $[\mathbf{L}_A]^{\gamma}_{\beta} = A$, where β and γ are the standard ordered bases for \mathbb{F}^n and \mathbb{F}^m , respectively.
- 3. $\mathbf{L}_A = \mathbf{L}_B$ if and only if A = B.
- 4. $\mathbf{L}_{A+B} = \mathbf{L}_A + \mathbf{L}_B$ and $\mathbf{L}_{cA} = c\mathbf{L}_A$.

Proof of (2): Let $\beta = (E_1, \dots, E_n)$ and $\gamma = (E_1, \dots, E_m)$ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For any column vector $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, we have

$$x = x_1 E_1 + \dots + x_n E_n,$$

and thus
$$[x]_{\beta} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x$$
. Similarly, we have $[y]_{\gamma} = y$ for all $y \in \mathbb{R}^m$.

Now let $A \in M_{m \times n}(\mathbb{R})$, and let $x \in \mathbb{R}^n$. By definition, $\mathbf{L}_A(x) = Ax$. Also by Remark 2.2.2, we have $[\mathbf{L}_A]_{\gamma} = [\mathbf{L}_A]_{\beta}^{\gamma} [x]_{\beta}$. Note that since $[\mathbf{L}_A]_{\gamma} \in \mathbb{R}^m$ and $[x]_{\beta} \in \mathbb{R}^n$, we have

$$\mathbf{L}_A(x) = [\mathbf{L}_A]^{\gamma}_{\beta} \ x.$$

Thus, $[\mathbf{L}_A]^{\gamma}_{\beta} x = \mathbf{L}_A(x) = Ax$ for all $x \in \mathbb{R}^n$. Applying this to $E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, we see that the first column

of $[\mathbf{L}_A]^{\gamma}_{\beta}$ and A are the same. Similarly, we apply it for all E_i for $i = 1, \dots, n$, we get $[\mathbf{L}_A]^{\gamma}_{\beta} = A$ as desired.

Definition 5.1.2

A linear operator \mathbf{T} on a finite-dimensional vector space \mathbb{V} is called **diagonalizable** if there is an ordered basis β for \mathbb{V} such that $[\mathbf{T}]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if \mathbf{L}_A is diagonalizable.

Definition 5.1.3

Let **T** be a linear operator on a vector space \mathbb{V} . A nonzero vector $x \in \mathbb{V}$ is called **eigenvector** (or **e-vector** for short) of **T** if there exists a scalar λ such that $\mathbf{T}(x) = \lambda x$. The scalar λ is then called **eigenvalue** (or **e-value** for short) corresponding to x.

Remark 5.1.2

Let $A \in M_{n \times n}(\mathbb{F})$.

- A nonzero vector $x \in \mathbb{F}^n$ is called e-vector of A if and only if x is an e-vector of \mathbf{L}_A .
- λ is an e-value of A if and only if λ is an e-value of \mathbf{L}_A .

Theorem 5.1.1

A linear operator \mathbf{T} on a finite-dimensional vector space \mathbb{V} is diagonalizable if and only if there exists an ordered basis β for \mathbb{V} consisting of e-vectors of \mathbf{T} . Furthermore, if \mathbf{T} is diagonalizable, $\beta = \{x_1, x_2, \dots, x_n\}$ is an ordered basis of e-vectors of \mathbf{T} , and $D = [\mathbf{T}]_{\beta} = (d_{ij})$, then D is a

diagonal matrix and d_{jj} is the e-values corresponding to x_j for $1 \le j \le n$.

Note that to *diagonalize* a matrix or a linear operator is to find a basis of e-vectors and the corresponding e-values.

Example 5.1.2

Consider
$$A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$
, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Then
 $\mathbf{L}_A(x) = Ax = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2x$ and $\mathbf{L}_A(y) = Ay = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 3y.$

That is 2 and 3 are e-values of \mathbf{L}_A corresponding to e-vectors x and y, respectively. Note that $\beta = \{x, y\}$ is an ordered basis for \mathbb{R}^2 consisting e-vectors of both A and \mathbf{L}_A , and therefore A and \mathbf{L}_A are both diagonalizable. Moreover,

$$\left[\mathbf{L}_A\right]_{\beta} = \begin{pmatrix} 2 & 0\\ 0 & 3 \end{pmatrix},$$

where $[\mathbf{L}_A(x)]_{\beta} = (2,0)$, and $[\mathbf{L}_A(y)]_{\beta} = (0,3)$.

Theorem 5.1.2

Let $A \in M_{n \times n}(\mathbb{F})$. Then a scalar λ is an e-value of A if and only if $|A - \lambda I_n| = 0$.

Proof:

A scalar λ is an e-value of A iff there exists a nonzero vector $x \in \mathbb{F}^n$ such that

 $Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I_n)x = 0 \Leftrightarrow A - \lambda I_n \text{ is singular} \Leftrightarrow |A - \lambda I_n| = 0.$

Definition 5.1.4

• Let $A \in M_{n \times n}(\mathbb{F})$. The polynomial $f(t) = |A - tI_n|$ is called the **characteristic polyno**mial of A.

• Let **T** be a linear operator on an *n*-dimensional vector space \mathbb{V} with ordered basis β . We

define the characteristic polynomial f(t) of **T** to be

$$f(t) = |A - tI_n|$$
, where $A = [\mathbf{T}]_{\beta}$.

Example 5.1.3

Find the e-values of
$$A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$
.

Solution

We use the characteristic polynomial $f(\lambda) = |A - \lambda I_2| = 0$.

$$\begin{vmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0.$$

Therefore, $\lambda = -1$ and 3 are the e-values of A.

Example 5.1.4

Let **T** be a linear operator on $\mathbb{P}_2(\mathbb{R})$ defined by

$$\mathbf{T}(f(x)) = f(x) + (x+1)f'(x).$$

Find the e-values of **T**.

Solution:

Let $A = [\mathbf{T}]_{\beta}$ where $\beta = \{1, x, x^2\}$ is the standard ordered basis for $\mathbb{P}_2(\mathbb{R})$. Then

$$\mathbf{T}(1) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$\mathbf{T}(x) = x + (x+1) = 2x + 1 = 1 \cdot 1 + 2 \cdot x + 0 \cdot x^{2}$$

$$\mathbf{T}(x^{2}) = x^{2} + (x+1)2x = 3x^{2} + 2x = 0 \cdot 1 + 2 \cdot x + 3 \cdot x^{2}.$$

Thus, $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$, and hence

$$f(\lambda) = |A - \lambda I_{3}| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(3 - \lambda) = 0.$$

Therefore, λ is an e-value of A iff $\lambda = 1, 2$, or 3.

Note that if A is an $n \times n$ matrix, then $f(t) = |A - tI_n| = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$, is of degree n.

Theorem 5.1.3

Let $A \in M_{n \times n}(\mathbb{F})$ with characteristic polynomial f(t). Then

- 1. f(t) is a polynomial of degree n with leading coefficient $(-1)^n$.
- 2. A has at most n distinct e-values.
- 3. $f(0) = a_0 = |A|$.

The following theorem describes a procedure for computing the e-vectors corresponding to a given e-value.

Theorem 5.1.4

Let **T** be a linear operator on a vector space \mathbb{V} , and let λ be an e-value of **T**. A vector $x \in \mathbb{V}$ is an e-vector of **T** corresponding to λ if and only if $x \neq 0$ and $x \in \mathcal{N}(\mathbf{T} - \lambda I)$.

Example 5.1.5

Let
$$A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$
. Find all e-vectors of A .

Solution:

We start finding the e-values using $f(\lambda) = |A - \lambda I_2| = 0$. Thus

$$|A - \lambda I_2| = \begin{vmatrix} 1 - \lambda & 1 \\ 4 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0.$$

Thus $\lambda_1 = -1$ and $\lambda_2 = 3$.

For $\underline{\lambda_1 = -1}$: Let $B_1 = A - \lambda_1 I_2 = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$. Then $x_1 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ is an e-vector corresponding to $\lambda_1 = -1$ iff $x_1 \neq 0$ and $x_1 \in \mathcal{N}(\mathbf{L}_{B_1})$. That is

$$\mathbf{L}_{B_1}(x_1) = B_1 x_1 = 0 \implies \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$\begin{bmatrix} 2 & 1 & 0 \\ 4 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow a + \frac{1}{2}b = 0 \Rightarrow b = -2a$$

That is,
$$x_1 \in \mathcal{N}(\mathbf{L}_{B_1}) = \left\{ t \begin{pmatrix} 1 \\ -2 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}$$
. Thus x_1 is an e-vector of A corresponding
to $\lambda_1 = -1$ iff $x_1 = t \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$.
For $\underline{\lambda_2 = 3}$: Let $B_2 = A - \lambda_2 I_2 = \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix}$. Then $x_2 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ is an e-vector
corresponding to $\lambda_2 = 3$ iff $x_2 \neq 0$ and $x_2 \in \mathcal{N}(\mathbf{L}_{B_2})$. That is
 $\mathbf{L}_{B_2}(x_2) = B_2 x_2 = 0 \Rightarrow \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
This is a homogenous system which can be solved using r.r.e.f. as follows:
 $\begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow a - \frac{1}{2}b = 0 \Rightarrow b = 2a$.
That is, $x_2 \in \mathcal{N}(\mathbf{L}_{B_2}) = \left\{ t \begin{pmatrix} 1 \\ 2 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}$. Thus x_2 is an e-vector of A corresponding to
 $\lambda_2 = 3$ iff $x_2 = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$.
Remark:
Note that $\gamma = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ is an ordered basis for \mathbb{R}^2 containing e-vectors of A . Thus
 \mathbf{L}_A , and hence A , is diagonalizable and if $Q = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}$, then $Q^{-1}AQ = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$.

Remark 5.1.3

Note that to find the e-vectors of a linear operator \mathbf{T} on an *n*-dimensional vector space \mathbb{V} :

- 1. Select an ordered basis for \mathbb{V} , say β .
- 2. Let $A = [\mathbf{T}]_{\beta}$. Then $x \in \mathbb{V}$ is an e-vector of \mathbf{T} corresponding to λ if and only if $[x]_{\beta}$, the coordinate vector of x relative to β , is an e-vector of A corresponding to λ .

Example 5.1.6

Let **T** be the linear operator defined on $\mathbb{P}_2(\mathbb{R})$ by T(f(x)) = f(x) + (x+1)f'(x).Find the e-vectors of **T** and an ordered basis γ for $\mathbb{P}_2(\mathbb{R})$ so that $[\mathbf{T}]_{\gamma}$ is diagonalizable. Solution: Let $\beta = \{1, x, x^2\}$ be an ordered basis for $\mathbb{P}_2(\mathbb{R})$. Then $\mathbf{T}(1) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$ $\mathbf{T}(x) = x + (x+1) = 2x + 1 = 1 \cdot 1 + 2 \cdot x + 0 \cdot x^{2}$ $\mathbf{T}(x^2) = x^2 + (x+1)2x = 3x^2 + 2x = 0 \cdot 1 + 2 \cdot x + 3 \cdot x^2.$ Thus, $A = [\mathbf{T}]_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$, and hence $f(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(3 - \lambda) = 0.$ Therefore, $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = 3$. For $\underline{\lambda_1 = 1}$: Let $B_1 = A - \lambda_1 I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$. Then $x_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is an e-vector corresponding to $\lambda_1 = 1$ iff $x_1 \neq 0$ and $x_1 \in \mathcal{N}(\mathbf{L}_{B_1})$. That is $\mathbf{L}_{B_1}(x_1) = B_1 x_1 = 0 \implies \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$

This is a homogenous system which can be solved using r.r.e.f. as follows:

.

$$\begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow b = c = 0 \text{ and } a = t \in \mathbb{R} \setminus \{0\}.$$

That is, $x_1 \in \mathcal{N}(\mathbf{L}_{B_1}) = \left\{ t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}.$ Thus x_1 is an e-vector of A corresponding to $\lambda_1 = 1$ iff $x_1 = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the

e-vectors of **T** corresponding to $\lambda_1 = 1$ are of the form

$$\left\{ t(1 \cdot 1 + 0 \cdot x + 0 \cdot x^2) : t \in \mathbb{R} \setminus \{0\} \right\} = \left\{ t : t \in \mathbb{R} \setminus \{0\} \right\}.$$

For $\underline{\lambda_2 = 2}$: Let $B_2 = A - \lambda_2 I_3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Then $x_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is an e-vector corresponding to $\lambda_2 = 2$ iff $x_2 \neq 0$ and $x_2 \in \mathcal{N}(\mathbf{L}_{B_2})$. That is

$$\mathbf{L}_{B_2}(x_2) = B_2 x_2 = 0 \implies \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow a - b = 0 \text{ and } c = 0 \Rightarrow a = b = t \in \mathbb{R} \setminus \{0\}.$$

That is, $x_2 \in \mathcal{N}(\mathbf{L}_{B_2}) = \left\{ t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}.$ Thus x_2 is an e-vector of A corresponding to $\lambda_2 = 2$ iff $x_2 = t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the

e-vectors of **T** corresponding to $\lambda_2 = 2$ are of the form

$$\left\{ t(1 \cdot 1 + 1 \cdot x + 0 \cdot x^2) : t \in \mathbb{R} \setminus \{0\} \right\} = \left\{ t(1+x) : t \in \mathbb{R} \setminus \{0\} \right\}.$$

For $\underline{\lambda_3 = 3}$: Let $B_3 = A - \lambda_3 I_3 = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$. Then $x_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is an e-vector corresponding to $\lambda_3 = 3$ iff $x_3 \neq 0$ and $x_3 \in \mathcal{N}(\mathbf{L}_{B_3})$. That is

$$\mathbf{L}_{B_3}(x_3) = B_3 x_3 = 0 \implies \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

That is,
$$x_3 \in \mathcal{N}(\mathbf{L}_{B_3}) = \left\{ t \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}$$
. Thus x_3 is an e-vector of A corresponding to

 $\lambda_3 = 3$ iff $x_3 = t \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the

e-vectors of **T** corresponding to $\lambda_3 = 3$ are of the form

$$\Big\{ t(1 \cdot 1 + 2 \cdot x + 1 \cdot x^2) : t \in \mathbb{R} \setminus \{0\} \Big\} = \Big\{ t(1 + 2x + x^2) : t \in \mathbb{R} \setminus \{0\} \Big\}.$$

Therefore, setting t = 1, we get $\gamma = \{1, 1 + x, 1 + 2x + x^2\}$ which is an ordered basis for $\mathbb{P}_2(\mathbb{R})$ containing e-vectors of **T** and hence **T** is diagonalizable and

$$[\mathbf{T}]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = Q^{-1} A Q, \text{ where } Q = \begin{bmatrix} \mathbf{I} \end{bmatrix}_{\gamma}^{\beta} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that the columns of Q are the vectors $[u_i]_{\beta}$ for i = 1, 2, 3 and $u_i \in \gamma$. That is $Q = [[u_1]_{\beta} \quad [u_2]_{\beta} \quad [u_3]_{\beta}]$ where u_i is the i^{th} vector of γ .

Example 5.1.7

Let **T** be a linear operator defined on $M_{2\times 2}(\mathbb{R})$ by $\mathbf{T}\left(\begin{pmatrix}a & b\\c & d\end{pmatrix}\right) = \begin{pmatrix}d & b\\c & a\end{pmatrix}$. Find the e-vectors of **T** and an ordered basis γ for $M_{2\times 2}(\mathbb{R})$ such that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.

Solution:

Let
$$\beta = \left\{ E^{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E^{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E^{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E^{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
. Then,

$$\mathbf{T} \begin{pmatrix} E^{11} \end{pmatrix} = E^{22} = 0 \cdot E^{11} + 0 \cdot E^{12} + 0 \cdot E^{21} + 1 \cdot E^{22}$$

$$\mathbf{T} \begin{pmatrix} E^{12} \end{pmatrix} = E^{12} = 0 \cdot E^{11} + 1 \cdot E^{12} + 0 \cdot E^{21} + 0 \cdot E^{22}$$

$$\mathbf{T} \begin{pmatrix} E^{21} \end{pmatrix} = E^{21} = 0 \cdot E^{11} + 0 \cdot E^{12} + 1 \cdot E^{21} + 0 \cdot E^{22}$$

$$\mathbf{T} \begin{pmatrix} E^{22} \end{pmatrix} = E^{11} = 1 \cdot E^{11} + 0 \cdot E^{12} + 0 \cdot E^{21} + 0 \cdot E^{22}$$

Thus, $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ and hence the e-values of A are

$$f(\lambda) = |A - \lambda I_4| = \begin{vmatrix} -\lambda & 0 & 0 & 1\\ 0 & 1 - \lambda & 0 & 0\\ 0 & 0 & 1 - \lambda & 0\\ 1 & 0 & 0 & -\lambda \end{vmatrix} = (1 - \lambda)^2 (\lambda^2 - 1) = 0$$

Thus, $\lambda_{1,2,3} = 1$ and $\lambda_4 = -1$.

For
$$\underline{\lambda = \lambda_{1,2,3} = 1}$$
: Let $B = A - \lambda I_4 = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$. Then $x = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ is an e-vector

corresponding to λ iff $x \neq 0$ and $x \in \mathcal{N}(\mathbf{L}_B)$. That is

$$\mathbf{L}_B(x) = Bx = 0 \implies \begin{pmatrix} -1 & 0 & 0 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a\\ b\\ c\\ d \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$\begin{pmatrix} -1 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 1 & 0 & 0 & -1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \Rightarrow a - d = 0 \Rightarrow a = d = s; b = t; c = r,$$

where $s, t, r \in \mathbb{R} \setminus \{0\}$. That is, x are of the form

$$\left\{ \begin{pmatrix} s \\ t \\ r \\ s \end{pmatrix} : s, t, r \in \mathbb{R} \right\} = \left\{ s \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} : s, t, r \in \mathbb{R} \right\}.$$

Note that s, t, and r are in \mathbb{R} not all zeros. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to λ are of the form

$$s \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, r \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

For
$$\underline{\lambda = \lambda_4 = -1}$$
: Let $B = A - \lambda I_4 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$. Then $x = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ is an e-vector

corresponding to λ iff $x \neq 0$ and $x \in \mathcal{N}(\mathbf{L}_B)$. That is

$$\mathbf{L}_{B}(x) = Bx = 0 \implies \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

where $t \in \mathbb{R} \setminus \{0\}$. That is, x are of the form

$$\left\{ t \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} : t \in \mathbb{R} \setminus \{0\} \right\}.$$

Consequently, (using the ordered basis β) the e-vectors of **T** corresponding to λ are of the form

$$t \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
, for some $t \in \mathbb{R} \setminus \{0\}$.

Thus, $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is an ordered basis for $M_{2\times 2}(\mathbb{R})$ consisting of e-vectors of **T**. Therefore **T** is diagonalizable and

$$[\mathbf{T}]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix} = Q^{-1} A Q.$$

Where Q is the matrix whose columns are $[u_i]_{\beta}$ for i = 1, 2, 3, 4 and $u_i \in \gamma$.

Example 5.1.8

Let **T** be the linear operator defined on \mathbb{R}^2 by $\mathbf{T}(a, b) = (-2a + 3b, -10a + 9b)$. Find the e-values of **T** and an ordered basis γ for \mathbb{R}^2 such that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.

Solution:

Let $\beta = \{ (1,0), (0,1) \}$. Then

$$\mathbf{T}(1,0) = (-2,-10) = -2 \cdot (1,0) + (-10) \cdot (0,1)$$
$$\mathbf{T}(0,1) = (3,9) = 3 \cdot (1,0) + 9 \cdot (0,1)$$

Thus $A = \begin{pmatrix} -2 & 3 \\ -10 & 9 \end{pmatrix}$ and the e-values of A are

$$f(\lambda) = |A - \lambda I_2| = \begin{vmatrix} -2 - \lambda & 3 \\ -10 & 9 - \lambda \end{vmatrix} = \dots = (\lambda - 3)(\lambda - 4) = 0$$

Therefore, $\lambda_1 = 3$ and $\lambda_2 = 4$.

For $\underline{\lambda_1 = 3}$: Let $B_1 = A - \lambda_1 I_2 = \begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix}$. Then $x_1 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ is an e-vector corresponding to $\lambda_1 = 3$ iff $x_1 \neq 0$ and $x_1 \in \mathcal{N}(\mathbf{L}_{B_1})$. That is

$$\mathbf{L}_{B_1}(x_1) = B_1 x_1 = 0 \implies \begin{pmatrix} -5 & 3\\ -10 & 6 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$\begin{bmatrix} -5 & 3 & 0 \\ -10 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{3}{5} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow a - \frac{3}{5}b = 0 \Rightarrow a = \frac{3}{5}b$$

That is, $x_1 \in \mathcal{N}(\mathbf{L}_{B_1}) = \left\{ t \begin{pmatrix} 3\\ 5 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}$. Thus x_1 is an e-vector of A corresponding to

 $\lambda_1 = 3$ iff $x_1 = t \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of **T** corresponding to $\lambda = 3$ are of the form

$$t\begin{pmatrix}3\\5\end{pmatrix}$$
, for some $t \in \mathbb{R} \setminus \{0\}$.

For $\underline{\lambda_2 = 4}$: Let $B_2 = A - \lambda_2 I_2 = \begin{pmatrix} -6 & 3 \\ -10 & 5 \end{pmatrix}$. Then $x_2 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ is an e-vector corresponding to $\lambda_2 = 4$ iff $x_2 \neq 0$ and $x_2 \in \mathcal{N}(\mathbf{L}_{B_2})$. That is

$$\mathbf{L}_{B_2}(x_2) = B_2 x_2 = 0 \implies \begin{pmatrix} -6 & 3\\ -10 & 5 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$\begin{bmatrix} -6 & 3 & | & 0 \\ -10 & 5 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{2} & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow a - \frac{1}{2}b = 0 \Rightarrow a = \frac{1}{2}b.$$

That is, $x_2 \in \mathcal{N}(\mathbf{L}_{B_2}) = \left\{ t \begin{pmatrix} 1 \\ 2 \end{pmatrix} : 0 \neq t \in \mathbb{R} \right\}$. Thus x_2 is an e-vector of A corresponding to

 $\lambda_2 = 4$ iff $x_2 = t \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of **T** corresponding to $\lambda = 4$ are of the form

$$t\begin{pmatrix}1\\2\end{pmatrix}$$
, for some $t \in \mathbb{R} \setminus \{0\}$.

Thus, $\gamma = \{ (3,5), (1,2) \}$ is an ordered basis for \mathbb{R}^2 consisting of e-vectors of **T**. Therefore **T** is diagonalizable and

$$\left[\mathbf{T}\right]_{\gamma} = \begin{pmatrix} 3 & 0\\ 0 & 4 \end{pmatrix} = Q^{-1} A Q.$$

Where Q is the matrix whose columns are the vectors of γ . That is, $Q = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$.

Exercise 5.1.1

Solve the following exercises from the book at pages 256 - 260:

- 2.
- 3: a, b, and d.
- 4,5.
- 11: a, and c.
- 12 : *a*.
- 14, 15.

Section 5.2: Diagonalizability

In this section, we introduce a simple test to determine whether an operator or a matrix can be diagonalized. Also, we present a method for finding an ordered basis of e-vectors.

Theorem 5.2.1

Let **T** be a linear operator on a finite-dimensional vector space \mathbb{V} , and let $\lambda_1, \lambda_2, \dots, \lambda_k$ be **distinct** e-values of **T**. If x_1, x_2, \dots, x_k are e-vectors of **T** such that λ_i correspond to x_i $(1 \le i \le k)$, then $\{x_1, x_2, \dots, x_k\}$ is linearly independent set in \mathbb{V} .

Theorem 5.2.2

Let **T** be a linear operator on an *n*-dimensional vector space \mathbb{V} . If **T** has *n* distinct e-values, then **T** is diagonalizable.

Example 5.2.1

Is
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 diagonalizable? Explain.

Solution:

We first start to find the e-values of A (and hence of \mathbf{L}_A) using its characteristic polynomial:

$$f(\lambda) = |A - \lambda I_2| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2) = 0.$$

Therefore, $\lambda_1 = 0$ and $\lambda_2 = 2$. Since \mathbf{L}_A is a linear operator on \mathbb{R}^2 and has two distinct e-values (0 and 2), then \mathbf{L}_A (and hence A) is diagonalizable.

Remark 5.2.1

The converse of Theorem 5.2.1 is not true in general. That is if \mathbf{T} is diagonalizable, then \mathbf{T} not necessary has distinct e-values.

Definition 5.2.1

We say that a polynomial $f(t) \in \mathbb{P}(\mathbb{F})$ splits over \mathbb{F} if there are scalars c, a_1, a_2, \cdots, a_n (not necessary distinct) in \mathbb{F} such that

$$f(t) = c (t - a_1)(t - a_2) \cdots (t - a_n).$$

Example 5.2.2

Note that $f(t) = t^2 - 1$ splits over \mathbb{R} , but $g(t) = t^2 + 1$ does not.

Theorem 5.2.3

The characteristic polynomial of any diagonalizable linear operator splits.

Proof:

Let **T** be a diagonalizable linear operator on the *n*-dimensional vector space \mathbb{V} with an ordered basis β such that $[\mathbf{T}]_{\beta} = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ is a diagonal matrix. The characteristic polynomial of **T** is

$$f(t) = \left| [\mathbf{T}]_{\beta} - tI_n \right| = \left| D - tI \right| = \begin{vmatrix} \lambda_1 - t & 0 \\ & \ddots \\ 0 & \lambda_n - t \end{vmatrix}$$
$$= (\lambda_1 - t)(\lambda_2 - t)\cdots(\lambda_n - t) = (-1)^n(t - \lambda_1)\cdots(t - \lambda_n).$$

Definition 5.2.2

Let λ be an e-value of a linear operator or a matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t). We write $m(\lambda)$ to denote λ 's multiplicity.

Example 5.2.3

Consider the characteristic polynomial $f(t) = (t-2)^4(t-3)^2(t-1)$. Hence $\lambda = 2, 3, 1$ are the e-values with multiplicities: $m(\lambda = 2) = 4$, $m(\lambda = 3) = 2$, and $m(\lambda = 1) = 1$.

Definition 5.2.3

Let **T** be a linear operator on a vector space \mathbb{V} , and let λ be an e-value of **T**. Define

$$E_{\lambda} = \{ x \in \mathbb{V} : \mathbf{T}(x) = \lambda x \} = \mathcal{N}(\mathbf{T} - \lambda \mathbf{I}_{V}).$$

The set E_{λ} is called the **eigenspace** (or **e-space** for short) of **T** corresponding to λ . We also define the eigen space of a square matrix A to be the eigen space of \mathbf{L}_A .

Remark 5.2.2

Let **T** be a linear operator on a vector space \mathbb{V} , and let λ be an e-value of **T**. Then

- 1. E_{λ} is a subspace of \mathbb{V} .
- 2. E_{λ} consists of the zero vector and the e-vector of **T** corresponding to λ .
- 3. dim (E_{λ}) is the maximum number of linearly independent e-vectors corresponding to λ .

Theorem 5.2.4

Let **T** be a linear operator on a finite-dimensional vector space \mathbb{V} , and let λ be an e-value of **T** having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

Theorem 5.2.5: Diagonalization Test

Let \mathbf{T} be a linear operator on an *n*-dimensional vector space \mathbb{V} . Then, \mathbf{T} is diagonalizable if and only if both of the following conditions hold.

- 1. The characteristic polynomial of T splits, and
- 2. For each e-value λ of \mathbf{T} , $m(\lambda) = \dim(E_{\lambda}) = n rank(\mathbf{T} \lambda \mathbf{I}_{V})$.

Moreover, if **T** is diagonalizable and β_i is an ordered basis for E_{λ_i} for $i = 1, \dots, k$, then $\beta = \beta_1 \cup \dots \cup \beta_k$ (in corresponding order of e-values) is an ordered basis for \mathbb{V} consisting of e-vectors of **T**.

Example 5.2.4

Let **T** be a linear operator on $\mathbb{P}_2(\mathbb{R})$ defined by $\mathbf{T}(f(x)) = f'(x)$. Is **T** diagonalizable? Explain.

Solution:

Choose the standard ordered basis $\beta = \{1, x, x^2\}$ for $\mathbb{P}_2(\mathbb{R})$. Then,

$$\begin{aligned} \mathbf{T}(1) &= 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \\ \mathbf{T}(x) &= 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \\ \mathbf{T}(x^2) &= 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2 \end{aligned} \right\} \implies A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

The characteristic polynomial of ${\bf T}$ is

$$f(\lambda) = |A - \lambda I_3| = \begin{vmatrix} -\lambda & 1 & 0\\ 0 & -\lambda & 2\\ 0 & 0 & -\lambda \end{vmatrix} = -\lambda^3 = 0.$$

Therefore, **T** has one e-value $\lambda = 0$ with multiplicity m(0) = 3. The e-space E_{λ} corresponding to $\lambda = 0$ is $E_{\lambda} = \mathcal{N}(\mathbf{T} - \lambda I_3) = \mathcal{N}(\mathbf{T})$. That is,

$$E_{\lambda} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \left\{ t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Hence E_{λ} is the subspace of $\mathbb{P}_2(\mathbb{R})$ consisting of the constant polynomials. So, $\{1\}$ is a basis for E_{λ} and hence $\dim(E_{\lambda}) = 1 \neq m(0) = 3$.

Therefore, there is no ordered basis for $\mathbb{P}_2(\mathbb{R})$ consisting of e-vectors of **T**. Therefore, **T** is not diagonalizable.

Example 5.2.5

Let **T** be a linear operator on \mathbb{R}^3 defined by $\mathbf{T}(a, b, c) = (4a+c, 2a+3b+2c, a+4c)$. Determine the e-space corresponding to each e-value of **T**.

Solution:

Choose $\beta = \{E_1, E_2, E_3\}$ the standard ordered basis for \mathbb{R}^3 . Then,

$$\mathbf{T}(E_1) = (4, 2, 1) = 4 \cdot E_1 + 2 \cdot E_2 + 1 \cdot E_3 \\ \mathbf{T}(E_2) = (0, 3, 0) = 0 \cdot E_1 + 3 \cdot E_2 + 0 \cdot E_3 \\ \mathbf{T}(E_3) = (1, 2, 4) = 1 \cdot E_1 + 2 \cdot E_2 + 4 \cdot E_3$$
 $\Rightarrow A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$

The characteristic polynomial of ${\bf T}$ is

$$f(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 4 - \lambda & 0 & 1 \\ 2 & 3 - \lambda & 2 \\ 1 & 0 & 4 - \lambda \end{vmatrix} = \dots = (3 - \lambda)(\lambda - 3)(\lambda - 5) = 0$$

Thus, **T** has e-values: $\lambda_1 = 3$ with m(3) = 2 and $\lambda_2 = 5$ with m(5) = 1.

For $\underline{E_{\lambda_1}}$: The e-space E_{λ_1} corresponding to $\lambda_1 = 3$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} - 3I_3)$. Therefore

$$E_{\lambda_1} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \end{vmatrix} \sim \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} \Rightarrow a = -c; c = r, b = t \in \mathbb{R}.$$

Setting $r, t \in \mathbb{R}$, we get

$$E_{\lambda_1} = \left\{ r \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : t, r \in \mathbb{R} \right\}.$$

Therefore, $\gamma_1 = \left\{ \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} \right\}$ is a basis for E_{λ_1} . Thus, $\dim(E_{\lambda_1}) = 2 = m(\lambda_1)$.

For $\underline{E_{\lambda_2}}$: The e-space E_{λ_2} corresponding to $\lambda_2 = 5$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - 5I_3)$. Therefore

$$E_{\lambda_2} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} -1 & 0 & 1\\ 2 & -2 & 2\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow a = c, b = 2c; c = t \in \mathbb{R}.$$

Setting $r, t \in \mathbb{R}$, we get

$$E_{\lambda_2} = \left\{ t \begin{pmatrix} 1\\2\\1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Therefore, $\gamma_2 = \left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$ is a basis for E_{λ_2} . Thus, $\dim(E_{\lambda_2}) = 1 = m(\lambda_2)$. Afterall, $\gamma = \gamma_1 \cup \gamma_2 = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^3 consisting e-vectors of \mathbf{T} . Therefore, \mathbf{T} is diagonalizable and

$$[\mathbf{T}]_{\gamma} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Example 5.2.6

Let
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
. Is *A* diagonalizable? Explain.

Solution:

The characteristic polynomial of A is

$$f(t) = |A - tI_3| = \begin{vmatrix} 3 - t & 1 & 0 \\ 0 & 3 - t & 0 \\ 0 & 0 & 4 - t \end{vmatrix} = (3 - t)^2 (4 - t) = 0.$$

Thus, $\lambda_1 = 3$ with m(3) = 2 and $\lambda_2 = 4$ with m(4) = 1. But we note that

$$A - \lambda_1 I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

has rank 2 and hence $\operatorname{dim}(E_{\lambda_1}) = 3 - 2 = 1$ which is different from the multiplicity of λ_1 . Therefore, A is not diagonalizable.

Example 5.2.7

Let **T** be the linear operator on $\mathbb{P}_2(\mathbb{R})$ defined by

$$\mathbf{\Gamma}(f(x)) = f(1) + f'(0) \cdot x + (f'(0) + f''(0)) \cdot x^2.$$

Is ${\bf T}$ diagonalizable? Explain.

Solution:

Let $\beta = \{1, x, x^2\}$ be the standard ordered basis for $\mathbb{P}_2(\mathbb{R})$. Then

$$\begin{aligned} \mathbf{T}(1) &= 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 \\ \mathbf{T}(x) &= 1 + x + (1+0)x^2 = 1 \cdot 1 + 1 \cdot x + 1 \cdot x^2 \\ \mathbf{T}(x^2) &= 1 + 2x^2 = 1 \cdot 1 + 0 \cdot x + 2 \cdot x^2 \end{aligned} \right\} \Rightarrow A = \begin{bmatrix} \mathbf{T} \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

The characteristic polynomial of ${\bf T}$ is

$$f(t) = |A - tI_3| = \begin{vmatrix} 1 - t & 1 & 1 \\ 0 & 1 - t & 0 \\ 0 & 1 & 2 - t \end{vmatrix} = (1 - t)^2 (2 - t) = 0.$$

Thus, $\lambda_1 = 1$ with m(1) = 2 and $\lambda_2 = 2$ with m(2) = 1. For $\underline{E_{\lambda_1}}$: The e-space E_{λ_1} corresponding to $\lambda_1 = 1$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} - 1I_3)$. Therefore

$$E_{\lambda_1} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{bmatrix} 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow b = -c.$$

Setting a = t and c = r both in \mathbb{R} , we get

$$E_{\lambda_1} = \left\{ t \begin{pmatrix} 1\\0\\0 \end{pmatrix} + r \begin{pmatrix} 0\\-1\\1 \end{pmatrix} : t, r \in \mathbb{R} \right\}$$

Therefore, $\gamma_1 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \right\}$ is a basis for E_{λ_1} .

For E_{λ_2} : The e-space E_{λ_2} corresponding to $\lambda_2 = 2$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - 2I_3)$. Therefore

$$E_{\lambda_2} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{bmatrix} -1 & 1 & 1 & | & 0 \\ 0 & -1 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow b = 0; a = c.$$

Setting $c = t \in \mathbb{R}$, we get

$$E_{\lambda_1} = \left\{ t \begin{pmatrix} 1\\0\\1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Therefore, $\gamma_2 = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ is a basis for E_{λ_2} . Thus, $\gamma = \gamma_1 \cup \gamma_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^3 consisting of e-vectors of A. Therefore, the vectors in γ are the coordinate vectors relative to β of the vectors in the set $\alpha = \{1, -x + x^2, 1 + x^2\}$ which is an ordered basis for $\mathbb{P}_2(\mathbb{R})$ consisting e-vectors of \mathbf{T} . Thus,

$$[\mathbf{T}]_{\alpha} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Example 5.2.8

Let $A = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$. Is A diagonalizable? Explain your answer and compute A^n for positive integer n.

Solution:

The characteristic polynomial of A is

$$f(t) = |A - tI_2| = \begin{vmatrix} -t & -2 \\ 1 & 3-t \end{vmatrix} = t^2 - 3t + 2 = (t-1)(t-2) = 0.$$

Thus, $\lambda_1 = 1$ with m(1) = 1 and $\lambda_2 = 2$ with m(2) = 1. Then the operator \mathbf{L}_A has two distinct e-values and hence A is diagonalizable.

For $\underline{E}_{\lambda_1}$: The e-space E_{λ_1} corresponding to $\lambda_1 = 1$ is $E_{\lambda_1} = \mathcal{N}(A - 1I_2)$. Therefore

$$E_{\lambda_1} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} -1 & -2\\ 1 & 2 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{bmatrix} -1 & -2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow a = -2b.$$

Setting $b = t \in \mathbb{R}$, we get

$$E_{\lambda_1} = \left\{ t \begin{pmatrix} -2\\ 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Therefore, $\gamma_1 = \left\{ \begin{pmatrix} -2\\ 1 \end{pmatrix} \right\}$ is a basis for E_{λ_1} . For $\underline{E_{\lambda_2}}$: The e-space E_{λ_2} corresponding to $\lambda_2 = 2$ is $E_{\lambda_2} = \mathcal{N}(A - 2I_2)$. Therefore

$$E_{\lambda_2} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} -2 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

This is can be solved as follows:

$$\begin{bmatrix} -2 & -2 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow a = -b.$$

Setting $b = t \in \mathbb{R}$, we get

$$E_{\lambda_2} = \left\{ t \begin{pmatrix} -1 \\ 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Therefore, $\gamma_2 = \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ is a basis for E_{λ_2} . Thus, $\gamma = \gamma_1 \cup \gamma_2 = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^2 consisting of e-vectors of A. Note that $D := [\mathbf{L}_A]_{\gamma} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = Q^{-1} A Q$ where $Q = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}$ and $Q^{-1} = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$. Therefore, $A = Q D Q^{-1}$ and hence $A^n = Q D^n Q^{-1}$; that is $A^n = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} = \dots = \begin{pmatrix} 2 - 2^n & 2 - 2^{n+1} \\ -1 + 2^n & -1 + 2^{n+1} \end{pmatrix}.$

Exercise 5.2.1

Solve the following exercises from the book at pages 279 - 283:

- 2,3.
- 7,8.

Section 5.4: Invariant Subspaces and The Cayley-Hamilton Theorem

Definition 5.4.1

Let **T** be a linear operator on a vector space \mathbb{V} . A subspace \mathbb{W} of \mathbb{V} is called **T-invariant** subspace of \mathbb{V} if $\mathbf{T}(\mathbb{W}) \subseteq \mathbb{W}$; that is if $\mathbf{T}(x) \in \mathbb{W}$ for all $x \in \mathbb{W}$.

Remark 5.4.1

Let **T** be a linear operator on a vector space \mathbb{V} . Then the following subspaces of \mathbb{V} are **T**-invariant:

- 1. $\{0\}$.
- 2. \mathbb{V} .
- 3. $\mathcal{R}(\mathbf{T})$.
- 4. $\mathcal{N}(\mathbf{T})$.
- 5. E_{λ} for any e-value λ of **T**.

Example 5.4.1

Let **T** be the linear operator on \mathbb{R}^3 defined by $\mathbf{T}(a, b, c) = (a + b, b + c, 0)$. Show that the subspaces of \mathbb{R}^3 , \mathbb{W}_1 and \mathbb{W}_2 , are **T**-invariant, where

(1):
$$\mathbb{W}_1 = \{ (a, b, 0) : a, b \in \mathbb{R} \}, \text{ and } (2): \mathbb{W}_2 = \{ (a, 0, 0) : a \in \mathbb{R} \}.$$

Solution:

(1): Clearly, $\mathbf{T}(a, b, 0) = (a + b, b, 0) \in \mathbb{W}_1$ for all $(a, b, 0) \in \mathbb{W}_1$. Thus, \mathbb{W}_1 is a **T**-invariant subspace of \mathbb{R}^3 .

(2): Clearly, $\mathbf{T}(a, 0, 0) = (a, 0, 0) \in \mathbb{W}_2$ for all $(a, 0, 0) \in \mathbb{W}_1$. Thus, \mathbb{W}_2 is a **T**-invariant subspace of \mathbb{R}^3 .

Definition 5.4.2

Let **T** be a linear operator on a vector space \mathbb{V} , and let x be a nonzero vector in \mathbb{V} . The subspace

$$\mathbb{W} = \mathbf{span} \left\{ x, \mathbf{T}(x), \mathbf{T}^2(x), \cdots \right\},\$$

where $\mathbf{T}^2(x) = \mathbf{T}(\mathbf{T}(x)), \mathbf{T}^3(x) = \mathbf{T}(\mathbf{T}(\mathbf{T}(x)))$, and so on, is called a **T-cyclic subspace** of \mathbb{V} generated by x.

Example 5.4.2

Let **T** be the linear operator on \mathbb{R}^3 defined by $\mathbf{T}(a, b, c) = (-b + c, a + c, 3c)$. Determine the **T**-cyclic subspace of \mathbb{R}^3 generated by $E_1 = (1, 0, 0)$.

Solution:

We simply compute the set containing E_1 and $\mathbf{T}^i(E_1)$ for $i = 1, 2, \cdots$.

$$\mathbf{T}(E_1) = \mathbf{T}(1, 0, 0) = (0, 1, 0) = E_2,$$

$$\mathbf{T}^2(E_1) = \mathbf{T}(\mathbf{T}(E_1)) = \mathbf{T}(E_2) = (-1, 0, 0) = -E_1$$

Therefore, $\mathbb{W} = \operatorname{span} \{ E_1, \mathbf{T}(E_1), \mathbf{T}^2(E_1), \cdots \} = \operatorname{span} \{ E_1, E_2 \} = \{ (s, t, 0) : s, t \in \mathbb{R} \}$ is the **T**-cyclic subspace of \mathbb{R}^3 generated by E_1 .

Remark 5.4.2

Let **T** be a linear operator on a vector space \mathbb{V} , and let x be a nonzero vector in \mathbb{V} . The subspace \mathbb{W} generated by x is the smallest **T**-invariant subspace which contains x. That is, any **T**-invariant subspace of \mathbb{V} containing x must contain \mathbb{W} .

Example 5.4.3

Let **T** be the linear operator on $\mathbb{P}_2(\mathbb{R})$ defined by $\mathbf{T}(f(x)) = f'(x)$. Determine the **T**-cyclic subspace of $\mathbb{P}_2(\mathbb{R})$ generated by x^2 .

Solution:

Note that $\mathbf{T}(x^2) = 2x$, $\mathbf{T}^2(x^2) = \mathbf{T}(2x) = 2$, and $\mathbf{T}^3(x^2) = \mathbf{T}(2) = 0$. Therefore, $\mathbb{W} =$ **span** $\{x^2, 2x, 2\} = \mathbb{P}_2(\mathbb{R})$ is the **T**-cyclic subspace of $\mathbb{P}_2(\mathbb{R})$ generated by x^2 .

Example 5.4.4

Let **T** be the linear operator on \mathbb{R}^4 defined by $\mathbf{T}(a, b, c, d) = (a+b+2c-d, b+d, 2c-d, c+d)$, and let $\mathbb{W} = \{(t, s, 0, 0) : t, s \in \mathbb{R}\}$. Show that \mathbb{W} is a **T**-invariant subspace of \mathbb{R}^4 .

Solution:

Choose arbitrary $x = (t, s, 0, 0) \in \mathbb{W}$. Then

$$\mathbf{T}(x) = (t+s, s, 0, 0) \in \mathbb{W}.$$

Thus, $\mathbf{T}(\mathbb{W}) \subseteq \mathbb{W}$ and hence \mathbb{W} is a **T**-invariant subsapce of \mathbb{R}^4 .

Theorem 5.4.1

Let **T** be a linear operator on a finite-dimensional vector space \mathbb{V} , and let \mathbb{W} be a **T**-cyclic subspace of \mathbb{V} generated by $x \in \mathbb{V}$. Let $\dim(\mathbb{W}) = k$. Then $\{x, \mathbf{T}(x), \dots, \mathbf{T}^{k-1}(x)\}$ is a basis for \mathbb{W} .

Example 5.4.5

Let **T** be the linear operator on \mathbb{R}^3 defined by $\mathbf{T}(a, b, c) = (-b + c, a + c, 3c)$, and let \mathbb{W} be the **T**-cyclic subspace of \mathbb{R}^3 generated by E_1 .

Solution:

Clearly, $E_1 = (1,0,0)$, $\mathbf{T}(E_1) = (0,1,0) = E_2$, and $\mathbf{T}^2(E_1) = \mathbf{T}(E_2) = (-1,0,0) = -E_1$. Therefore, $\mathbb{W} = \mathbf{span} \{ E_1, E_2 \}$ and hence $\mathbf{dim}(\mathbb{W}) = 2$. Thus, by Theorem 5.4.1, $\gamma = \{ E_1, E_2 \}$ is an ordered basis for \mathbb{W} .

Theorem 5.4.2: The Cayley-Hamilton Theorem

Let **T** be a linear operator on a finite-dimensional vector space \mathbb{V} , and let f(t) be the characteristic polynomial of **T**. Then $f(\mathbf{T}) = \mathbf{T}_0$, the zero transformation. That is, **T** "satisfies" its characteristic equation.

Theorem 5.4.3: The Cayley-Hamilton Theorem for Matrices

Let A be an $n \times n$ matrix, and let f(t) be the characteristic polynomial of A. Then f(A) = 0, the $n \times n$ zero matrix.

Example 5.4.6

Verify the Cayley-Hamilton theorem for the linear operator \mathbf{T} defined on \mathbb{R}^2 by $\mathbf{T}(a, b) = (a + 2b, -2a + b)$.

Solution:

Let $\beta = \{ E_1, E_2 \}$ be an ordered basis for \mathbb{R}^2 . Then

$$\mathbf{T}(E_1) = (1, -2) = E_1 + (-2)E_2$$
$$\mathbf{T}(E_2) = (2, 1) = 2E_1 + E_2.$$

Thus, $A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. The characteristic polynomial of \mathbf{T} is therefore $f(t) = |A - tI_2| = \begin{vmatrix} 1 - t & 2 \\ -2 & 1 - t \end{vmatrix} = (1 - t)^2 + 4 = t^2 - 2t + 5 = 0.$

That is,

$$f(\mathbf{T}) = (\mathbf{T}^2 - 2\mathbf{T} + 5\mathbf{I}_T) \begin{pmatrix} a \\ b \end{pmatrix}$$

$$= \mathbf{T}^2 \begin{pmatrix} a \\ b \end{pmatrix} - 2\mathbf{T} \begin{pmatrix} a \\ b \end{pmatrix} + 5\mathbf{I}_T \begin{pmatrix} a \\ b \end{pmatrix}$$

$$= \mathbf{T} \begin{pmatrix} a+2b \\ -2a+b \end{pmatrix} - 2 \begin{pmatrix} a+2b \\ -2a+b \end{pmatrix} + 5 \begin{pmatrix} a \\ b \end{pmatrix}$$

$$= \begin{pmatrix} (a+2b) + 2(-2a+b) \\ -2(a+2b) + (-2a+b) \end{pmatrix} + \begin{pmatrix} -2a-4b \\ 4a-2b \end{pmatrix} + \begin{pmatrix} 5a \\ 5b \end{pmatrix}$$

$$= \begin{pmatrix} -3a+4b \\ -4a-3b \end{pmatrix} + \begin{pmatrix} -2a-4b \\ 4a-2b \end{pmatrix} + \begin{pmatrix} 5a \\ 5b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{T}_0 \begin{pmatrix} a \\ b \end{pmatrix}.$$

Note that

$$f(A) = A^{2} - 2A + 5I = \begin{pmatrix} -3 & 4 \\ -4 & -3 \end{pmatrix} + \begin{pmatrix} -2 & 4 \\ 4 & -2 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

Example 5.4.7

Let **T** be the linear operator defined on $\mathbb{P}_1(\mathbb{R})$ by $\mathbf{T}(f(x)) = f(x) + f'(x)$. Verify the Cayley-Hamilton Theorem for **T**.

Solution:

Let $\beta = \{1, x\}$. Then,

$$\mathbf{T}(1) = 1 + 0 = 1 \cdot 1 + 0 \cdot x$$

 $\mathbf{T}(x) = x + 1 = 1 \cdot 1 + 1 \cdot x$

Thus, $[\mathbf{T}]_{\beta} = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and the characteristic polynomial of \mathbf{T} is therefore,

$$f(t) | A - tI_2 | = \begin{vmatrix} 1 - t & 1 \\ 0 & 1 - t \end{vmatrix} = (1 - t)^2 = t^2 - 2t + 1.$$

Therefore,

$$f(\mathbf{T}) = (\mathbf{T}^2 - 2\mathbf{T} + \mathbf{I}_T) \begin{pmatrix} a \\ bx \end{pmatrix} = \mathbf{T}^2 \begin{pmatrix} a \\ bx \end{pmatrix} - 2\mathbf{T} \begin{pmatrix} a \\ bx \end{pmatrix} + \begin{pmatrix} a \\ bx \end{pmatrix}$$
$$= \mathbf{T} \begin{pmatrix} a \\ b+bx \end{pmatrix} - 2 \begin{pmatrix} a \\ b+bx \end{pmatrix} + \begin{pmatrix} a \\ bx \end{pmatrix} = \begin{pmatrix} a \\ (b+bx)+b \end{pmatrix} + \begin{pmatrix} -2a \\ -2b-2bx \end{pmatrix} + \begin{pmatrix} a \\ bx \end{pmatrix}$$
$$= \begin{pmatrix} a \\ 2b+bx \end{pmatrix} + \begin{pmatrix} -2a \\ -2b-2bx \end{pmatrix} + \begin{pmatrix} a \\ bx \end{pmatrix} = \begin{pmatrix} 2a-2a \\ (2b-2b)+(-2bx+2bx) \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{T}_0 \begin{pmatrix} a \\ bx \end{pmatrix}.$$

Note that,

$$f(A) = (A^2 - 2A + I_2) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -2 & -2 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

Example 5.4.8

Use Cayley-Hamilton Theorem to find
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$

Solution:

Note that $|A| = -2 \neq 0$ and hence A^{-1} exists. The characteristic polynomial of A is

$$f(t) = |A - tI_3| = \begin{vmatrix} 1 - t & 2 & 1 \\ 0 & 2 - t & 3 \\ 0 & 0 & -1 - t \end{vmatrix}$$
$$= (1 - t)(2 - t)(-1 - t) = -(2 - 3t + t^2)(1 + t)$$
$$= -((2 + 2t) - 3t - 3t^2 + t^2 + t^3) = -t^3 + 2t^2 + t - 2.$$

Thus,

$$f(A) = -A^{3} + 2A^{2} + A - 2I_{3} = 0$$

$$\Rightarrow 2I_{3} = -A^{3} + A^{2} + A$$

$$\Rightarrow I_{3} = -\frac{1}{2}A^{3} + A^{2} + \frac{1}{2}A$$

$$\Rightarrow I_{3} = \left(-\frac{1}{2}A^{2} + A + \frac{1}{2}I_{3}\right)A.$$

Hence $A^{-1} = -\frac{1}{2}A^2 + A + \frac{1}{2}I_3$.

Exercise 5.4.1

Solve the following exercises from the book at pages 321 - 327:

• 2, 3, and 6.

6

Inner Product Spaces

Section 6.1: Inner Product and Norms

Remark 6.1.1

Let $z = a + ib \in \mathbb{C}$ for some $a, b \in \mathbb{R}$, then 1. $|z| = \sqrt{a^2 + b^2}$ is called the absolute value for modulus of z. 2. $z\overline{z} = |z|^2$. 3. $z + \overline{z} = 2Re(z) = 2a$. 4. $z - \overline{z} = 2Im(z) = 2b$. 5. $Re(z) \le |z|$. 6. $\overline{\overline{z}} = z$. 7. $\overline{z + w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \ \overline{w}$.

Definition 6.1.1

Let \mathbb{V} be a vector space over a field \mathbb{F} . An **inner product** on \mathbb{V} is a function that assigns, to every pair of vectors $x, y \in \mathbb{V}$, a scalar in \mathbb{F} , denoted by $\langle x, y \rangle$, such that for all $x, y, z \in \mathbb{V}$ and all $c \in \mathbb{F}$, the following conditions hold:

- 1. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$.
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$, where the bar denotes the complex conjugation.
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$.

Note that, Condition (3) reduces to $\langle x, y \rangle = \langle y, x \rangle$ if $\mathbb{F} = \mathbb{R}$.

Example 6.1.1

Let $\mathbb{V} = C([0,1])$, the vector space of real valued continuous function on [0,1]. Define

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt.$$

Show that $\langle f, g \rangle$ is an inner product on \mathbb{V} . Solution: For every $f, g, h \in \mathbb{V}$ and every $c \in \mathbb{R}$, we have 1. $\langle f + g, h \rangle = \int_0^1 (f(t) + g(t))h(t) dt = \int_0^1 (f(t)h(t) + g(t)h(t)) dt$ $= \int_0^1 f(t)h(t) dt + \int_0^1 g(t)h(t) dt = \langle f, h \rangle + \langle g, h \rangle.$ 2. $\langle cf, g \rangle = \int_0^1 c f(t)g(t) dt = c \int_0^1 f(t)g(t) dt = c \langle f, g \rangle.$ 3. $\langle f, g \rangle = \int_0^1 f(t)g(t) dt = \int_0^1 g(t)f(t) dt = \langle g, f \rangle.$ 4. If $f \neq 0$, $\langle f, f \rangle = \int_0^1 f(t)f(t) dt = \int_0^1 f^2(t) dt > 0.$

Thus, $\langle f, g \rangle$ is an inner product on C([0, 1)].

Example 6.1.2

For $x = (a_1, a_2, \dots, a_n), y = (b_1, b_2, \dots, b_n) \in \mathbb{F}^n$, define $\langle x, y \rangle = \sum_{i=1}^n a_i \overline{b_i}$. Show that $\langle x, y \rangle$ is an inner product on \mathbb{F}^n .

Solution:

For any
$$x = (a_1, \dots, a_n), y = (b_1, \dots, b_n), z = (c_1, \dots, c_n) \in \mathbb{F}^n$$
 and $k \in \mathbb{F}$, we have
1. $\langle x + y, z \rangle = \sum_{i=1}^n (a_i + b_i)\overline{c_i} = \sum_{i=1}^n (a_i\overline{c_i} + b_i\overline{c_i}) = \sum_{i=1}^n a_i\overline{c_i} + \sum_{i=1}^n b_i\overline{c_i} = \langle x, z \rangle + \langle y, z \rangle.$
2. $\langle kx, y \rangle = \sum_{i=1}^n ka_i\overline{b_i} = k \sum_{i=1}^n a_i\overline{b_i} = k \langle x, y \rangle.$
3. $\overline{\langle x, y \rangle} = \sum_{i=1}^n a_i\overline{b_i} = \sum_{i=1}^n \overline{a_i}\overline{b_i} = \sum_{i=1}^n \overline{a_i}b_i = \sum_{i=1}^n b_i\overline{a_i} = \langle y, x \rangle.$
4. If $x \neq 0$, $\langle x, x \rangle = \sum_{i=1}^n a_i\overline{a_i} = \sum_{i=1}^n |a_i|^2 > 0.$

Remark 6.1.2

Note that, the inner product defined in Example 6.1.2, is called the **standard inner product** on \mathbb{F}^n . In case of $\mathbb{F} = \mathbb{R}$, we have $\langle x, y \rangle = \sum_{i=1}^n a_i b_i = x \cdot y$ which is the usual **dot (or scalar) product** of x and y in \mathbb{R}^n .

Definition 6.1.2

Let $A = (a_{ij}) \in M_{m \times n}(\mathbb{F})$. We define the **conjugate transpose** or **adjoint** of A to be the $n \times m$ matrix A^* such that $a_{ij}^* = \overline{a_{ji}}$ for all $1 \le i \le m$ and $1 \le j \le n$. Note that if $\mathbb{F} = \mathbb{R}$, then we simply write A^t instead of A^* .

Example 6.1.3

If
$$A = \begin{pmatrix} i & 1+2i \\ 2 & 3+4i \end{pmatrix}$$
, then $A^* = \begin{pmatrix} -i & 2 \\ 1-2i & 3-4i \end{pmatrix}$.

Example 6.1.4

Let $\mathbb{V} = M_{n \times n}(\mathbb{F})$, and define $\langle A, B \rangle = tr(B^*A)$ for $A, B \in \mathbb{V}$. Show that $\langle A, B \rangle$ is an inner product on \mathbb{V} .

Solution:

For any $A, B, C \in \mathbb{V}$ and $c \in \mathbb{F}$, we have

1. $\langle A + B, C \rangle = tr(C^*(A + B)) = tr(C^*A + C^*B) = tr(C^*A) + tr(C^*B)$ = $\langle A, C \rangle + \langle B, C \rangle$.

2.
$$\langle cA, B \rangle = tr(B^*(cA)) = c tr(B^*A) = c \langle A, B \rangle.$$

3. $\overline{\langle A, B \rangle} = \overline{tr(B^*A)} = tr(\overline{B^*A}) = tr(A^*B) = \langle B, A \rangle.$ 4. $\langle A, A \rangle = tr(A^*A) = \sum_{i=1}^n b_{ii} = \sum_{i=1}^n \sum_{k=1}^n a_{ik}^* a_{ki} = \sum_{i=1}^n \sum_{k=1}^n \overline{a_{ki}} a_{ki} = \sum_{i=1}^n \sum_{k=1}^n |a_{ki}|^2.$ Note that if $A \neq 0$, then $a_{ki} \neq 0$ for some k and i. So, $\langle A, A \rangle > 0$.

Here is a detailed proof of $tr(\overline{B^*A}) = tr(A^*B)$: Assuming the $C = (c_{ij}) = B^*A$, we have

$$tr(\overline{B^*A}) = \sum_{i}^{n} \overline{c_{ii}} = \sum_{i}^{n} \sum_{j}^{n} \overline{b_{ij}^* a_{ji}} = \sum_{i}^{n} \sum_{j}^{n} \overline{b_{ji}} \overline{a_{ji}}$$
$$= \sum_{i}^{n} \sum_{j}^{n} b_{ji} \overline{a_{ji}} = \sum_{i}^{n} \sum_{j}^{n} a_{ij}^* b_{ji} = tr(A^*B).$$

Note that, a vector space \mathbb{V} over a field \mathbb{F} together with specific inner product on \mathbb{V} is called an **inner product space**. If $\mathbb{F} = \mathbb{C}$, we call \mathbb{V} a complex inner product space, and if $\mathbb{F} = \mathbb{R}$, we call \mathbb{V} a real inner product space.

Theorem 6.1.1

Let \mathbb{V} be an inner product space. Then for $x, y, z \in \mathbb{V}$ and $c \in \mathbb{F}$, the following statements are true:

- 1. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.
- 2. $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$.
- 3. $\langle x, 0 \rangle = \langle 0, x \rangle = 0.$
- 4. $\langle x, x \rangle = 0$ iff x = 0.
- 5. If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in \mathbb{V}$, then y = z. $\langle y z, y z \rangle = 0 \Rightarrow y z = 0 \Rightarrow y = z$.

Definition 6.1.3

Let \mathbb{V} be an inner product space. For $x \in \mathbb{V}$, we define the **norm** or **length** of x by

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

Note that if $\mathbb{V} = \mathbb{R}$, then ||x|| = |x| and if $\mathbb{V} = \mathbb{R}^n$, then $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x \cdot x}$.

Theorem 6.1.2

Let \mathbb{V} be an inner product space over a field \mathbb{F} . Then for all $x, y \in \mathbb{V}$ and $c \in \mathbb{F}$, the following statements are true:

- 1. ||cx|| = |c| ||x||.
- 2. $||x|| \ge 0$; and ||x|| = 0 iff x = 0.
- 3. (Cauchy-Schwarz Inequality) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
- 4. (Triangle Inequality) $||x + y|| \le ||x|| + ||y||$.

Proof:

- 1. $||c x|| = \sqrt{\langle cx, cx \rangle} = \sqrt{c\overline{c}\langle x, x \rangle} = \sqrt{|c|^2 \langle x, x \rangle} = |c| \cdot ||x||.$
- 2. $||x|| = \sqrt{\langle x, x \rangle}$. If x = 0, then $\langle x, x \rangle = \langle 0, 0 \rangle = 0$. Otherwise, $\langle x, x \rangle > 0$ and hence $||x|| \ge 0$.
- 3. If y = 0, then the Cauchy-Schwarz Inequality clearly hold. Assume now that $y \neq 0$.

For any $c \in \mathbb{F}$, we have

$$0 \le ||x - cy||^2 = \langle x - cy, x - cy \rangle = \langle x, x - cy \rangle - c \langle y, x - cy \rangle$$
$$= \langle x, x \rangle - \overline{c} \langle x, y \rangle - c \langle y, x \rangle + c\overline{c} \langle y, y \rangle.$$

Let
$$c = \frac{\langle x, y \rangle}{\langle y, y \rangle}$$
, then

$$\begin{split} 0 &\leq \langle x, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle + \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle y, y \rangle \\ 0 &\leq \langle x, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle + \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot \langle y, x \rangle \\ 0 &\leq \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}, \text{ where } \langle x, y \rangle \langle y, x \rangle = \langle x, y \rangle \overline{\langle x, y \rangle} = |\langle x, y \rangle|^2 \end{split}$$

Therefore, $|\langle x, y \rangle|^2 \le ||x||^2 ||y||^2$ and hence $|\langle x, y \rangle| \le ||x|| ||y||$.

4. Consider $||x + y||^2 = \langle x + y, x + y \rangle$. Then

$$\begin{aligned} \|x+y\|^2 &= \langle x,x \rangle + \langle x,y \rangle + \langle y,x \rangle + \langle y,y \rangle \\ &= \|x\|^2 + \langle x,y \rangle + \overline{\langle x,y \rangle} + \|y\|^2 \\ &= \|x\|^2 + 2Re\langle x,y \rangle + \|y\|^2, \text{ where } Re\langle x,y \rangle \le |\langle x,y \rangle| \\ &\le \|x\|^2 + 2|\langle x,y \rangle| + \|y\|^2 \\ &\le \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2. \end{aligned}$$

Therefore, $||x + y|| \le ||x|| + ||y||$.

Definition 6.1.4

If $x \neq 0$ is any vector in an inner product space \mathbb{V} , then $u = \frac{1}{\|x\|} x$ is a **unit vector**; that is a vector with length 1. This procedure is called **normalizing**.

Definition 6.1.5

Two vectors x and y in \mathbb{V} are called **orthogonal** (or **perpendicular**) if $\langle x, y \rangle = 0$. Moreover, x and y are called **orthonormal** if they are orthogonal and ||x|| = ||y|| = 1.

Example 6.1.5

Note that the set $S = \{ (1, 1, 0), (1, -1, 1), (-1, 1, 2) \}$ in \mathbb{F}^3 is an orthogonal set of nonzero vectors, but it is not orthonormal. However, normalizing S, we get

$$B = \left\{ \frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{3}}(1,-1,1), \frac{1}{\sqrt{6}}(-1,1,2) \right\},\$$

which is orthonormal in \mathbb{F}^3 .

Example 6.1.6

Let *H* be the vector space of complex valued functions defined on the interval $[0, 2\pi]$, with the inner product on *H* defined by

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$

Show that $S = \left\{ f_n(t) = e^{int} : n \in \mathbb{Z} \text{ and } t \in [0, 2\pi] \right\}$ is an orthonormal subset of H. Recall that $e^{ix} = \cos x + i \sin x$, $\overline{e^{ix}} = e^{-ix}$ for all $x \in \mathbb{R}$, and $\int e^{ax} dx = \frac{1}{a} e^{ax}$.

Solution:

For any $m \neq n$ in \mathbb{Z} , we have

$$\langle f_m(t), f_n(t) \rangle = \frac{1}{2\pi} \int_0^{2\pi} f_m(t) \overline{f_n(t)} \, dt = \frac{1}{2\pi} \int_0^{2\pi} e^{imt} \overline{e^{int}} \, dt$$

= $\frac{1}{2\pi} \int_0^{2\pi} e^{i(m-n)t} \, dt = \frac{1}{2\pi i} \frac{1}{(m-n)} e^{i(m-n)t} \Big|_0^{2\pi}$
= $\frac{1}{2\pi i (m-n)} \Big[e^{i(m-n)2\pi} - e^0 \Big] = \frac{1}{2\pi i (m-n)} [1-1] = 0.$

Also, $\langle f_n, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-n)t} dt = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = \frac{1}{2\pi} (2\pi - 0) = \frac{2\pi}{2\pi} = 1$. Therefore, S is orthonormal subset of H.

Example 6.1.7

Let $\mathbb{V} = \mathbb{C}^3$ with the standard inner product. Let x = (2, 1 + i, i) and y = (2 - i, 2, 1 + 2i).

1. Compute $\langle x, y \rangle$, $\langle y, x \rangle$, ||x||, ||y||, and ||x + y||.

2. Verify both Cauchy-Schwarz Inequality and triangle inequality.

Solution:

1.

$$\langle x, y \rangle = \sum_{i=1}^{3} x_i \overline{y_i} = 2(\overline{2-i}) + (1+i)(\overline{2}) + i(\overline{1+2i})$$

= 2(2+i) + 2 + 2i + i(1-2i) = 4 + 2i + 2 + 2i + i + 2
= 8 + 5i.

Thus, $\langle y, x \rangle = \overline{\langle x, y \rangle} = \overline{8 + 5i} = 8 - 5i$. Also

$$\begin{aligned} \|x\| &= \sqrt{\langle x, x \rangle} = \sqrt{2(\overline{2}) + (1+i)(\overline{1+i}) + i(\overline{i})} \\ &= \sqrt{4 + (1+i)(1-i) + i(-i)} = \sqrt{4 + 1 - i + i + 1 + 1} = \sqrt{7}. \end{aligned}$$

$$\begin{aligned} \|y\| &= \sqrt{\langle y, y \rangle} = \sqrt{(2-i)(\overline{2-i}) + 2(\overline{2}) + (1+2i)(\overline{1+2i})} \\ &= \sqrt{(2-i)(2+i) + 4 + (1+2i)(1-2i)} = \sqrt{4+1+4+1+4} = \sqrt{14}. \end{aligned}$$

$$\begin{aligned} \|x+y\| &= \|(4-i,3+i,1+3i)\| \\ &= \sqrt{(4-i)(4+i) + (3+i)(3-i) + (1+3i)(1-3i)} \\ &= \sqrt{16+1+9+1+1+9} = \sqrt{37}. \end{aligned}$$

2. Clearly, Cauchy-Schwarz Inequality is satisfied as

$$|\langle x, y \rangle| = \sqrt{64 + 25} = \sqrt{89} \le \sqrt{7}\sqrt{14} = \sqrt{98}.$$

For triangle inequality, note that

$$||x+y|| = \sqrt{37} \le ||x|| + ||y|| = \sqrt{7} + \sqrt{14}$$

Since

$$(||x|| + ||y||)^2 = (\sqrt{7} + \sqrt{14})^2 = 7 + 2\sqrt{98} + 14$$

= 21 + 2\sqrt{98} \ge 21 + 2\sqrt{81} = 21 + 2 \cdot 9 = 39
\ge 37 = ||x + y||^2.

Exercise 6.1.1

Solve the following exercises from the book at pages 336 - 341:

- 2,3.
- 8:a and c.
- 9.

Section 6.2: The Gram-Schmidt Orthogonalization Process

Definition 6.2.1

Let \mathbb{V} be an inner product space. A subset of \mathbb{V} is called an **orthonormal basis** for \mathbb{V} if it is an ordered basis that is orthonormal.

Example 6.2.1

- The standard ordered basis for \mathbb{F}^n is orthonormal basis for \mathbb{F}^n .
- $S = \left\{ \frac{1}{\sqrt{5}}(1,2), \frac{1}{\sqrt{5}}(2,-1) \right\}$ is an orthonormal basis for \mathbb{R}^2 .

Theorem 6.2.1

Let \mathbb{V} be an inner product space and let $S = \{x_1, x_2, \cdots, x_k\}$ be an orthogonal subset of \mathbb{V} consisting of nonzero vectors. If $y \in \text{span } S$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, x_i \rangle}{\left\| x_i \right\|^2} x_i$$

Proof:

Write
$$y = \sum_{i=1}^{k} a_i x_i$$
, where $a_1, \dots, a_k \in \mathbb{F}$. Then, for $1 \le j \le k$
 $\langle y, x_j \rangle = \langle \sum_{i=1}^{k} a_i x_i, x_j \rangle = \sum_{i=1}^{k} a_i \langle x_i, x_j \rangle$, where $\langle x_i, x_j \rangle = 0$ if $i \ne j$
 $= a_j \langle x_j, x_j \rangle = a_j ||x_j||^2$.

So,
$$a_j = \frac{\langle y, x_j \rangle}{\|x_j\|^2}$$
. Therefore,

$$y = \sum_{i=1}^{k} a_i x_i = \sum_{i=1}^{k} \frac{\langle y, x_i \rangle}{\|x_i\|^2} x_i.$$

Corollary 6.2.1

Let \mathbb{V} be an inner product space and let $S = \{x_1, x_2, \cdots, x_k\}$ be an orthonormal subset of \mathbb{V} . If $y \in \operatorname{span} S$, then $y = \sum_{i=1}^k \langle y, x_i \rangle x_i$.

Corollary 6.2.2

Let \mathbb{V} be an inner product space and let $S = \{x_1, x_2, \cdots, x_k\}$ be an orthogonal subset of \mathbb{V} consisting of nonzero vectors. Then, S is linearly independent.

Proof:

Suppose that $a_1x_1 + \cdots + a_kx_k = \sum_{i=1}^k a_ix_i = 0$. Then for all $1 \le j \le k$, we have

$$\langle 0, x_j \rangle = \langle \sum_{i=1}^k a_i x_i, x_j \rangle = \sum_{i=1}^k a_i \langle x_i, x_j \rangle = a_j \langle x_j, x_j \rangle = a_j ||x_j||^2.$$

Thus, $a_j = \frac{\langle 0, x_j \rangle}{\|x_j\|^2} = 0$ for all *j*. So, *S* is linearly independent.

Theorem 6.2.2: The Gram-Schmidt Process

Let \mathbb{V} be an inner product space and $S = \{y_1, y_2, \dots, y_n\}$ be linearly independent subset of \mathbb{V} . Define $S' = \{x_1, x_2, \dots, x_n\}$, where $x_1 = y_1$ and

$$x_k = y_k - \sum_{j=1}^{k-1} \frac{\langle y_k, x_j \rangle}{\|x_j\|^2} x_j, \text{ for } 2 \le j \le n.$$

Then, S' is an orthogonal set of nonzero vectors such that span S' = span S.

Theorem 6.2.3

Let \mathbb{V} be a nonzero finite-dimensional inner product space. Then \mathbb{V} has an orthonormal basis β . Furthermore, if $\beta = \{x_1, x_2, \cdots, x_n\}$ and $y \in \mathbb{V}$, then

$$y = \sum_{i=1}^{n} \langle y, x_i \rangle x_i.$$

That is $[y]_{\beta} = (\langle y, x_1 \rangle, \langle y, x_2 \rangle, \cdots, \langle y, x_n \rangle)$. These scalars are called **Fourier coefficients**.

Corollary 6.2.3

Let **T** be a linear operator on a finite-dimensional inner product space \mathbb{V} with an orthonorml basis $\beta = \{x_1, x_2, \dots, x_n\}$, and let $A = [\mathbf{T}]_{\beta} = (a_{ij})$. Then, for any *i* and *j*, $a_{ij} = \langle \mathbf{T}(x_j), x_i \rangle$.

Example 6.2.2
Let
$$S = \left\{ \frac{1}{\sqrt{2}} (1,1,0), \frac{1}{\sqrt{3}} (1,-1,1), \frac{1}{\sqrt{6}} (-1,1,2) \right\}$$
 be an orthonormal basis for \mathbb{R}^3 . Express $x = (2,1,3) \in \mathbb{R}^3$ as a linear combination of vectors of S .
Solution:
Consider $x = (2,1,3) = c_1 \frac{1}{\sqrt{2}} (1,1,0) + c_2 \frac{1}{\sqrt{3}} (1,-1,1) + c_3 \frac{1}{\sqrt{6}} (-1,1,2)$. Then,
 $c_1 = \langle (2,1,3), \frac{1}{\sqrt{2}} (1,1,0) \rangle = \frac{1}{\sqrt{2}} (2+1+0) = \frac{3}{\sqrt{2}}$.
 $c_2 = \langle (2,1,3), \frac{1}{\sqrt{3}} (1,-1,1) \rangle = \frac{1}{\sqrt{3}} (2-1+3) = \frac{4}{\sqrt{3}}$.
 $c_3 = \langle (2,1,3), \frac{1}{\sqrt{6}} (-1,1,2) \rangle = \frac{1}{\sqrt{6}} (-2+1+6) = \frac{5}{\sqrt{6}}$.
Thus $x = (2,1,3) = \frac{3}{2} (1,1,0) + \frac{4}{3} (1,-1,1) + \frac{5}{6} (-1,1,2)$.

Example 6.2.3

Use the Gram-Schmidt process to find an orthonormal basis for span S, where

$$S = \{ y_1 = (1, 0, 1, 0), y_2 = (1, 1, 1, 1), y_3 = (0, 1, 2, 1) \}$$

is a subset of \mathbb{R}^4 .

Solution:

We first compute S' containing orthogonal vectors x_1, x_2, x_3 and then we normalize these vectors to obtain an orthonormal set S''.

•
$$x_1 = y_1 = (1, 0, 1, 0).$$

•
$$x_2 = y_2 - \frac{\langle y_2, x_1 \rangle}{\|x_1\|^2} x_1$$
, where $\|x_1\|^2 = (\sqrt{2})^2 = 2$, and $\langle y_2, x_1 \rangle = 1 + 0 + 1 + 0 = 2$.
Then $x_2 = y_2 - \frac{2}{2}x_1 = (0, 1, 0, 1)$.

• $x_3 = y_3 - \left(\frac{\langle y, x_1 \rangle}{\|x_1\|^2} x_1 + \frac{\langle y, x_2 \rangle}{\|x_2\|^2} x_2\right)$, where $\|x_2\|^2 = \left(\sqrt{2}\right)^2 = 2 = \|x_1\|^2$. Moreover, $\langle y_3, x_1 \rangle = 0 + 0 + 2 + 0 = 2$ and $\langle y_3, x_2 \rangle = 0 + 1 + 0 + 1 = 2$. Therefore, $x_3 = (0, 1, 2, 1) - \frac{2}{2}(1, 0, 1, 0) - \frac{2}{2}(0, 1, 0, 1) = (-1, 0, 1, 0)$.

Thus, by Theorem 6.2.2, $S' = \{ (1, 0, 1, 0), (0, 1, 0, 1), (-1, 0, 1, 0) \}$ is orthogonal set in \mathbb{R}^4

such that **span** S' = **span** S. Therefore,

$$S'' = \left\{ \frac{1}{\sqrt{2}}(1,0,1,0), \frac{1}{\sqrt{2}}(0,1,0,1), \frac{1}{\sqrt{2}}(-1,0,1,0) \right\}$$

is orthonormal set in \mathbb{R}^4 .

Example 6.2.4

Let $\mathbb{V} = \mathbb{P}(\mathbb{R})$ with an inner product defined by $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t) dt$. Use the Gram-Schmidt process to replace the standard ordered basis $S = \{1, t, t^2\}$ by an orthonormal basis for $\mathbb{P}_2(\mathbb{R})$. Represent $h(x) = 1 + 2x + 3x^2$ as a linear combination of the vectors of the obtained orthonormal basis for $\mathbb{P}_2(\mathbb{R})$.

Solution:

Let $S = \{ y_1 = 1, y_2 = t, y_3 = t^2 \}$. Then $S' = \{ x_1, x_2, x_3 \}$, where

• $x_1 = y_1 = 1$.

•
$$x_2 = y_2 - \frac{\langle y_2, x_1 \rangle}{\|x_1\|^2} x_1 = t - \frac{\langle t, 1 \rangle}{\|1\|^2} 1 = t - \langle t, 1 \rangle$$
. Note that
 $\|1\|^2 = \langle 1, 1 \rangle = \int_{-1}^{1} 1 dt = t \Big|_{-1}^{1} = 2,$

and

$$\langle t, 1 \rangle = \int_{-1}^{1} t \cdot 1 dt = \frac{t^2}{2} \Big|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0.$$

Therefore, $x_2 = t - \frac{0}{2} \ 1 = t$.

•
$$x_3 = y_3 - \left(\frac{\langle y_3, x_1 \rangle}{\|x_1\|^2} x_1 + \frac{\langle y_3, x_2 \rangle}{\|x_2\|^2} x_2\right) = t^2 - \frac{\langle t^2, 1 \rangle}{\|1\|^2} 1 - \frac{\langle t^2, t \rangle}{\|t\|^2} t.$$

Note that $\|1\|^2 = 2$ and $\|t\|^2 = \int_{-1}^1 t^2 dt = \frac{t^3}{3}\Big|_{-1}^1 = \frac{2}{3}$. Moreover,
 $\langle t^2, 1 \rangle = \int_{-1}^1 t^2 dt = \frac{t^3}{3}\Big|_{-1}^1 = \frac{2}{3}$, and $\langle t^2, t \rangle = \int_{-1}^1 t^3 dt = \frac{t^4}{4}\Big|_{-1}^1 = 0$. Therefore,
 $x_3 = t^2 - \frac{2/3}{2} 1 - \frac{0}{2/3} t = t^2 - \frac{1}{3}.$

We now normalize
$$S'$$
 to obtain $S'' = \left\{ \frac{1}{\|x_1\|} x_1, \frac{1}{\|x_2\|} x_2, \frac{1}{\|x_3\|} x_3 \right\}$ as follows:
 $\|x_1\|^2 = \|1\|^2 = 2 \Rightarrow \|x_1\| = \sqrt{2}.$
 $\|x_2\|^2 = \|t\|^2 = \langle t, t \rangle = \frac{2}{3} \Rightarrow \|x_2\| = \sqrt{\frac{2}{3}}.$
 $\|x_3\|^2 = \left\|t^2 - \frac{1}{3}\right\|^2 = \langle t^2 - \frac{1}{3}, t^2 - \frac{1}{3} \rangle = \int_{-1}^1 \left(t^2 - \frac{1}{3}\right)^2 dt$
 $= \int_{-1}^1 t^4 - \frac{2}{3}t^2 + \frac{1}{9} dt = \left[\frac{t^5}{5} - \frac{2}{3}\frac{t^3}{3} + \frac{1}{9}t\right]_{-1}^1 = \dots = \frac{8}{45}$
 $\Rightarrow \|x_3\| = \sqrt{\frac{8}{45}} = \frac{2\sqrt{2}}{3\sqrt{5}}.$
Thus, $S'' = \left\{z_1 = \frac{1}{\sqrt{2}} 1, z_2 = \sqrt{\frac{3}{2}} t, z_3 = \frac{3\sqrt{5}}{2\sqrt{2}} \left(t^2 - \frac{1}{3}\right)\right\}$ is orthonormal basis for $\mathbb{P}_2(\mathbb{R}).$
We now use Theorem 6.2.3 to represent $h(x)$ as a linear combination of the vectors of S'' .

Note that

$$\langle h(x), z_1 \rangle = \int_{-1}^{1} \frac{1}{\sqrt{2}} (1 + 2t + 3t^2) dt = 2\sqrt{2}$$

$$\langle h(x), z_2 \rangle = \int_{-1}^{1} \sqrt{\frac{3}{2}} t (1 + 2t + 3t^2) dt = \frac{2\sqrt{6}}{3}$$

$$\langle h(x), z_3 \rangle = \int_{-1}^{1} \sqrt{\frac{5}{8}} (3t^2 - 1)(1 + 2t + 3t^2) dt = \frac{2\sqrt{10}}{5}$$

Therefore, $h(x) = 2\sqrt{2}z_1 + \frac{2\sqrt{6}}{3}z_2 + \frac{2\sqrt{10}}{5}z_3$.

Example 6.2.5

Let $\mathbb{W} =$ **span** { (1, 1, 1), (1, 0, 2) } be a subspace of \mathbb{R}^3 . Find an orthonormal basis for \mathbb{W} . Solution:

Consider $x_1 = (1, 1, 1)$ and $x_2 = (1, 0, 2) - \frac{\langle (1, 0, 2), (1, 1, 1) \rangle}{\|(1, 1, 1)\|^2} (1, 1, 1) = (1, 0, 2) - \frac{3}{3} (1, 1, 1) = (0, -1, 1).$

Thus, $S' = \left\{ \frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,-1,1) \right\}$ is an orthonormal basis for \mathbb{W} .

Example 6.2.6

Let $\mathbb{W} = \{ (x, y, z) : x + 3y - 2z = 0 \}$ be a subspace of the inner product space \mathbb{R}^3 . Find an orthonormal basis for \mathbb{W} .

Solution:

Note that

$$\mathbb{W} = \{ (2z - 3y, y, z) \} = \mathbf{span} \{ (2s - 3r, r, s) : r, s \in \mathbb{R} \} = \mathbf{span} \{ (2, 0, 1), (-3, 1, 0) \},\$$

where $S = \{(2,0,1), (-3,1,0)\}$ is an ordered basis for \mathbb{W} . We now construct orthogonal basis for \mathbb{W} and normalize it to an orthonormal basis. Let $x_1 = (2,0,1)$ and

$$x_{2} = (-3, 1, 0) - \frac{\langle (-3, 1, 0), (2, 0, 1) \rangle}{\|(2, 0, 1)\|^{2}} (2, 0, 1)$$
$$= (-3, 1, 0) - \frac{-6}{5} (2, 0, 1) = (-\frac{3}{5}, 1, \frac{6}{5}).$$

Thus, $||x_2|| = \sqrt{\frac{9}{25} + \frac{25}{25} + \frac{36}{25}} = \frac{\sqrt{70}}{5}$. Thus, $S' = \left\{ \frac{1}{\sqrt{5}}(2,0,1), \frac{1}{\sqrt{70}}(-3,5,6) \right\}$ is an orthonormal basis for \mathbb{W} .

Exercise 6.2.1

Solve the following exercises from the book at pages 352 - 357:

• 2: a, b, c, g, and h.

Section 6.3: The Adjoint of a Linear Operator

Recall that A^* is the conjugate transpose of a matrix. In this section, for a linear operator **T** on an inner product space \mathbb{V} , we define a related linear operator on \mathbb{V} called the **adjoint** of **T**, denoted \mathbf{T}^* , whose matrix representation with respect to any orthonormal basis β for \mathbb{V} is $[\mathbf{T}]^*_{\beta}$.

Definition 6.3.1

Let \mathbb{V} be a finite-dimensional inner product space, and let \mathbf{T} be a linear operator on \mathbb{V} . The **adjoint** (sometimes called **hermitian conjugate**) of \mathbf{T} is the unique linear operator \mathbf{T}^* on \mathbb{V} such that

 $\langle \mathbf{T}(x), y \rangle = \langle x, \mathbf{T}^*(y) \rangle, \quad \text{for all } x, y \in \mathbb{V}.$

Remark 6.3.1

Note that

$$\langle x, \mathbf{T}(y) \rangle = \langle \mathbf{T}(y), x \rangle = \langle y, \mathbf{T}^{*}(x) \rangle = \langle \mathbf{T}^{*}(x), y \rangle.$$

Theorem 6.3.1

Let \mathbb{V} be a finite-dimensional inner product space, let β be an orthonormal basis for \mathbb{V} , and let \mathbf{T} and \mathbf{U} be linear operators on \mathbb{V} . Then:

- 1. \mathbf{T}^* is unique linear operator on \mathbb{V} .
- 2. $[\mathbf{T}^*]_{\beta} = [\mathbf{T}]^*_{\beta}$.
- 3. $(\mathbf{T} + \mathbf{U})^* = \mathbf{T}^* + \mathbf{U}^*$, and $(\mathbf{T}\mathbf{U})^* = \mathbf{U}^*\mathbf{T}^*$.
- 4. $(c\mathbf{T})^* = \overline{c}\mathbf{T}^*$.
- 5. $(\mathbf{T}^*)^* = \mathbf{T}$.
- 6. $\mathbf{I}_V^* = \mathbf{I}_V$.

Example 6.3.1

Let **T** be the linear operator on \mathbb{C}^2 defined by **T** (a, b) = (2ai + 3b, a - b). Evaluate **T**^{*}.

Solution:

We can find \mathbf{T}^* directly by the definition:

$$\langle (a,b), \mathbf{T}^*(c,d) \rangle = \langle \mathbf{T}(a,b), (c,d) \rangle = \langle (2ai+3b,a-b), (c,d) \rangle$$

= $(2ai+3b)\overline{c} + (a-b)\overline{d} = 2a\overline{c}i + 3b\overline{c} + a\overline{d} - b\overline{d}$
= $a\left(2i\overline{c} + \overline{d}\right) + b\left(3\overline{c} - \overline{d}\right) = \langle (a,b), (-2ci+d,3c-d) \rangle.$

Therefore, $\mathbf{T}^{*}(c, d) = (-2ci + d, 3c - d).$

On the other hand, we can also find \mathbf{T}^* using the Theorem 6.3.1. Choose β as the standard orthonormal basis for \mathbb{C}^2 . Clearly, $[\mathbf{T}]_{\beta} = \begin{pmatrix} 2i & 3\\ 1 & -1 \end{pmatrix}$. Then, $[\mathbf{T}^*]_{\beta} = [\mathbf{T}]^*_{\beta} = \begin{pmatrix} -2i & 1\\ 3 & -1 \end{pmatrix}$. Hence, $\mathbf{T}^*(a, b) = (-2ai + b, 3a - b)$.

Example 6.3.2

Let **T** be the linear operator on \mathbb{R}^2 defined by $\mathbf{T}(a,b) = (2a+b, a-3b)$. Evaluate \mathbf{T}^* at x = (3,5).

Solution:

We can find $\mathbf{T}^{*}(3,5)$ directly by the definition:

$$\langle (a,b), \mathbf{T}^* (3,5) \rangle = \langle \mathbf{T} (a,b), (3,5) \rangle = \langle (2a+b,a-3b), (3,5) \rangle$$
$$= (6a+3b) + 5a - 15b = 11a - 12b$$
$$= \langle (a,b), (11,-12) \rangle.$$

Therefore, $\mathbf{T}^{*}(3,5) = (11, -12).$

On the other hand, we can also find $\mathbf{T}^*(3,5)$ using the Remark 2.2.2. Choose β as an orthonormal basis for \mathbb{R}^2 . Clearly, $[\mathbf{T}]_{\beta} = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$. Then, $[\mathbf{T}^*]_{\beta} = [\mathbf{T}]_{\beta}^* = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$, and

$$[(3,5)]_{\beta} = \begin{pmatrix} 3\\5 \end{pmatrix}. \text{ Hence,}$$
$$[\mathbf{T}^* (3,5)]_{\beta} = [\mathbf{T}]^*_{\beta} [(3,5)]_{\beta} = \begin{pmatrix} 2 & 1\\1 & -3 \end{pmatrix} \begin{pmatrix} 3\\5 \end{pmatrix} = \begin{pmatrix} 11\\-12 \end{pmatrix}.$$

Therefore, $\mathbf{T}^{*}(3,5) = (11,-12).$

Example 6.3.3

Let **T** be the linear operator on $\mathbb{P}_1(\mathbb{R})$ defined by $\mathbf{T}(f) = f' + 3f$ with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$. Evaluate **T**^{*} at f(x) = 4 - 2x. Get 1 bonus point when you evaluate **T**^{*} (h(x)), where $h(x) = a + bx \in \mathbb{P}_1(\mathbb{R})$. Hand it over to me at my office.

Solution (1):

Using the definition: Let g(x) = a + bx for $a, b \in \mathbb{R}$. Then, $\mathbf{T}(g) = b + 3a + abx$.

$$\langle g, \mathbf{T}^{*}(f) \rangle = \langle \mathbf{T}(g), f \rangle = \langle (3a+b+3bx), (4-2x) \rangle$$

= $\int_{-1}^{1} (3a+b+3bx)(4-2x) = \dots = 24a+4b.$

Assuming that $\mathbf{T}^{*}(f) = c + dx$, we get:

$$g, \mathbf{T}^{*}(f) \rangle = \langle (a + bx), (c + dx) \rangle \\= \int_{-1}^{1} (a + bx)(c + dx) = \dots = 2ac + \frac{2}{3}bd.$$

By equating the two results, we get c = 12 and d = 6 and hence $\mathbf{T}^* (f = 4 - 2x) = 12 + 6x$.

Solution (2):

Hence

((4 -

We can find $\mathbf{T}^*(f)$ using the Remark 2.2.2. Choose $\beta = \left\{ v_1 = \frac{1}{\sqrt{2}}, v_2 = \sqrt{\frac{3}{2}}x \right\}$ as an orthonormal basis for $\mathbb{P}_1(\mathbb{R})$ (Use Gram-Schmidt process to find such basis). Then,

$$\mathbf{T}(v_{1}) = 3\frac{1}{\sqrt{2}} = 3v_{1} + 0v_{2} \quad \Rightarrow \quad [\mathbf{T}(v_{1})]_{\beta} = (3,0).$$

$$\mathbf{T}(v_{2}) = \sqrt{\frac{3}{2}} + 3\sqrt{\frac{3}{2}}x = \sqrt{3}v_{1} + 3v_{2} \quad \Rightarrow \quad [\mathbf{T}(v_{2})]_{\beta} = (\sqrt{3},3).$$

$$[\mathbf{T}]_{\beta} = \begin{pmatrix} 3 & \sqrt{3} \\ 0 & 3 \end{pmatrix} \text{ and thus } [\mathbf{T}]_{\beta}^{*} = \begin{pmatrix} 3 & 0 \\ \sqrt{3} & 3 \end{pmatrix}. \text{ Furthermore, observe that } [f(x)]_{\beta} = 2x, \frac{1}{\sqrt{2}} \rangle, \langle 4 - 2x, \sqrt{\frac{3}{2}}x \rangle = (4\sqrt{2}, -2\sqrt{\frac{2}{3}}). \text{ Therefore,}$$

$$(2 - 0) (4\sqrt{2}) = (12\sqrt{2})$$

$$\left[\mathbf{T}\left(f(x)\right)\right]_{\beta}^{*} = \begin{pmatrix} 3 & 0\\ \sqrt{3} & 3 \end{pmatrix} \begin{pmatrix} 4\sqrt{2}\\ -2\sqrt{\frac{2}{3}} \end{pmatrix} = \begin{pmatrix} 12\sqrt{2}\\ 2\sqrt{6} \end{pmatrix}.$$

That is, $\mathbf{T}^* (4 - 2x) = 12\sqrt{2}v_1 + 2\sqrt{6}v_2 = 12 + 6x$. In the general case when h(x) = a + bx, we use the matrix multiplication since using the definition is rather difficult. Observe that $[h(x)]_{\beta} = \left(a\sqrt{2}, b\sqrt{\frac{2}{3}}\right)$. Hence

$$\left[\mathbf{T}\left(h(x)\right)\right]_{\beta}^{*} = \left[\mathbf{T}\right]_{\beta}^{*}\left[h\right]_{\beta} = \begin{pmatrix} 3 & 0\\\sqrt{3} & 3 \end{pmatrix} \begin{pmatrix} a\sqrt{2}\\b\sqrt{\frac{2}{3}} \end{pmatrix} = \begin{pmatrix} 3a\sqrt{2}\\a\sqrt{6}+b\sqrt{6} \end{pmatrix}$$

That is, $\mathbf{T}^*(a+bx) = (3a\sqrt{2})v_1 + \sqrt{6}(a+b)v_2 = 3a+3(a+b)x.$

Example 6.3.4

Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define $\mathbf{T} : \mathbb{V} \to \mathbb{V}$ by $\mathbf{T}(x) = \langle x, y \rangle z$ for all $x \in \mathbb{V}$. Show that \mathbf{T} is linear, and evaluate $\mathbf{T}^*(x)$.

Solution:

We first show that **T** is linear. For any $x_1, x_2 \in \mathbb{V}$ and any $c \in \mathbb{F}$.

$$\mathbf{T}(cx_1 + x_2) = \langle cx_1 + x_2, y \rangle z = \langle cx_1, y \rangle z + \langle x_2, y \rangle z$$
$$= c \langle x_1, y \rangle z + \langle x_2, y \rangle z = c \mathbf{T}(x_1) + \mathbf{T}(x_2).$$

Hence, \mathbf{T} is linear. Furthermore,

$$\langle u, \mathbf{T}^{*}(x) \rangle = \langle \mathbf{T}(u), x \rangle = \langle \langle u, y \rangle z, x \rangle$$

= $\langle u, y \rangle \langle z, x \rangle = \langle u, \overline{\langle z, x \rangle} y \rangle = \langle u, \langle x, z \rangle y \rangle$

Therefore, $\mathbf{T}^{*}(x) = \langle x, z \rangle y$.

Exercise 6.3.1

Solve the following exercises from the book at pages 352 - 357:

• 2: a, b, c, g, and h.

Section 6.4: Self-Adjoint, Normal, and Unitary Operators

In this section, we present more properties of special linear operators. Furthermore, we consider the diagonalization problem for these operators.

Definition 6.4.1

Let \mathbb{V} be an inner product space, and let \mathbf{T} be a linear operator on \mathbb{V} . Then:

- 1. T is called **self-adjoint** (Hermitian) if $T = T^*$.
- 2. An $n \times n$ -real or complex matrix A is called **self-adjoint** (Hermitian) matrix if $A = A^*$.
- 3. T is called **normal** if $TT^* = T^*T$.
- 4. An $n \times n$ -real or complex matrix A is called **normal** matrix if $AA^* = A^*A$.

Remark 6.4.1

If **T** is a linear operator on an inner product space \mathbb{V} and β is an orthonormal basis for \mathbb{V} , then:

- 1. **T** is self-adjoint if and only if $[\mathbf{T}]_{\beta}$ is self-adjoint.
- 2. **T** is normal if and only if $[\mathbf{T}]_{\beta}$ is normal.
- 3. If \mathbf{T} is self-adjoint, then \mathbf{T} is normal.

Theorem 6.4.1

Let \mathbb{V} be an inner product space , and let \mathbf{T} be a **normal operator** on \mathbb{V} . Then:

- 1. $\|\mathbf{T}(x)\| = \|\mathbf{T}^*(x)\|$ for all $x \in \mathbb{V}$.
- 2. If x is an eigenvector of **T**, then x is an eigenvector of **T**^{*}. In fact, if **T** (x) = λx , then **T**^{*} (x) = $\overline{\lambda} x$.
- 3. If λ_1 and λ_2 are distinct eigenvalues of **T** with corresponding eigenvectors x_1 and x_2 , respectively, then x_1 and x_2 are orthogonal.

Proof:

1. For any vector $x \in \mathbb{V}$, we have:

$$\|\mathbf{T}(x)\|^{2} = \langle \mathbf{T}(x), \mathbf{T}(x) \rangle = \langle x, \mathbf{T}^{*}\mathbf{T}(x) \rangle = \langle x, \mathbf{TT}^{*}(x) \rangle$$
$$= \langle \mathbf{T}^{*}(x), \mathbf{T}^{*}(x) \rangle = \|\mathbf{T}^{*}(x)\|^{2}.$$

Therefore, $\|\mathbf{T}(x)\| = \|\mathbf{T}^*(x)\|.$

2. Observe that for any $c \in \mathbb{F}$, $(\mathbf{T} - cI)^* = \mathbf{T}^* - \overline{c}I$ and that $(\mathbf{T} - cI)$ is normal as \mathbf{T} normal (prove it!). Now assume that for some $x \in \mathbb{V}$, $\mathbf{T}(x) = \lambda x$. Then $(\mathbf{T} - \lambda I)(x) = 0$, where $\mathbf{T} - \lambda I$ is normal.

Then, by (1), we have

$$0 = \| (\mathbf{T} - \lambda I)(x) \| = \| (\mathbf{T} - \lambda I)^*(x) \|$$
$$= \| (\mathbf{T}^* - \overline{\lambda} I)(x) \| = \| \mathbf{T}^*(x) - \overline{\lambda} x \| = \| (\mathbf{T}^* - \overline{\lambda} I)(x) \|$$

Hence, $\mathbf{T}^{*}(x) = \overline{\lambda}x.$

3. Let $\lambda_1 \neq \lambda_2$ be two eigenvalues of **T** with corresponding eigenvectors x_1 and x_2 . Then, by part (2), we have:

$$(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle - \langle x_1, \overline{\lambda_2} x_2 \rangle$$
$$= \langle \mathbf{T} (x_1), x_2 \rangle - \langle x_1, \mathbf{T}^* (x_2) \rangle = 0.$$

But since $\lambda_1 - \lambda_2 \neq 0$, then $\langle x_1, x_2 \rangle = 0$.

Theorem 6.4.2

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} over \mathbb{C} . Then \mathbf{T} is normal if and only if there exists an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} .

Theorem 6.4.3

Let \mathbf{T} be a self-adjoint linear operator on a finite-dimensional inner product space \mathbb{V} . Then every eigenvalues of \mathbf{T} is real.

Proof:

Assume that $\mathbf{T}(x) = \lambda x$ for $x \neq 0$. Then

$$\lambda x = \mathbf{T} \left(x \right) = \mathbf{T}^* \left(x \right) = \overline{\lambda} x$$

Therefore, $\lambda = \overline{\lambda}$ and hence λ is real.

Theorem 6.4.4

Let **T** be a linear operator on a finite-dimensional inner product space over \mathbb{R} . Then, **T** is self-adjoint if and only if there exists an orthonormal basis β for \mathbb{V} consisting of eigenvectors of **T**.

Lemma 6.4.1

Let **T** be a self-adjoint operator on a finite-dimensional inner product space \mathbb{V} . If $\langle x, \mathbf{T}(x) \rangle = 0$, for all $x \in \mathbb{V}$, then $\mathbf{T} = \mathbf{T}_0$.

Proof:

Choose an orthonormal basis β for \mathbb{V} consisting of eigenvectors of \mathbf{T} . If $x \in \beta$, then $\mathbf{T}(x) = \lambda x$ for some λ . Then

$$0 = \langle x, \mathbf{T}(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle.$$

So, $\overline{\lambda} = 0$. Hence $\mathbf{T}(x) = 0$ for all $x \in \beta$, and thus $\mathbf{T} = \mathbf{T}_0$.

Definition 6.4.2

Let **T** be a linear operator on a finite-dimensional inner product space \mathbb{V} over \mathbb{F} . If $||\mathbf{T}(x)|| = ||x||$ for all $x \in \mathbb{V}$, we call **T** a unitary operator if $\mathbb{F} = \mathbb{C}$ and an **orthogonal** operator if $\mathbb{F} = \mathbb{R}$. Moreover, a square matrix A is called an **orthogonal** matrix if $AA^T = A^TA = I$ and **unitary** matrix if $AA^* = A^*A = I$.

Remark 6.4.2

Note that, the condition $AA^* = I$ is equivalent to the statement that the rows of A form an orthonormal basis for \mathbb{F}^n . The same statement can be made on the columns of A and the condition $A^*A = I$.

Remark 6.4.3

A linear operator \mathbf{T} on a inner product space \mathbb{V} is unitary (orthogonal) if and only if $[\mathbf{T}]_{\beta}$ is unitary (orthogonal, respectively), for some orthonormal basis β for \mathbb{V} .

Theorem 6.4.5

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} . Then the following statements are equivalent:

- 1. $\mathbf{T}\mathbf{T}^* = \mathbf{T}^*\mathbf{T} = \mathbf{I}_V.$
- 2. $\langle \mathbf{T}(x), \mathbf{T}(y) \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{V}$.
- 3. If β is an orthonormal basis for \mathbb{V} , then $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V} .
- 4. $\|\mathbf{T}(x)\| = \|x\|$ for all $x \in \mathbb{V}$.

Proof:

We proof that each statement implies the following one as follows:

- 1. $1 \to 2$: Let $x, y \in \mathbb{V}$, then $\langle x, y \rangle = \langle \mathbf{T}^* \mathbf{T}(x), y \rangle = \langle \mathbf{T}(x), \mathbf{T}(y) \rangle$.
- 2. 2 \rightarrow 3: Let $\beta = \{x_1, x_2, \dots, x_n\}$ be an orthonormal basis for \mathbb{V} . So $\mathbf{T}(\beta) = \{\mathbf{T}(x_1), \mathbf{T}(x_2), \dots, \mathbf{T}(x_n)\}$. It follows that $\langle \mathbf{T}(x_i), \mathbf{T}(x_j) \rangle = \langle x_i, x_j \rangle = \delta_{ij}$ where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise. Hence, $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V} .
- 3. $3 \to 4$: Let $x \in \mathbb{V}$ and let $\beta = \{x_1, x_2, \cdots, x_n\}$ be an orthonormal basis for \mathbb{V} . Then $x = \sum_{i=1}^n a_i x_i$ for some scalars a_i and hence

$$||x||^{2} = \langle x, x \rangle = \langle \sum_{i=1}^{n} a_{i} x_{i}, \sum_{j=1}^{n} a_{j} x_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}} \langle x_{i}, x_{j} \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}} \delta_{ij} = \sum_{i=1}^{n} a_{i} \overline{a_{i}} = \sum_{i=1}^{n} |a_{i}|^{2}.$$

In a similar way, $\mathbf{T}(x) = \sum_{i=1}^{n} a_i \mathbf{T}(x_i)$, and using the fact that $\mathbf{T}(\beta)$ is also orthonormal, we obtain $\|\mathbf{T}(x)\|^2 = \sum_{i=1}^{n} |a_i|^2$. Therefore, $\|\mathbf{T}(x)\| = \|x\|$. 4. $4 \to 1$: For any $x \in \mathbb{V}$,

$$\langle x, x \rangle = ||x||^2 = ||\mathbf{T}(x)||^2 = \langle \mathbf{T}(x), \mathbf{T}(x) \rangle = \langle x, \mathbf{T}^*\mathbf{T}(x) \rangle.$$

Thus, $\mathbf{T}^*\mathbf{T}(x) = x$ and hence $(\mathbf{T}^*\mathbf{T} - \mathbf{I}_V)(x) = 0$. Thus, $\langle x, (\mathbf{T}^*\mathbf{T} - \mathbf{I}_V)(x) \rangle = 0$ for all $x \in \mathbb{V}$. Also, $(\mathbf{T}^*\mathbf{T} - \mathbf{I}_V)$ is clearly self-adjoint. By Lemma 6.4.1, we get $(\mathbf{T}^*\mathbf{T} - \mathbf{I}_V) = \mathbf{T}_0$ and therefore, $\mathbf{T}^*\mathbf{T} = \mathbf{I}_V$.

Definition 6.4.3

Two square matrices A and B are said to be **unitarily equivalent** (orthogonally equivalent) if and only if there exists a unitary (orthogonal, respectively) matrix P such that $A = P^*BP$.

Theorem 6.4.6

Let A be $n \times n$ matrix. Then:

- 1. If A is complex. Then, A is normal if and only if A is unitarily equivalent to a diagonal matrix.
- 2. If A is real. Then, A is symmetric if and only if A is orthogonally equivalent to a real diagonal matrix.

Example 6.4.1

Let **T** be a linear operator on an inner product space \mathbb{V} . Let $\mathbf{U}_1 = \mathbf{T} + \mathbf{T}^*$ and $\mathbf{U}_2 = \mathbf{T}\mathbf{T}^*$. Show that \mathbf{U}_1 and \mathbf{U}_2 are both self-adjoint.

Solution:

Clearly

$$\mathbf{U}_{1}^{*} = (\mathbf{T} + \mathbf{T}^{*})^{*} = \mathbf{T}^{*} + (\mathbf{T}^{*})^{*} = \mathbf{T}^{*} + \mathbf{T} = \mathbf{T} + \mathbf{T}^{*} = \mathbf{U}_{1}.$$

$$\mathbf{U}_{2}^{*} = (\mathbf{TT}^{*})^{*} = (\mathbf{T}^{*})^{*}\mathbf{T}^{*} = \mathbf{TT}^{*} = \mathbf{U}_{2}.$$

Example 6.4.2

Let **T** be a linear operator on $\mathbb{V} = \mathbb{R}^2$ defined by $\mathbf{T}(a, b) = (2a - 2b, -2a + 5b)$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for \mathbb{V} , and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta = \{(1,0), (0,1)\}$. Then, $A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$. Therefore, A is self-adjoint and hence it is normal. That is, \mathbf{T} is self-adjoint and normal operator. We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} . Consider the

characteristic polynomial:

$$f(\lambda) = |A - \lambda I_2| = \begin{vmatrix} 2 - \lambda & -2 \\ -2 & 5 - \lambda \end{vmatrix} = \dots = (\lambda - 1)(\lambda - 6) = 0.$$

Therefore, $\lambda_1 = 1$ and $\lambda_2 = 6$. For $\underline{E_{\lambda_1}}$: The eigenspace E_{λ_1} corresponding to $\lambda_1 = 1$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} - I_2)$. Therefore

$$E_{\lambda_1} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that a = 2b. That is,

$$E_{\lambda_1} = \{ t(2,1) : t \in \mathbb{R} \}.$$

Therefore, $\gamma_1 = \{ (2, 1) \}$ is a basis for E_{λ_1} .

For E_{λ_2} : The eigenspace E_{λ_2} corresponding to $\lambda_2 = 6$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - 6I_2)$. Therefore

$$E_{\lambda_2} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} -4 & -2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that $a = -\frac{1}{2}b$. That is,

$$E_{\lambda_2} = \{ t(1, -2) : t \in \mathbb{R} \}.$$

Therefore, $\gamma_2 = \{ (1, -2) \}$ is a basis for E_{λ_2} .

Thus, $\gamma = \gamma_1 \cup \gamma_2 = \{(2, 1), (1, -2)\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of **T**. Normalizing the vectors of γ , we obtain γ^* which is orthonormal basis for \mathbb{V} consisting of eigenvectors of **T**, where

$$\gamma^* = \left\{ \frac{1}{\sqrt{5}} (2,1), \frac{1}{\sqrt{5}} (1,-2) \right\}.$$

We note that, we can confirm our solution by confirming that $Q^{-1}AQ = diag(1,6)$, where $Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$.

Example 6.4.3

Let **T** be a linear operator $\mathbb{V} = \mathbb{R}^3$ defined by $\mathbf{T}(a, b, c) = (-a + b, 5b, 4a - 2b + 5c)$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis

of eigenvectors of \mathbf{T} for \mathbb{V} , and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$. Then, $A = [\mathbf{T}]_{\beta} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 5 & 0 \\ 4 & -2 & 5 \end{pmatrix}$. Then $A^* = \begin{pmatrix} -1 & 0 & 4 \\ 1 & 5 & -2 \\ 0 & 0 & 5 \end{pmatrix}$. Therefore, A is not self-adjoint as $A^* \neq A$. Furthermore, $(AA^*)_{11} = 2$ while $(A^*A)_{11} = 17$. Hence A is not normal. Therefore it has no orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} .

Example 6.4.4

Let **T** be a linear operator on $\mathbb{V} = \mathbb{C}^2$ defined by $\mathbf{T}(a, b) = (2a + bi, a + 2b)$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for \mathbb{V} , and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta = \{(1,0), (0,1)\}$. Then, $A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 2 & i \\ 1 & 2 \end{pmatrix}$. Then $A^* = \begin{pmatrix} 2 & 1 \\ -i & 2 \end{pmatrix}$. Therefore, A is not self-adjoint. However, $AA^* = A^*A = \begin{pmatrix} 5 & 2+2i \\ 2-2i & 5 \end{pmatrix}$. That is, \mathbf{T} is normal operator. We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} . Consider the characteristic polynomial:

$$f(\lambda) = |A - \lambda I_2| = \begin{vmatrix} 2 - \lambda & i \\ 1 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + (4 - i) = \left(\lambda - (2 + \sqrt{i})\right) \left(\lambda - (2 - \sqrt{i})\right) = 0.$$

Therefore, $\lambda_1 = 2 + \sqrt{i}$ and $\lambda_2 = 2 - \sqrt{i}$.

For $\underline{E_{\lambda_1}}$: The eigenspace E_{λ_1} corresponding to $\lambda_1 = 2 + \sqrt{i}$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} - (2 + \sqrt{i})I_2)$. Therefore

$$E_{\lambda_1} = \left\{ (a,b) \in \mathbb{C}^2 : \begin{pmatrix} -\sqrt{i} & i \\ 1 & -\sqrt{i} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that $a = b\sqrt{i}$. That is,

$$E_{\lambda_1} = \Big\{ t\Big(\sqrt{i}, 1\Big) : t \in \mathbb{R} \Big\}.$$

Therefore, $\gamma_1 = \left\{ \left(\sqrt{i}, 1 \right) \right\}$ is a basis for E_{λ_1} .

For $\underline{E_{\lambda_2}}$: The eigenspace E_{λ_2} corresponding to $\lambda_2 = 2 - \sqrt{i}$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - (2 - \sqrt{i})I_2)$. Therefore

$$E_{\lambda_2} = \left\{ (a,b) \in \mathbb{C}^2 : \begin{pmatrix} \sqrt{i} & i \\ 1 & \sqrt{i} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that $a = -b\sqrt{i}$. That is,

$$E_{\lambda_2} = \left\{ t \left(\sqrt{i}, -1 \right) : t \in \mathbb{R} \right\}.$$

Therefore, $\gamma_2 = \left\{ \left(\sqrt{i}, -1\right) \right\}$ is a basis for E_{λ_2} . Thus, $\gamma = \gamma_1 \cup \gamma_2 = \left\{ \left(\sqrt{i}, 1\right), \left(\sqrt{i}, -1\right) \right\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of **T**. Normalizing the vectors of γ , we obtain γ^* which is orthonormal basis for \mathbb{V} consisting of eigenvectors of **e** eigenvectors of **T**, where

$$\gamma^* = \left\{ \frac{1}{\sqrt{2}} \left(\sqrt{i}, 1\right), \frac{1}{\sqrt{2}} \left(\sqrt{i}, -1\right) \right\}.$$

We note that, we can confirm our solution by confirming that $Q^{-1}AQ = diag(2 + \sqrt{i}, 2 - \sqrt{i})$, where $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{i} & \sqrt{i} \\ 1 & -1 \end{pmatrix}$.

Example 6.4.5

Let **T** be a linear operator on $\mathbb{V} = \mathbb{P}_2(\mathbb{R})$ defined by $\mathbf{T}(f) = f'$, where $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for \mathbb{V} , and list the corresponding eigenvalues.

Solution:

We first consider the standard ordered basis for $\mathbb{P}_2(\mathbb{R})$ which $\beta = \{1, x, x^2\}$. Note that β is not orthonormal and hence we use the Gram-Schmidt process to construct orthogonal basis and then normalize it to obtain an orthonormal basis. Let $\beta = \{u_1 = 1, u_2 = x, u_3 = x^2\}$. Then, $\beta' = \{v_1, v_2, v_3\}$ is orthogonal basis for $\mathbb{P}_2(\mathbb{R})$, where $v_1 = u_1 = 1$. And,

$$v_2 = u_2 - \left(\frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1\right) = x - \left(\frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} \cdot 1\right) = x - \frac{1}{2},$$

where $\langle x, 1 \rangle = \frac{1}{2}$ and $\langle 1, 1 \rangle = 1$. And,

$$v_{3} = u_{3} - \left(\frac{\langle u_{3}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} + \frac{\langle u_{3}, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2}\right) = x^{2} - \left(\frac{\langle x^{2}, 1 \rangle}{\|1\|^{2}} \cdot 1 + \frac{\langle x^{2}, (x - \frac{1}{2}) \rangle}{\|x - \frac{1}{2}\|^{2}} (x - \frac{1}{2})\right)$$
$$= x^{2} - \left(\frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{6}\right) \left(x - \frac{1}{2}\right) = x^{2} - x + \frac{1}{6},$$

where $\left\|x - \frac{1}{2}\right\|^2 = \frac{1}{12}$, $\langle x^2, 1 \rangle = \frac{1}{3}$, and $\langle x^2, x - \frac{1}{2} \rangle = \frac{1}{12}$. Thus, $\beta' = \left\{1, x - \frac{1}{2}, x^2 - x + \frac{1}{6}\right\}$ is orthogonal basis for $\mathbb{P}_2(\mathbb{R})$. We may observe that

$$||1|| = 1$$
, $||x - \frac{1}{2}|| = \frac{1}{2\sqrt{3}}$, and $||x^2 - x + \frac{1}{6}|| = \frac{1}{6\sqrt{5}}$.

Therefore, $\gamma = \left\{ 1, 2\sqrt{3} \left(x - \frac{1}{2} \right), 6\sqrt{5} \left(x^2 - x + \frac{1}{6} \right) \right\}$ is orthonormal basis for $\mathbb{P}_2(\mathbb{R})$. We now compute the representation of **T** relative to γ . Note that, we can compute the Fourier coefficients as in Theorem 6.2.3:

$$\begin{aligned} \mathbf{T} (1) &= 0 & \Rightarrow & [\mathbf{T} (1)]_{\gamma} = (0, 0, 0). \\ \mathbf{T} \left(2\sqrt{3} \left(x - \frac{1}{2} \right) \right) &= 2\sqrt{3} & \Rightarrow & \left[\mathbf{T} \left(2\sqrt{3} \left(x - \frac{1}{2} \right) \right) \right]_{\gamma} = \left(\frac{2}{\sqrt{3}}, 0, 0 \right). \\ \mathbf{T} \left(6\sqrt{5} \left(x^2 - x + \frac{1}{6} \right) \right) &= 12\sqrt{5}x - 6\sqrt{5} & \Rightarrow & \left[\mathbf{T} \left(6\sqrt{5} \left(x^2 - x + \frac{1}{6} \right) \right) \right]_{\gamma} = (0, 2\sqrt{15}, 0). \end{aligned}$$

That is $[\mathbf{T}]_{\gamma} = \begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix}$. Hence, **T** is not self-adjoint and not normal, for instance $([\mathbf{T}]_{\gamma} [\mathbf{T}]_{\gamma}^{*})_{11} = 12$ while $([\mathbf{T}]_{\gamma}^{*} [\mathbf{T}]_{\gamma})_{11} = 0$. Therefore, there is no orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$ consisting of eigenvectors of **T**.

Example 6.4.6

Let **T** be a linear operator on $\mathbb{V} = M_{2\times 2}(\mathbb{R})$ defined by $\mathbf{T}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$. Determine whether **T** is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of **T** for \mathbb{V} , and list the corresponding eigenvalues.

Solution:

Choose the standard orthonormal basis $\beta = \{ E^{11}, E^{12}, E^{21}, E^{22} \}$. Then,

$\mathbf{T} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\Rightarrow \left[\mathbf{T} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right]$	$\begin{pmatrix} 0\\ 0 \end{pmatrix} \bigg]_{\beta} = (0, 0, 1, 0)$
$\mathbf{T} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$	$\Rightarrow \left[\mathbf{T} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right]$	$\begin{pmatrix} 1\\ 0 \end{pmatrix} \bigg]_{\beta} = (0, 0, 0, 1)$
$\mathbf{T} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\Rightarrow \left[\mathbf{T} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$	$\begin{pmatrix} 0\\ 0 \end{pmatrix} \bigg]_{\beta} = (1, 0, 0, 0)$
$\mathbf{T} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\Rightarrow \left[\mathbf{T} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right]$	$\binom{0}{1} \bigg]_{\beta} = (0, 1, 0, 0).$
		1 0)		

Therefore, $A = [\mathbf{T}]_{\beta} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$. Then A and hence **T** is self-adjoint and normal.

We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} . Consider the characteristic polynomial:

$$f(\lambda) = |A - \lambda I_4| = \begin{vmatrix} -\lambda & 0 & 1 & 0\\ 0 & -\lambda & 0 & 1\\ 1 & 0 & -\lambda & 0\\ 0 & 1 & 0 & -\lambda \end{vmatrix} = (\lambda^2 - 1)^2 = 0$$

Therefore, $\lambda_1 = -1$ and $\lambda_2 = 1$.

For $\underline{E_{\lambda_1}}$: The eigenspace E_{λ_1} corresponding to $\lambda_1 = -1$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} + I_4)$. Therefore

$$E_{\lambda_1} = \left\{ (a, b, c, d) \in \mathbb{R}^4 : \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that a = -c and b = -d. That is,

$$E_{\lambda_1} = \{ t(1,0,-1,0), r(0,1,0,-1) : t, r \in \mathbb{R} \}.$$

Therefore, $\gamma_1 = \{ (1, 0, -1, 0), (0, 1, 0, -1) \}$ is a basis for E_{λ_1} .

For $\underline{E_{\lambda_2}}$: The eigenspace E_{λ_2} corresponding to $\lambda_2 = 1$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - I_4)$. Therefore

$$E_{\lambda_2} = \left\{ (a, b, c, d) \in \mathbb{R}^4 : \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that a = c and b = d. That is,

$$E_{\lambda_2} = \{ t(1,0,1,0), r(0,1,0,1) : t, r \in \mathbb{R} \}.$$

Therefore, $\gamma_2 = \{ (1, 0, 1, 0), (0, 1, 0, 1) \}$ is a basis for E_{λ_2} .

Thus, $\gamma = \gamma_1 \cup \gamma_2 = \{(1, 0, -1, 0), (0, 1, 0, -1), (1, 0, 1, 0), (0, 1, 0, 1)\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} . Normalizing the vectors of γ , we obtain γ^* which is orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T} , where

$$\gamma^* = \left\{ \frac{1}{\sqrt{2}} (1, 0, -1, 0), \frac{1}{\sqrt{2}} (1, 0, -1, 0), \frac{1}{\sqrt{2}} (1, 0, 1, 0), \frac{1}{\sqrt{2}} (1, 0, 1, 0) \right\}$$

Example 6.4.7

Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Show that A is orthogonally equivalent to a diagonal matrix, and find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^*AP = D$.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from orthonormal basis) so that $P^*AP = D = diag(\lambda_1, \lambda_2)$.

$$f(\lambda) = |A - \lambda I_2| = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = 0.$$

Thus, $\lambda_1 = -1$ and $\lambda_2 = 3$.

For $\underline{E_{\lambda_1}}$: The eigenspace E_{λ_1} corresponding to $\lambda_1 = -1$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} + I_2)$. Therefore

$$E_{\lambda_1} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that a = -b. That is,

$$E_{\lambda_1} = \{ t(1, -1) : t \in \mathbb{R} \}.$$

Therefore, $\gamma_1 = \{ (1, -1) \}$ is a basis for E_{λ_1} .

For E_{λ_2} : The eigenspace E_{λ_2} corresponding to $\lambda_2 = 3$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - 3I_2)$. Therefore

$$E_{\lambda_2} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} -2 & 2\\ 2 & -2 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \right\}.$$

Which implies that a = b. That is,

$$E_{\lambda_2} = \{ t(1,1) : t \in \mathbb{R} \}.$$

Therefore, $\gamma_2 = \{ (1, 1) \}$ is a basis for E_{λ_2} .

Thus, $\gamma = \gamma_1 \cup \gamma_2 = \{(1, -1), (1, 1)\}$ is orthogonal basis consisting of eigenvectors of A. Normalizing the vectors of γ , we obtain γ^* which is orthonormal basis consisting of eigenvectors of A, where

$$\gamma^* = \left\{ \frac{1}{\sqrt{2}} (1, -1), \frac{1}{\sqrt{2}} (1, 1) \right\}.$$

Finally, $P^*AP = D$, where $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ and $D = diag(-1, 3)$.

Example 6.4.8

Let $A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$. Show that A is orthogonally equivalent to a diagonal matrix, and find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^*AP = D$.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from orthonormal basis) so that $P^*AP = D = diag(\lambda_1, \lambda_2, \lambda_3)$.

$$f(\lambda) = |A - \lambda I_3| = \begin{vmatrix} -\lambda & 2 & 2\\ 2 & -\lambda & 2\\ 2 & 2 & -\lambda \end{vmatrix} = \dots = (\lambda + 2)^2 (4 - \lambda) = 0.$$

Thus, $\lambda_1 = -2$ and $\lambda_2 = 4$.

For $\underline{E_{\lambda_1}}$: The eigenspace E_{λ_1} corresponding to $\lambda_1 = -2$ is $E_{\lambda_1} = \mathcal{N}(\mathbf{T} + 2I_2)$. Therefore

$$E_{\lambda_1} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Which implies that a = -b - c. That is,

$$E_{\lambda_1} = \{ t(1, -1, 0), r(1, 0, -1) : t, r \in \mathbb{R} \}.$$

Therefore, $\gamma_1 = \{ u_1 = (1, -1, 0), u_2 = (1, 0, -1) \}$ is a basis for E_{λ_1} . We note that γ_1 is not orthogonal set, and hence we use Gram-Schmidt process to orthogonalize it. Let $v_1 = u_1 = (1, -1, 0)$, and

$$v_{2} = u_{2} - \frac{\langle u_{2}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} = (1, 0, -1) - \frac{\langle (1, 0, -1), (1, -1, 0) \rangle}{\|(1, -1, 0)\|^{2}} (1, -1, 0) = \left(\frac{1}{2}, \frac{1}{2}, -1\right).$$

Hence, $\gamma_1^* = \left\{ (1, -1, 0), \left(\frac{1}{2}, \frac{1}{2}, -1\right) \right\}$ is orthogonal basis for E_{λ_1} . For $\underline{E_{\lambda_2}}$: The eigenspace E_{λ_2} corresponding to $\lambda_2 = 4$ is $E_{\lambda_2} = \mathcal{N}(\mathbf{T} - 4I_2)$. Therefore

$$E_{\lambda_2} = \left\{ (a,b) \in \mathbb{R}^2 : \begin{pmatrix} -4 & 2 & 2\\ 2 & -4 & 2\\ 2 & 2 & -4 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \right\}.$$

Which implies that a = b = c. That is,

$$E_{\lambda_2} = \{ t(1,1,1) : t \in \mathbb{R} \}.$$

Therefore, $\gamma_2 = \{(1,1,1)\}$ is a basis for E_{λ_2} . Thus, $\gamma = \gamma_1^* \cup \gamma_2 = \{(1,-1,0), (\frac{1}{2},\frac{1}{2},-1), (1,1,1)\}$ is orthogonal basis consisting of eigenvectors of A. Normalizing the vectors of γ , we obtain γ^* which is orthonormal basis consisting of eigenvectors of A, where

$$\gamma^* = \left\{ \frac{1}{\sqrt{2}} (1, -1, 0), \sqrt{\frac{2}{3}} \left(\frac{1}{2}, \frac{1}{2}, -1\right), \frac{1}{\sqrt{3}} (1, 1, 1) \right\}.$$

Finally, $P^*AP = D$, where

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} , \text{ and } D = diag(-2, -2, 4).$$

Exercise 6.4.1

Solve the following exercises from the book at pages 352 - 357:

• 2: a, b, c, g, and h.

The Index

\mathbf{A}

adjoint101, 1	14
algebraic multiplicity	82

в

basis
ordered
orthonormal 107
standard26

\mathbf{C}

cancellation law2
Cauchy-Schwarz Inequality102
change of coordinate matrix61
characteristic polynomial69
complex

absolute value
conjugate3
modulus
complex conjugate
complex number
conjugate transpose101
coordinates
coordinates vector
cyclic subspace92

D

diagonalizable	3
dimension	j
dot product100)

\mathbf{E}

e-space	83
eigenspace	83
eigenvalue	68
eigenvector	68

\mathbf{F}

field	1
characteristic	2
Fourier coefficients	108

G

generates	 7
0	

Н

hermitian conjugate	 14
Hermitian operator	 19

Ι

image
imaginary part3
inner product
inner product space101
invariant subspace

K

kernel	8
--------	---

\mathbf{L}

left multiplication transformation $\dots \dots 67$
length
length of vector102

linear
operator
adjoint114
Hermitian119
hermitian conjugate114
normal119
orthogonal121
self-adjoint119
unitary121
transformation35
linear combination14
coefficient14
linear operator
linear space5
linear space
linear transformation

\mathbf{M}

 matrix

trace11
matrix representation
multiplicity
algebraic82

Ν

n-tuple	5
norm)2
normal operator11	9
normalizing10)3
null space	88
nullity4	1
nullity	1

0

one-to-one
onto
perator
adjoint114
Hermitian119
hermitian conjugate114
normal119
orthogonal121
self-adjoint119
unitary
ordered basis49
orthogonal
rthonormal103
orthonormal basis107

\mathbf{P}

perpendicular	1	03
---------------	---	----

\mathbf{R}

range
rank
real part

\mathbf{S}

self-adjoint operator		119
-----------------------	--	-----

span15
spans
split
standard inner product 100
subspace10
cyclic
invariant91

\mathbf{T}

trace	11
Triangle Inequality	. 102
trivial representation	21

U

unit vector	103
unitary operator	121

\mathbf{V}

ector5
component5
coordinates
entry5
length 102
unit103
ector space5
basis26
dimension26
subspace10

\mathbf{Z}

zero polynomial1	2
------------------	---