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0
Chapter

Review

Section 0.1: Fields

Definition 0.1.1

A field F is a set on which two operations + and · (called addition and multiplication,

respectively) are defined, such that for each pair of elements x, y ∈ F, there are unique

elements x+y and x ·y in F for which the following properties hold for all elements a, b, c ∈ F.

F1. a+ b = b+ a and a · b = b · a (Commutativity).

F2. (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) (associativity).

F3. There are unique elements 0 and 1 in F such that

(identities): 0 + a = a and 1 · a = a.

F4. For each element a ∈ F and each nonzero element b ∈ F, there exist unique elements c

and d in F such that

(inverses): a+ c = 0 and b · d = 1.

F5. a · (b+ c) = a · b+ a · c (distributivity).

Example 0.1.1

The following sets are fields with the usual definitions of addition and multiplication:

1. real numbers R, and rational numbers Q.

2. {a+ b
√

2 : a, b ∈ Q} ⊆ R.
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2 Chapter 0. Review

Example 0.1.2

The field Z2 = {0, 1} with the operations of addition and multiplication defined by

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0,

0 · 0 = 0, 0 · 1 = 1 · 0 = 0, and 1 · 1 = 1.

Remark 0.1.1

The sets Z+, Z−, and Z are not fields since the property F4 does not hold for all of the three

sets.

Theorem 0.1.1

For any elements a, b, and c in a field F, the following statements hold:

1. The Cancellation Laws


If a+ c = b+ c, then a = b,

If ac = bc and c 6= 0, then a = b.

2. a · 0 = 0.

3. (−a) · b = a · (−b) = −(a · b).

4. (−a) · (−b) = a · b.

Definition 0.1.2

In a field F, the smallest positive integer p such that the sum of p 1′s is 0 is called the

characteristic of F. If no such positive integer exists, then F is said to have characteristic

zero.

Note that Z2 has characteristic 2, while R has characteristic zero.
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Section 0.2: Some Facts About Complex Numbers C

Definition 0.2.1

A compleax number is an expression of the form z = a+bi, where a and b are real numbers

called the real part and the imaginary part of z, respectively. Note that i =
√
−1 and

hence i2 = −1.

The sum and product of two complex numbers z = a+ bi and w = c+ di are defined by

z + w = (a+ c) + (b+ d)i, and zw = (a+ bi)(c+ di) = (ac− db) + (ad+ bc)i.

Definition 0.2.2

The complex conjugate of a complex number z = a+ bi is the complex number z = a− bi.

Moreover, the absolute value (or modulus) of z is the real number
√
a2 + b2.

Let z = a+ ib, w = c+ di ∈ C for some a, b, c, d ∈ R, then the following statements are true:

Facts

1. z = z.

2. z + w = z + w.

3. zw = z · w.

4.
(
z

w

)
= z

w
, if w 6= 0.

5. z z = | z |2.

6. |zw| = |z| · |w|.

7.
∣∣∣∣ zw

∣∣∣∣ = |z|
|w|

, if w 6= 0.

8. |z| − |w| ≤ |z + w| ≤ |z|+ |w|.

9. z + z = 2Re(z) = 2a.

10. z − z = 2Im(z) = 2b.
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Chapter

Vector Spaces

Section 1.2: Vector Spaces

An object of the form (x1, x2, · · · , xn), where x1, · · · , xn are elements of a field F, is called an n-tuple.

Such object is called a vector. Moreover, the set of all vectors with entries from F is denoted by Fn.

The elements x1. · · · , xn are called the entries or components.

Definition 1.2.1

A vector space (or linear space) V over a field F is a set of elements on which two operations

(called addition and scalar multiplication) are defined so that

(α) If x, y ∈ V, then x+ y ∈ V; that is, ”V is closed under +”.

VS1. x+ y = y + x for all x, y ∈ V.

VS2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V.

VS3. There exists an element 0 in V such that x+ 0 = x for each x ∈ V.

VS4. For each x ∈ V, there exists an element y ∈ V such that x+ y = 0.

(β) If x ∈ V and a ∈ F, then ax ∈ V; that is, ”V is closed under ·”.

VS5. For each x ∈ V, 1x = x.

VS6. For each pair of elements a, b ∈ F and each element x ∈ V, (ab)x = a(bx).

VS7. For each a ∈ F and x, y ∈ V, a(x+ y) = ax+ ay.

VS8. For each a, b ∈ F and x ∈ V, (a+ b)x = ax+ bx.

Remark 1.2.1

A vector space V along with operation + and · is denoted by (V,+, ·).

Theorem 1.2.1

For any positive integer n, (Rn,+, ·) is a vector space.

5



6 Chapter 1. Vector Spaces

Example 1.2.1

Let Mm×n(F) = {all m× n matrices over a field F}. Then (Mm×n(F),+, · ) is a vector space

where for any A = (aij), B = (bij) ∈Mm×n(F) and for c ∈ F, we have

(A+B)ij = (aij + bij) and (cA)ij = c aij,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 1.2.2

Let S be a nonempty set and F be any field, and let F(S,F) denote the set of all functions

from S to F. Two functions f, g ∈ F(S,F) are called equal if f(x) = g(x) for each x ∈ S.

The set F(S,F) is a vector space with the operations of addition and scalar multiplication

defined for f, g ∈ F(S,F) and c ∈ F by

(f + g)(x) = f(x) + g(x) and (cf)(x) = c f(x),

for each x ∈ S.

Example 1.2.3

Let S = {(a, b) : a, b ∈ R}. For any (a, b), (x, y) ∈ S and c ∈ R, define

(a, b)⊕ (x, y) = (a+ x, b− y) and c� (a, b) = (ca, cb).

Is (S,⊕,� ) a vector space?

Solution:

No. Since (VS1), (VS2), and (VS8) are not satisfied (verify!). For instace, (1, 2)⊕ (1, 3) 6=

(1, 3)⊕ (1, 2).

Theorem 1.2.2: Cancellation Law for Vector Addition

If x, y, and z are vectors in a vector space V such that x+ z = y + z, then x = y.

Proof:
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There is a vector v ∈ V such that z + v = 0. Then

x = x+ 0 = x+ (z + v) = (x+ z) + v

= (y + z) + v = y + (z + v) = y + 0 = y.

Theorem 1.2.3

Let (V,+, · ) be a vector space. Then

(a) The zero vector in V is unique.

(b) The addition inverse for each element in V is unique.

Proof:

(a): Assume that 01 and 02 are two zeros in V, then for any x ∈ V, we have x+01 = x = x+02.

Thus, using the cancellation law we have

x+ 01 = x+ 02 ⇒ 01 = 02.

(b): For any x ∈ V, assume that y and z are two additive inverses for x. Then, by cancellation

law we have

x+ y = 0 = x+ z ⇒ y = z.

Theorem 1.2.4

In any vector space V, the following statements are true.

(a) 0x = 0 for each x ∈ V.

(b) (−a)x = −(ax) = a(−x) for each a ∈ F and each x ∈ V.

(c) a0 = 0 for each a ∈ F.

Proof:

(a): Clearly 0x+ 0 = 0x = (0 + 0)x = 0x+ 0x, and by cancellation law, 0x = 0.

(b): The element −(ax) is the unique element in V such that ax + [−(ax)] = 0. But

ax+ (−a)x = (a+ (−a))x = 0x = 0 as well. Hence, −(ax) = (−a)x. Moreover,

a(−x) = a[(−1)x] = (a(−1))x = (−a)x.
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(c): Note that 0 = 0 + 0. Thus,

a0 + 0 = a0 = a(0 + 0) = a0 + a0.

By the cancellation law, we get a0 = 0.
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Exercise 1.2.1

Solve the following exercises from the book at pages 12 - 16:

• 13, 17, 18.
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Section 1.3: Subspaces

Definition 1.3.1

A subset W of a vector space V over a field F is called subspace of V if W is a vector space

over F with operations of addition and scalar multiplication defined on V.

Note that, if V is any vector space, then {0} and V are both subspaces of V.

Theorem 1.3.1

Let V be a vector space over a field F and W is a subset of V. Then, W is a subspace of V if

and only if:

1. 0 ∈W.

2. For any x, y ∈W, x+ y ∈W.

3. For any x ∈W and any a ∈ F, ax ∈W.

Example 1.3.1

Show that the set W of all symmetric matrices (that is matrices with property At = A) is a

subspace of Mn×n(F).

Solution:

We need to show the three conditions of Theorem 1.3.1.

1. Clearly, 0tn×n = 0n×n and hence 0n×n ∈W.

2. Let A,B ∈ W. Then At = A and Bt = B and hence (A + B)t = At + Bt = A + B.

Thus, A+B ∈W.

3. Let A ∈W and a ∈ F. Then At = A and hence (aA)t = aAt = aA. Thus, aA ∈W.

Therefore, W is a subspace of Mn×n(F).

Note that the set W of all non-singular matrices in Mn×n(F) is not a subspace of Mn×n(F). Can

you guess why!?
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Definition 1.3.2

The trace of an n× n matrix A, denoted tr(A), is the sum of the diagonal entries of A. That

is, for A = (aij),

tr(A) =
n∑
i=1

aii = a11 + a22 + · · ·+ ann.

Example 1.3.2: Exercise #6 @ page 20

Show that tr(cA+ dB) = c tr(A) + d tr(B) for any n× n matrices A and B.

Solution:

If A = (aij) and B = (bij), then cA = (c aij) and dB = (d bij) for 1 ≤ i, j ≤ n. Thus

tr(cA+ dB) = (c a11 + d b11) + (c a22 + d b22) + · · ·+ (c ann + d bnn)

= c (a11 + a22 + · · ·+ ann) + d (b11 + b22 + · · ·+ bnn)

= c tr(A) + d tr(B).

Example 1.3.3

Show that the set W = {A ∈Mn×n(F) : tr(A) = 0 } is a subspace of Mn×n(F).

Solution:

We need to show the three conditions of Theorem 1.3.1.

1. tr(0n×n) = ∑n
i=1 0 = 0 and hence 0n×n ∈W.

2. Let A,B ∈W. Then tr(A) = tr(B) = 0 and hence

tr(A+B) = tr(A) + tr(B) = 0 + 0 = 0.

Thus A+B ∈W.

3. Let A ∈W and c ∈ F, then tr(cA) = c tr(A) = 0 and hence cA ∈W.

Therefore, W is a subspace of Mn×n(F).
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Example 1.3.4

Let W = { (x, y, z ) : z = x− y }. Show that W is a subspace of R3.

Solution:

1. Clearly 0 = (0, 0, 0) ∈W since 0 = 0− 0.

2. Let x = (a, b, c), y = (d, e, f) ∈ W. Then c = a − b and f = d − e, and hence

x+ y = (a+ d, b+ e, c+ f) which is in W since

c+ f = (a− b) + (d− e) = (a+ d)− (b+ e).

3. Let x = (a, b, c) ∈ W and k ∈ F. Then c = a − b and hence kc = ka − kb; that is

kx = (ka, kb, kc) ∈W.

Therefore, W is a subspace of R3.

Definition 1.3.3

Let P(F) denote the set of all polynomials with coefficients from a field F. For integer n ≥ 0,

let Pn(F) be the set of all polynomials of degree less than or equal n with coefficients from F.

For instance, f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Pn(F). Note that f(x) = 0 means that

an = an−1 = · · · = a1 = a0 = 0 and hence f is called the zero polynomial. For our convenience,

we define the degree of the zero polynomial as −1.

Example 1.3.5

Show that Pn(F) is a subspace of P(F).

Solution:

1. Note that the zero polynomial is of degree -1 and hence it is in Pn(F).

2. Clearly the sum of two polynomial of degrees less than or equal n is another polynomial

of degree less than or equal n.

3. The product of a scalar and a polynomial of degree less than or equal n is a polynomial

of degree less than or equal n.

Therefore, Pn(F) is a subspace of P(F).



1.3. Subspaces 13

Exercise 1.3.1

Solve the following exercises from the book at pages 19 - 23:

• 6, 8 : a, b, c.

• 11.
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Section 1.4: Linear Combinations and Systems of Linear Equations

Definition 1.4.1

Let S = {x1, x2, · · · , xn } be a nonempty subset of vectors in a vector space V over a field F.

A vector x ∈ V is called a linear combination of vectors in S if there exist c1, c2, · · · , cn ∈ F

such that

x = c1 x1 + c2 x2 + · · ·+ cn xn. (1.4.1)

In that case, the scalars c1, c2, · · · , cn are called the coefficients of the linear combination.

Recall from Math-111: To solve a system of linear equations Ax = B, we simplify the original

system [A|B] to its reduced row echelon form (r.r.e.f for short) using the following elementary row

operations:

1. Interchanging two rows.

2. Multiplying a row by a nonzero scalar.

3. Adding a multiple of a row to another.

Example 1.4.1

Is x = (2, 1, 5) a linear combination of S = {x1, x2, x3 } ⊆ R3, where x1 = (1, 2, 1), x2 =

(1, 0, 2), and x3 = (1, 1, 0)? Explain.

Solution:

Note that x is a linear combination of {x1, x2, x3 } if we find scalars c1, c2, c3 ∈ R such that

x = c1x1 + c2x2 + c3x3. Thus, we consider

(2, 1, 5) = c1(1, 2, 1) + c2(1, 0, 2) + c3(1, 1, 0).

That is

c1 + c2 + c3 = 2

2c1 + 0 + c3 = 1

c1 + 2c2 + 0 = 5
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We then find the r.r.e.f. of that system as follows:
1 1 1 2
2 0 1 1
1 2 0 5

 r.r.e.f.−−−→


1 0 0 1
0 1 0 2
0 0 1 −1


That is, c1 = 1, c2 = 2, and c3 = −1 and therefore x = x1 + 2x2 − x3.

Definition 1.4.2

Let S = {x1, x2, · · · , xn } be a nonempty subset of vectors in a vector space V over a field F.

The span of S, denoted span S, is the set of all linear combinations of the vectors in S. For

convenience, we define span φ = {0}, where φ is the empty set.

Theorem 1.4.1

Let S = {x1, x2, · · · , xn } be a subset of vectors in a vector space V. The span S is a subspace

of V.

Proof:

Proved in Math 111. Let W = span S = { z : z = c1x1 + · · · cnxn } ⊆ V. Then

1. 0z = 0x1 + 0x2 + · · ·+ 0xn = 0 ∈W.

2. Let z1 = c1x1 + · · ·+ cnxn, z2 = d1x1 + · · ·+ dnxn ∈W. Then,

z1 + z2 = (c1x1 + · · ·+ cnxn) + (d1x1 + · · ·+dnxn) = (c1 +d1)x1 + · · ·+ (cn +dn)xn ∈W.

3. Let z = c1x1 + · · ·+ cnxn ∈W and let a be any scalar. Then

az = a(c1x1 + · · ·+ cnxn) = ac1x1 + · · ·+ acnxn ∈W.

Therefore, W is a subspace of V.

Example 1.4.2

Let S = { 1 + x, 2− x2, 1 + x+ x2 } be a subset of P2(R). Is x2 a linear combination of S?

Explain.

Solution:
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Considering the system x2 = c1(1 + x) + c2(2− x2) + c3(1 + x+ x2), we get

x2 = (c1 + 2c2 + c3) · 1 + (c1 + c3) · x+ (−c2 + c3) · x2.

Hence
c1 + 2c2 + c3 = 0

c1 + 0 + c3 = 0

0 − c2 + c3 = 1

We then find the r.r.e.f. of that system as follows:
1 2 1 0
1 0 1 0
0 −1 1 1

 r.r.e.f.−−−→


1 0 0 −1
0 1 0 0
0 0 1 1


Therefore, x2 = −1 · (1 +x) + 0 · (2−x2) + 1 · (1 +x+x2), and x2 is a linear combination of S.

Example 1.4.3: Solving Example 1.3.4 in a different way

Show that W = { (x, y, z) : z = x− y } is a subspace of R3.

Solution:

Note that W = { (x, y, x− y) : x, y ∈ R } = {x(1, 0, 1) + y(0, 1,−2) : x, y ∈ R }. That is,

W = span { (1, 0, 1), (0, 1,−1) }. Therefore, W is a subspace of R3.

Example 1.4.4

Show that W =


 a a− b

a+ b b

 : a, b ∈ R

 is a subspace of M2×2(R).

Solution:

Clearly W =

 a
1 1

1 0

+ b

0 −1

1 1

 : a, b ∈ R

 = span


1 1

1 0

 ,
0 −1

1 1


 and

therefore it is a subspace of M2×2(R).
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Example 1.4.5

Determine whether x =

 1 2

−3 4

 is in the span S, where S =

 1 0

−1 0

 ,
0 1

0 1

 ,
1 1

0 0


.

Solution:

Consider the system

 1 2

−3 4

 = a

 1 0

−1 0

+ b

0 1

0 1

+ c

1 1

0 0

. Thus,

1 = a+ c, 2 = b+ c,−3 = −a, and 4 = b.

Therefore, a = 3, b = 4, c = −2 and hence x ∈ span S since it is a linear combination of S.

Definition 1.4.3

Let S = {x1, x2, · · · , xn } be a subset of a vector space V. If every vector in V is a linear com-

bination of S, we say that S spans (or generates) V or that V is spanned (or generated)

by S.

Example 1.4.6

Show that S = {x1, x2, x3 } spans R3, where x1 = ( 1, 1, 0 ), x2 = ( 1, 0, 1 ), and x3 = ( 0, 1, 1 ).

Solution (1):

Let x = ( a, b, c ) ∈ R3 by an arbitrary vector. Consider the system x = c1x1 + c2x2 + c3x3

and work its matrix form to get the system in its reduced form as follows:


1 1 0 a

1 0 1 b

0 1 1 c

 r.r.e.f.−−−→


1 0 0 1

2( a+ b− c )
0 1 0 1

2( a− b+ c )
0 0 1 1

2(−a+ b+ c )


Thus, c1 = 1

2( a+ b− c ), c2 = 1
2( a− b+ c ), c3 = 1

2(−a+ b+ c ) and hence S generates R3.

Solution (2):

We can solve the problem if we know that this system has at least one solution. So, we
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compute the determinant of the associate matrix to the system∣∣∣∣∣∣∣∣∣∣∣
1 1 0

1 0 1

0 1 1

∣∣∣∣∣∣∣∣∣∣∣
= −2 6= 0

Therefore, the system has a unique soltion and hence S spans R3.

Remark 1.4.1

For any nonnegative n, S = { 1, x, x2, · · · , xn } spans Pn(R).

Example 1.4.7

Does the set S = { 1− x, x− x2, 1 + x2 } spans P2(R)? Explain.

Solution:

Consider any polynomial ax2 + bx+ c ∈ P2(R). Then

ax2 + bx+ c = c1(1−x) + c2(x−x2) + c3(1 +x2) = (c1 + c3) ·1 + (−c1 + c2) ·x+ (−c2 + c3) ·x2.

Thus


1 0 1 c

−1 1 0 b

0 −1 1 a

 has a unique solution since

∣∣∣∣∣∣∣∣∣∣∣
1 0 1

−1 1 0

0 −1 1

∣∣∣∣∣∣∣∣∣∣∣
= 2 6= 0.

Thus, S spans P2(R).

Example 1.4.8: Exercise #13 @ page 34

Show that if S1 and S2 are subsets of a vector space V such that S1 ⊆ S2, then span S1 ⊆

span S2. If moreover, span S1 = V, then span S2 = V.

Solution:

Let S1 = {x1, x2, · · · , xk } ⊆ S2 and let x ∈ span S1. Then x can be written as a linear
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combination of vectos of S1; that is

x = c1x1 + c2x2 + · · ·+ ckxk,

for some scalars c1, · · · , ck. But then x is also a linear combination of vectors in S2 since all

vectors x1, · · · , xk ∈ S2. Thus span S1 ⊆ span S2.

If span S1 = V, then we know that span S2 is a subspace of V containing span S1 = V.

Therefore, span S2 = V.
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Exercise 1.4.1

Solve the following exercises from the book at pages 32 - 35:

• 2 : a, b, c, 3 : a, b, c, 4 : a, b.

• 5 : a, b, e, f, g, h.

• 6− 9.

• 13.
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Section 1.5: Linear Dependence and Linear Independence

It is clear that there are many different subsets that generates a subspace W of a vector space V.

In this section, we will try to get these subsets as small as possible by removing unnecessary vectors

from those subsets.

Remark 1.5.1

Rn is generated by {E1, E2, · · · , En } where Ei is the vector whose all entries are 0 except for

entry at position i which equals 1.

Definition 1.5.1

The set of vectors S = {x1, x2, · · · , xn } in a vector space V is said to be linearly dependent

if there exist scalars c1, c2, · · · , cn, not all zero, such that

c1x1 + c2x2 + · · ·+ cnxn = 0. (1.5.1)

Otherwise, S is said to be linearly independent. That is, if whenever Equation (1.5.1)

hold, we must have c1 = c2 = · · · = cn = 0. In that case, we say that the zero vector has only

the trivial representation as a linear combination of the vectors of S.

Remark 1.5.2

The homogenous system Ax = 0 (with a square matrix A) has only trivial solution if and

only if |A | 6= 0.

Example 1.5.1

Determine whether the set S = {x1 = ( 1, 0, 1 ), x2 = ( 2, 1, 2 ), x3 = ( 1, 1, 1 ) } is linearly de-

pendent or independent in R3.

Solution (1):

We consider the homogenous system: c1x1 + c2x2 + c3x3 = 0. Solving this system, we see that


1 2 1 0
0 1 1 0
1 2 1 0

 r.r.e.f.−−−→


1 0 −1 0
0 1 1 0
0 0 0 0
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That is, c1 − c3 = 0 and c2 + c3 = 0. If c3 = t ∈ R, the system has non-trivial solutions

c1 = t, c2 = −t, c3 = t and hence S is linearly dependent.

Solution (2):

Note that the determinant of matrix A (the matrix whose columns are the vectors of S) is 0,

and hence the set S is linearly dependent.

Example 1.5.2

Find the values, if any, of α so that the set S is linearly independent in R3, where

S = {x1 = (−1, 0,−1 ), x2 = ( 2, 1, 2 ), x3 = (α, 1, 1 ) }

Solution:

Simply use the determinant of a matrix whose columns are the vectors of S. Consider the

homogenous system Ax = 0 where A =


−1 2 α

0 1 1

−1 2 1

. Thus the system has only trivial

solution if and only if S is linearly independent. Therefore, the |A | 6= 0. That is,∣∣∣∣∣∣∣∣∣∣∣
−1 2 α

0 1 1

−1 2 1

∣∣∣∣∣∣∣∣∣∣∣
6= 0 ⇔ −1

∣∣∣∣∣∣∣
1 1

2 1

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
2 α

1 1

∣∣∣∣∣∣∣ 6= 0 ⇔ 1− (2− α) 6= 0 ⇔ α 6= 1.

Thus, S is linearly independent only if α 6= 1.

Theorem 1.5.1

Let S1 and S2 be two subsets of a vector space V with S1 ⊆ S2. Then

1. If S1 is linealry dependent, then S2 is linearly dependent.

2. If S2 is linearly independent, then S1 is linealry independent.
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Example 1.5.3: Exercise #2(a) @ page 40

Determine whether S =


 1 −3

−2 4

 ,
−2 6

4 −8


 is linearly dependent or linealry inde-

pendent set in M2×2(R)?

Solution:

Consider the system a

 1 −3

−2 4

+ b

−2 6

4 −8

 =

0 0

0 0

. Thus, we solve the following

system


1 −2 0
−3 6 0
−2 4 0

4 −8 0


r.r.e.f.−−−→


1 −2 0
0 0 0
0 0 0
0 0 0


That is a = 2b and the set is linearly dependent.

Example 1.5.4

Let S = { 1− x, x− x2,−1 + x2 } ⊆ P2(R). Determine whether or not S is linearly depen-

dent.

Solution:

Consider

c1(1− x) + c2(x− x2) + c3(−1 + x2) = 0

(c1 − c3) · 1 + (−c1 + c2) · x+ (−c2 + c3) · x2 = 0

By equating the coefficients of xn on both sides of the equation for n = 0, 1, 2, we obtain the

following homogenous system:

c1 − c3 = 0

−c1 + c2 = 0

−c2 + c3 = 0
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That is 
1 0 −1

−1 1 0

0 −1 1




1

x

x2

 =


0

0

0

 .
But ∣∣∣∣∣∣∣∣∣∣∣

1 0 −1

−1 1 0

0 −1 1

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Which implies that the system has a non-trivial solution and hence S is linearly dependent.
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Exercise 1.5.1

Solve the following exercises from the book at pages 40 - 42:

• 2 : a, b, c, d, e, f .

• 4, 5, 6, 9

Exercise 1.5.2

Let x and y be two linearly independent vectors in a vector space V. Show that the condition

for the vectors ax+ by and cx+ dy to be linearly dependent is ad− bc = 0.

Solution:

Consider

r1(ax+ by) + r2(cx+ dy) = 0.

Then, (r1a + r2c)x + (r1b + r2d)y = 0 and hence (r1a + r2c) = (r1b + r2d) = 0 since x and y

are linearly independent. Considering the second system

ar1 + cr2 = 0

br1 + dr2 = 0
(1.5.2)

For ax + by and cx + dy to be linear dependent, we must have nontrivial solutions to the

system represented in (1.5.2). That is ,

∣∣∣∣∣∣∣
a c

b d

∣∣∣∣∣∣∣ = 0. That is ad− bc = 0.
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Section 1.6: Bases and Dimension

Let V be a vector space with a subspace W. We note that if S is a generating set for W and no

proper subset of S is a generating set for W, then S must be a linearly independent set.

Definition 1.6.1

A set β of distinct nonzero vectors in a vector space V is called a basis for V if and only if

1. β spans (generates) V, and

2. β is linearly independent set in V.

Moreover, the dimension of V is the number of vectors in its finite basis β, denoted by

dim(V). In that case, we say that V is a finite-dimensional vector space.

Remark 1.6.1

1. In Fn, the set {E1 = (1, 0, · · · , 0), E2 = (0, 1, 0, · · · , 0), · · · , En = (0, · · · , 0, 1) } is a ba-

sis for Fn. This basis is called the standard basis for Fn. Therefore, dim(Fn) = n.

2. Let Eij denote the matrix in Mm×n(F) whose all entries are 0 except the ij-entry is 1.

The set {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n } is the standard basis for Mm×n(F). Therefore,

dim(Mm×n(F)) = mn.

3. The set β = { 1, x, x2, · · · , xn } is the standard basis for the vector space Pn(F), and

therefore dim(Pn(F)) = n+ 1.

Theorem 1.6.1

Let V be a vector space and β = {x1, x2, · · · , xn } be a nonempty subset of V. Then β is a

basis for V if and only if each x ∈ V can be uniquely expressed as a linear combination of

vectors in β, that is, can be expressed in the form

x = a1x1 + a2x2 + · · · anxn, for unique scalars a1, a2, · · · , an.

Proof:

Proved in Math-111. ” ⇒”: Let β be a basis for V. If x ∈ V, then x ∈ span β = V, and

hence

x = a1x1 + a2x2 + · · ·+ anxn,
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for some scalars a1, · · · , an. Assume that x has another expression as

x = b1x1 + b2x2 + · · ·+ bnxn,

for some scalars b1, · · · , bn. Thus

0 = x− x = (a1 − b1)x1 + (a2 − b2)x2 + · · ·+ (an − bn)xn.

But β is linearly independent set and hence ai− bi = 0 and therefore ai = bi for i = 1, · · · , n.

Thus, x has a unique expression as a linear combination of vectors in β.

” ⇐”: Assume that every vector x ∈ V can be uniquely expressed as a linear combination of

vectors in β. Then V = span β.

Also, 0 ∈ V, and there is unique scalars a1, · · · , an such that 0 = a1x1 + · · ·+anxn. Note that

multiplying both sides by a constant does not change the expression by assumption. Hence,

a1 = a2 = · · · = an = 0. Thus β is linearly independent and hence β is a basis for V.

Theorem 1.6.2

If a vector space V is generated by a finite set S, then some subset of S is a basis for V.

Corollary 1.6.1

Every basis for a finite-dimensional vector space V contains the same number of vectors.

Theorem 1.6.3

Let V be an n-dimensional vector space and let β = {x1, x2, · · · , xn } be a subset (with n

vectors) of V. Then,

1. If β spans V, then β is a basis for V.

2. If β is linearly independent, then β is a basis for V.

Theorem 1.6.4

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional

subspace and dim(W) ≤ dim(V). Moreover, if dim(W) = dim(V), then W = V.
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Example 1.6.1

Determine whether S = {x1 = ( 1, 0,−1 ), x2 = ( 2, 5, 1 ), x3 = ( 0,−4, 3 ) } is a basis for R3.

Solution:

Note that S contains 3 = dim(R3), and thus it is enough to show that S is linearly indepen-

dent (or S spans R3). In either cases, we can simply show that the associate matrix of the

system is not equal to zero. That is∣∣∣∣∣∣∣∣∣∣∣
1 2 0

0 5 −4

−1 1 3

∣∣∣∣∣∣∣∣∣∣∣
= (15 + 4)− (−8) = 27 6= 0.

Thus S is a basis for R3.

Example 1.6.2

Let W = { (x, y, z) : 2x+ 3y − z = 0 }. Show that W is a subspace of R3 and find its dimen-

sion.

Solution:

Clearly, W = { (x, y, 2x+ 3y) : x, y ∈ R } = {x(1, 0, 2) + y(0, 1, 3) }. Therefore, W =

span { (1, 0, 2), (0, 1, 3) } which shows that W is a subspace of R3. Moreover, the set

{ (1, 0, 2), (0, 1, 3) } is linearly independent set and hence it is a basis for W. Therefore,

dim(W) = 2.

Example 1.6.3

Let W = { (x, y, z, w) : x+ y + z = 0 and w = 2x }.

1. Show that W is a subspace of R4.

2. Find a basis for W.

Solution:

(1): Clearly,

W = { (x, y,−x− y, 2x ) : x, y ∈ R } = {x( 1, 0,−1, 2 ) + y( 0, 1,−1, 0 ) : x, y ∈ R }

= span { ( 1, 0,−1, 2 ), ( 0, 1,−1, 0 ) }
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Therefore, W is a subspace of R4.

(2): Consider the system c1(1, 0,−1, 2)+c2(0, 1,−1, 0) = (0, 0, 0, 0). It is clear that c1 = c2 = 0

and hence { ( 1, 0,−1, 2 ), ( 0, 1,−1, 0 ) } is linearly independent set and is a basis for W.

Example 1.6.4

Let W =


a+ b c

2c a− b

 ∈M2×2(R)

.

1. Show that W is a subspace of M2×2(R).

2. What is dim(W)?

Solution:

(1): Note that

W =

 a
1 0

0 1

+ b

1 0

0 −1

+ c

0 1

2 0




= span


1 0

0 1

 ,
1 0

0 −1

 ,
0 1

2 0


.

So, W is a subspace of M2×2(R).

(2): Consider the homogenous system c1

1 0

0 1

 + c2

1 0

0 −1

 + c3

0 1

2 0

 =

0 0

0 0

.

Thus,

c1 + c2 = 0, c3 = 0, 2c3 = 0, and c1 − c2 = 0.

Hence c1 = c2 = c3 = 0. Therefore,


1 0

0 1

 ,
1 0

0 −1

 ,
0 1

2 0


 is a basis for W and

dim(W) = 3.

Example 1.6.5

Let W = { f(x) ∈ P2(R) : f(1) = 0 }.

1. Show that W is a subspace of P2(R).

2. What is dim(W)?
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Solution:

Note that f(x) = a + bx + cx2 so that f(1) = a + b + c = 0. That is c = −a − b. Hence

f(x) = a + bx + (−a − b)x2 = a(1 − x2) + b(x − x2). Therefore, W = span S, where

S = { 1− x2, x− x2 }. Clearly, S is linearly independent (each element is not a composite of

the other). Hence S is a basis for W and dim(W) = 2.

Definition 1.6.2

Let V be a vector space with a basis β = {x1, x2, · · · , xn }. If x ∈ V, then x = c1x1 +

c2x2 + · · ·+ cnxn is uniquely represented with scalars c1, c2, · · · , cn. We call thses scalars the

coordinates of x in the basis β, denoted by

[x]β =


c1
...

cn

 .

Example 1.6.6

Let β = {E1, E2, E3 } be the standard basis for R3, and let γ = {x1, x2, x3 }, where x1 =

(1, 1, 1), x2 = (0, 1, 1), and x3 = (0, 0, 1).

1. Show that γ is another basis for R3.

2. Find [x]β and [x]γ for x = (2,−1, 4).

Solution:

(1): Note that | β | = | γ | = 3 = dim(R3). So, we only need to show that γ is linearly

independent (or γ spans R3). Consider c1x1 + c2x2 + c3x3 = 0 which is a homogenous system

with Ax = 0, where A =

1 0 0
1 1 0
1 1 1

 and x =

c1
c2
c3

. Clearly then |A | = 1 6= 0 and hence γ

is linearly independent and it is a basis for R3.

(2): Note that [x]β =

 2
−1
4

 since x = 2E1 − E2 + 4E3.

Now consider c1(1, 1, 1) + c2(0, 1, 1) + c3(0, 0, 1) = (2,−1, 4) to get c1 = 2, c1 + c2 = −1, and
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c1 + c2 + c3 = 4. Therefore, x = 2x1 + (−3)x2 + 5x3 and hence [x]γ =

 2
−3
5

.
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Exercise 1.6.1

Solve the following exercises from the book at pages 53 - 58:

• 2 : a, b, 3 : a, b.

• 4, 5, 7.

• 11, 12.

Exercise 1.6.2

Let W = { f(x) ∈ P3(R) : f(0) = f ′(0) and f(1) = f ′(1) }. Find a basis for W.

Solution:

Note that any f(x) ∈W is of the form f(x) = a+ bx+ cx2 + dx3. Thus, f(0) = f ′(0) implies

that a = b. Also, f(1) = f ′(1) implies a+ b+ c+d = b+ 2c+ 3d. These two equations implies

a = b = c+ 2d. Thus

f(x) = (c+ 2d) + (c+ 2d)x+ cx2 + dx3 = c(1 + x+ x2) + d(2 + 2x+ x3).

Therefore, W = span { 1 + x+ x2, 2 + 2x+ x3 }. Clearly S = { 1 + x+ x2, 2 + 2x+ x3 } is a

basis for W.

Exercise 1.6.3

Let W = { a+ bx+ cx2 ∈ P2(R) : a = b = c }. Show that W is a subspace of P2(R).

Solution:

Note that W = { a(1 + x+ x2) : a ∈ R }. Thus, W = span S, where S = { 1 + x+ x2 } and

hence W is a subspace of P2(R).

Exercise 1.6.4

Let W = { a+ bx ∈ P1(R) : b = a2 }. Is W a subspace of P1(R)? Explain your answer.

Solution:

No. Clearly f(x) = 1 + x, g(x) = 2 + 4x ∈W, but f(x) + g(x) = 3 + 5x 6∈W.



1.6. Bases and Dimension 33

Exercise 1.6.5

Exercise #11 @ page 55: Let x and y be distinct vectors of a vector space V. Show that if

β = {x, y } is a basis for V and a and b are nonzero scalars, then both γ1 = {x+ y, ax } and

γ2 = { ax, by } are also bases for V.

Solution:

Since β is a basis for V, then dim(V) = 2. So it is enough to check if both γ1 and γ2 are

linearly independent.

For γ1: Assume that s(x + y) + t(ax) = 0. Then, (s + ta)x + (s)y = 0, and hence s = 0 and

s + ta = 0 which implies that t = 0 since a 6= 0. Therefore, γ1 is linearly independent and

hence it is a basis for V.

For γ2: Assume that s(ax) + t(by) = 0. Then, (sa)x + (tb)y = 0 and hence sa = tb = 0

implies that s = t = 0 since a and b are both nonzero. Therefore, γ2 is linearly independent

and hence it is a basis for V.
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2
Chapter

Linear Transformations and Matrices

In this chapter we consider special functions defined on vector spaces that preserve the structure.

These special functions are called linear transformations.

The preserved structure of vector space V over a field F is its addition and scalar multiplication

operations, or, simply, its linear combinations.

Note that we assume that all vector spaces in this chapter are over a common field F.

Section 2.1: Linear Transformations, Null Space, and Ranges

Definition 2.1.1

Let V and W be two vector spaces. A linear transformation T : V→W is a function such

that:

1. T(x+ y) = T(x) + T(y) for any x, y ∈ V.

2. T(c x) = cT(x) for any c ∈ F and any x ∈ V.

Note that the addition operation in x + y refers to that defined in V, while the addition in

T(x) + T(y) refers to that defined in W. Moreover, if V = W, we say that T is a linear

operator on V. We sometime simply call T linear.

Remark 2.1.1

Let T : V → W be a function for vector spaces V and W. Then for any scalar c, and any

x, y ∈ V, we have

1. If T is linear, then T(0V) = 0W: For any x ∈ V, T(0) = T(0x) = 0T(x) = 0.

2. T is linear iff T(cx+ y) = cT(x) + T(y).

3. T(x− y) = T(x)−T(y).

4. T is linear iff T
(

n∑
i=1

cixi

)
=

n∑
i=1

ciT(xi), for scalars c1, · · · , cn and x1, · · · , xn ∈ V.

To see that a linear transformation T : V→ V preserves linear combination, assume that v ∈ V

35
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such that v = 3s + 5t − 2u for some vectors s, t, u ∈ V. Then, T(v) = T(3s + 5t − 2u) = 3T(s) +

5T(t)− 2T(u).

In what follows, we usually use property (2) above to prove that a given transformation is linear.

Definition 2.1.2

Let V and W be two vector spaces. We define the trivial linear transformation T0 : V→W

defined by T0(x) = 0 for all x ∈ V. Also, we define the identity linear transformation

IV : V→ V defined by T(x) = x for all x ∈ V.

Example 2.1.1

Define T : R2 → R2 by T(x, y) = (x,−y). Such linear transformation (show it) is called

reflection.

Example 2.1.2

Define T : R2 → R2 by T(x, y) = (x, 0). Such linear transformation (show it) is called

projection.

Example 2.1.3

Define T : R2 → R2 by

T(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ) =

cos θ − sin θ

sin θ cos θ


x
y

 .
Such linear transformation (show it) is called rotation.

Example 2.1.4

Define T : Mm×n(F)→Mn×m(F) by T(A) = At. Show that T is linear.

Solution (1):

We show that T is linear by showing that T satisfies the conditions of the definition of linear

transformation.

(1): For any A,B ∈Mm×n(F), T(A+B) = (A+B)t = At +Bt = T(A) + T(B).
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(2): For any c ∈ F and any A ∈Mm×n(F), T(cA) = (cA)t = cAt = cT(A).

Therefore, T is linear.

Solution (2):

We use Remark 2.1.1 to show that T is linear. For all A,B ∈Mm×n(F) and c ∈ F, we have

T(cA+B) = (cA+B)t = (cA)t +Bt = cAt +Bt = cT(A) + T(B).

Therefore, T is linear.

Example 2.1.5

Show that T : R2 → R2, defined by T(x, y) = (2x+ y, x− y) is linear.

Solution:

We use Remark 2.1.1 to show that T is linear. Let c ∈ R and (a, b), (x, y) ∈ R2. Then

T
(
c(a, b) + (x, y)

)
= T

(
(ca+ x, cb+ y)

)
=
(
2(ca+ x) + (cb+ y), (ca+ x)− (cb+ y)

)
=
(
(2ca+ cb) + (2x+ y), (ca− cb) + (x− y)

)
= (2ca+ cb, ca− cb) + (2x+ y, x− y) = c(2a+ b, a− b) + (2x+ y, x− y)

= cT(a, b) + T(x, y).

Therefore, T is linear.

Example 2.1.6

Define T : P2(R)→ P3(R) by T
(
f(x)

)
= xf(x) + x2. Is T a linear transformation? Explain.

Solution:

For any f(x), g(x) ∈ P2(R) and any c ∈ R, we have

T
(
cf(x) + g(x)

)
= x

(
cf(x) + g(x)

)
+ x2 = c(xf(x)) + xg(x) + x2,

but

cT
(
f(x)

)
+ T

(
g(x)

)
= c(xf(x) + x2) + xg(x) + x2 = c(xf(x)) + xg(x) + (c+1) x2.
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Therefore, T is not linear.

Example 2.1.7

Let T : R3 → R be a linear transformation for which T(3,−1, 2) = 5 and T(1, 0, 1) = 2.

What is T(−1, 1, 0)?

Solution:

We first write (−1, 1, 0) as a linear combination of (3,−1, 2) and (1, 0, 1). Consider

(−1, 1, 0) = c1(3,−1, 2) + c2(1, 0, 1).

Thus, c1 = −1 and c2 = 2. Therefore,

T(−1, 1, 0) = T
[
(−1)(3,−1, 2) + (2)(1, 0, 1)

]
= −T(3,−1, 2) + 2T(1, 0, 1)

= −1(5) + 2(2) = −5 + 4 = −1.

Example 2.1.8

Let T : P1(R)→ P2(R) be a linear for which T(t + 1) = t2 − 1 and T(t− 1) = t2 + t. What

is T(7t+ 3)?

Solution:

Consider 7t + 3 = c1(t + 1) + c2(t− 1) which implies that c1 + c2 = 7 and c1 − c2 = 3. That

is, c1 = 5, and c2 = 2. Therefore,

T(7t+ 3) = T
[
5(t+ 1) + 2(t− 1)

]
= 5T(t+ 1) + 2T(t− 1)

= 5(t2 − 1) + 2(t2 + t) = 7t2 + 2t− 5.

Definition 2.1.3

Let V and W be two vector spaces (over F), and let T : V → W be a linear transformation.

The null space (or kernel) of T, denoted N (T), is the set of all vectors x ∈ V such that
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T(x) = 0; that is

N (T) = {x ∈ V : T(x) = 0 } ⊆ V.

The range (or image) of T, denoted R(T), is the set of all images (under T) of vectors in

V. That is

R(T) = {T(x) : x ∈ V } ⊆W.

Example 2.1.9

Find the null space and the range of: 1 IV : V→ V. 2 T0 : V→ V.

Solution:

1 : N (IV) = {x ∈ V : IV(x) = 0 } = {0}.

1 : R(IV) = { IV(x) : x ∈ V } = V.

2 : N (T0) = {x ∈ V : T0(x) = 0 } = V.

2 : R(T0) = {T0(x) : x ∈ V } = {0}.

Theorem 2.1.1

Let V and W be vector spaces and T : V→W be linear. Then N (T) and R(T) are subspaces

of V and W, respectively.

Proof:

We first show that N (T) is a subspace of V:

1. T(0V) = 0W and hence 0V ∈ N (T).

2. Let x, y ∈ N (T), then T(x) = T(y) = 0W and

T(x+ y) = T(x) + T(y) = 0W + 0W = 0W ⇒ x+ y ∈ N (T).

3. Let c ∈ F and x ∈ N (T), then T(cx) = cT(x) = c0W = 0W, and hence cx ∈ N (T).

Therefore, N (T) is a subspace of V.

Next we show that R(T) is a subspace of W.
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1. T(0V) = 0W and hence 0W ∈ R(T).

2. Let x, y ∈ R(T), then there exist u, v ∈ V such that T(u) = x and T(v) = y and hence

T(u+ v) = T(u) + T(v) = x+ y ⇒ x+ y ∈ R(T).

3. Let c ∈ F and x ∈ R(T), then there exists u ∈ V such that T(u) = x, and as cu ∈ V,

we have T(cu) = cT(u) = cx ∈ R(T).

Therefore, R(T) is a subspace of W.

Remark 2.1.2

The next theorem provides a method for finding a spanning set (and therefore a basis) for

the range of T, namely for R(T).

Theorem 2.1.2

Let T : V→W be a linear transformation. If β = {x1, x2, · · · , xn } is a basis for V, then

R(T) = span T(β) = span {T(x1),T(x2), · · · ,T(xn) }.

Proof:

Since xi ∈ V, then T(xi) ∈ R(T) for each i. Because R(T) is a subspace of W, R(T) contains

span {T(x1),T(x2), · · · ,T(xn) } = span T(β). Thus, span T(β) ⊆ R(T).

Now suppose that y ∈ R(T). Then y = T(x) for some x ∈ V. But because β is a basis for

V, we have x = ∑n
i=1 cixi, for c1, c2, · · · , cn ∈ F. Thus,

y = T(x) = T(c1x1 + c2x2 + · · ·+ cnxn)

= c1T(x1) + c2T(x2) + · · ·+ cnT(xn).

Thus, y ∈ span T(β). Hence R(T) ⊆ span T(β). Therefore, R(T) = span T(β).
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Example 2.1.10

Let T : P2(R)→M2×2(R) be a linear transformation defined by

T
(
f(x)

)
=

f(1)− f(2) 0

0 f(0)

 .
Find a basis for R(T).

Solution:

Consider the standard basis β = { 1, x, x2 } for P2(R). Then

R(T) = span T(β) = span
{

T(1),T(x),T(x2)
}

= span


1− 1 0

0 1

 ,
1− 2 0

0 0

 ,
1− 4 0

0 0




= span


0 0

0 1

 ,
−1 0

0 0

 ,
−3 0

0 0


.

Considering the system c1

0 0

0 1

 + c2

−1 0

0 0

 + c3

−3 0

0 0

 =

0 0

0 0

, we note that

c2 = −3c3. Thus

R(T) = span


0 0

0 1

 ,
−1 0

0 0


.

Therefore,


0 0

0 1

 ,
−1 0

0 0


 is a basis for R(T) and dim(R(T)) = 2.

Definition 2.1.4

Let T : V → W be a linear transformation. If N (T) and R(T) are finite-dimensional, then

we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be

the dimensions of N (T) and R(T), respectively.



42 Chapter 2. Linear Transformations and Matrices

Theorem 2.1.3

Let V and W be vector spaces, and let T : V → W be a linear transformation. If V is

finite-demensional, then

nullity(T) + rank(T) = dim(V).

Definition 2.1.5

Let T : V → W be a linear transformation. Then T is said to be one-to-one (or simply

1− 1) if for all x, y ∈ V, if T(x) = T(y), then x = y.

Moreover, T is said to be onto W if R(T) = W. That is for all y ∈ W, there is x ∈ V such

that T(x) = y.

Theorem 2.1.4

Let V and W be two vector spaces, and let T : V→W be a linear transformation. Then, T

is ono-to-one iff N (T) = {0}.

Proof:

” ⇒”: Assume that T is 1-1. If x ∈ N (T), then T(x) = 0 = T(0), and hence x = 0.

Therefore, N (T) = {0}.

” ⇐”: Now let N (T) = {0}. Assume that T(x) = T(y) for x, y ∈ V. Then,

T(x)−T(y) = T(x− y) = 0.

Hence x− y ∈ N (T) = {0} and thus x− y = 0 which implies that x = y. Therefore, T is 1-1.

Theorem 2.1.5

Let V and W be two vector spaces of equal finite dimension, and T : V→W be a linear

transformation. Then the following statements are equivalent:

1. T is 1-1

2. T is onto.

3. N (T) = {0}.

4. rank(T) = dim(V).

5. nullity(T) = 0.
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Proof:

Note that nullity(T) + rank(T) = dim(V). Then,

T is 1-1 ⇔ N (T) = {0} ⇔ nullity(T) = 0

⇔ rank(T) = dim(V) ⇔ rank(T) = dim(R(T)) = dim(W)

⇔ R(T) = W ⇔ T is onto.

Example 2.1.11

Let T : R2 → R2 be linear transformation defined by

T(x, y) = (2x− 3y, y).

Show that T is 1-1 and onto.

Solution:

We simply show that N (T) = {(0, 0)}.

N (T) =
{

(x, y) ∈ R2 : T(x, y) = (0, 0)
}

=
{

(x, y) ∈ R2 : (2x− 3y, y) = (0, 0)
}

=
{

(x, y) ∈ R2 : 2x− 3y = 0 and y = 0
}

= { (0, 0) }.

Therefore, T is 1-1 and onto.

Example 2.1.12

Let T : R3 → R2 be the linear transformation defined by T(x, y, z) = (x, y). Find

N (T),R(T), nullity(T) and rank(T).

Solution:

First,

N (T) =
{

(x, y, z) ∈ R3 : T(x, y, z) = (x, y) = (0, 0)
}

= { (0, 0, z) : z ∈ R }.

Thus { (0, 0, 1) } is a basis for N (T) and hence nullity(T) = 1.
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Next,

R(T) =
{

T(x, y, z) = (x, y) ∈ R2
}

= {x(1, 0) + y(0, 1) : x, y ∈ R } = R2.

Thus, rank(T) = 2.

Example 2.1.13

Let T : P2(R)→ P3(R) be the linear transformation defined by T (f(x)) = f ′(x) +
∫ x

0 f(t) dt.

1 Is T one-to-one? 2 Is T onto? Explain.

Solution:

1 : We show that T is 1-1 iff N (T) = {0}. Consider the basis β = { 1, x, x2 } for P2(R).

Then,

R(T) = span
{

T(1),T(x),T(x2)
}

= span
{
x, 1 + x2

2 , 2x+ x3

3

}
.

Since
{
x, 1 + x2

2 , 2x+ x3

3

}
is linearly independent set (It can be shown easily), it is a basis

for R(T). Thus, rank(T) = dim(R(T)) = 3 = dim(P2(R)). Therefore, nullity(T) = 0 and

hence N (T) = {0} and then T is 1-1.

2 : rank(T) = 3 < dim(P3(R)) and hence R(T) 6= P3(R). Therefore, T is not onto.

Example 2.1.14

For each of the following linear transformations, determine N (T) and R(T); find their bases;

is T 1-1 or onto? Explain.

1. T : R3 → R2 given by T(x, y, z) = (x− y, 2z).

2. T : R2 → R3 given by T(x, y) = (x+ y, 0, 2x− y).

3. T : R3 → R2 given by T(x, y, z) = (x+ y, x− y).

4. T : R2 → R3 given by T(x, y) = (x+ y, x− y, x).

Solution:
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(1):

N (T) = { (x, y, z) : T(x, y, z) = (0, 0) }

= { (x, y, z) : x− y = 0 and 2z = 0 }

= { (x, x, 0) : x ∈ R } = {x(1, 1, 0) }.

Then, nullity(T) = 1 since { (1, 1, 0 } is a basis for N (T), and T is not 1-1.

Note that rank(T) = 3 − nullity(T) = 2. Thus, rank(T) = 2 and hence R(T) = R2.

Therefore, { (1, 0), (0, 1) } is a basis for R(T) and T is onto. We note that we can compute

R(T) by considering

R(T) = span {T(1, 0, 0),T(0, 1, 0),T(0, 0, 1) }.

Parts (2), (3), and (4) are left as exercises. (2):

N (T) = { (x, y) : T(x, y) = (0, 0, 0) }

= { (x, y) : x+ y = 0 and 2x− y = 0 } = {(0, 0, 0)}

Thus, nullity(T) = 0 and T is 1-1 and basis for N (T) = φ. The rank(T) = dim(R(T)) =

2 < dim(R3) and hence T is not onto.

R(T) = span {T(1, 0),T(0, 1) }

= span { (1, 0, 2), (1, 0,−1) }

It is clear that { (1, 0, 2), (1, 0,−1) } is linearly independent and hence is a basis for R(T).

Theorem 2.1.6

Let V and W be two vector spaces, and suppose that {x1, x2, · · · , xn } is a basis for V. For

any vectors y1, y2, · · · , yn ∈ W, there exists exactly one linear transformation T : V → W

such that T(xi) = yi for i = 1, · · · , n.

Corollary 2.1.1

Let V and W be vector spaces, and suppose that V has a finite basis {x1, x2, · · · , xn}. If

T,U : V→W are linear transformations and U(xi) = T(xi) for i = 1, · · · , n, then U = T.
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Example 2.1.15

Let U,T : R2 → R2 be linear transformations and let T be defined by T(x, y) = (2y−x, 3x).

If U(1, 2) = (3, 3) and U(1, 1) = (1, 3), show that T = U.

Solution:

Note that { (1, 1), (1, 2) } is a basis for R2 and that T(1, 1) = (1, 3) = U(1, 1) and T(1, 2) =

(3, 3) = U(1, 2). Therefore, U = T.
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Exercise 2.1.1

Solve the following exercises from the book at pages 74 - 79:

• 2, 3, 4, 5.

• 8, 11, 12, 13.

Exercise 2.1.2

Show that T : R4 → R2 defined by T(x, y, z, w) = (x, y) is linear.

Solution:

Let k ∈ R and (a, b, c, d), (x, y, z, w) ∈ R4. Then

T
(
k(a, b, c, d) + (x, y, z, w)

)
= T

(
(ka, kb, kc, kd) + (x, y, z, w)

)
= T(ka+ x, kb+ y, kc+ z, kd+ w) = (ka+ x, kb+ y)

= k(a, b) + (x, y)

= kT(a, b, c, d) + T(x, y, z, w).

Exercise 2.1.3

Show that T : R2 → R2 defined by T(x, y) = (x+ y, 3x) is linear.

Solution:

Let k ∈ R and (a, b), (x, y) ∈ R2. Then

T (k(a, b) + (x, y)) = T ((ka, kb) + (x, y))

= T (ka+ x, kb+ y) = ((ka+ x) + (kb+ y), 3ka+ 3x)

= (ka+ kb, 3ka) + (x+ y, 3x)

= kT(a, b) + T(x, y).

Exercise 2.1.4

Let C(R) denote the set of all real valued continuous functions on R. Define T : C(R)→ R

by T
(
f(x)

)
=
∫ b

a
f(x) dx for all a, b ∈ R with a < b. Show that T is linear.
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Solution:

For any f(x), g(x) ∈ C(R) and any c ∈ R, we have

T
(
cf(x) + g(x)

)
=
∫ b

a

(
cf(x) + g(x)

)
dx = c

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

= cT
(
f(x)

)
+ T

(
g(x)

)
.

Therefore, T is linear.

Exercise 2.1.5

Let T : R2 → R2 be the linear transformation defined by T(x, y) = (2x + y, x − y). Find

N (T),R(T), nullity(T) and rank(T).

Solution:

N (T) = { (x, y) ∈ R2 : T(x, y) = (2x+ y, x− y) = (0, 0) }. Thus, 2x + y = 0 and x− y = 0

which implies that x = y = 0. Thus, N (T) = {(0, 0)}. Therefore, nullity(T) = 0 and hence

rank(T) = 2 = dim(R2). Therefore, R(T) = R2, and we are done.

Or, we can compute the basis of R(T) as follows

R(T) =
{

T(x, y) = (2x+ y, x− y) ∈ R2
}

= {x(2, 1) + y(1,−1) }.

Therefore, { (2, 1), (1,−1) } is a basis for R(T) and rank(T) = 2.
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Section 2.2: The Matrix Representation of Linear Transformation

In this section, we consider the representation of a linear transformation by a matrix. That is, we

develope a one-to-one correspondence between matrices and linear transformations that allows us to

utilize properties of one to study properties of the other.

Definition 2.2.1

Let V be a finite-dimensional vector space. An ordered basis for V is a finite sequence of

linearly independent vectors in V that generates V.

Remark 2.2.1

Note that β1 = {E1, E2, E3 } can be considered as ordered basis for R3, while β2 =

{E2, E1, E3 } is also an ordered basis for R3, but β1 6= β2 as ordered basis.

In particular, {E1, · · · , En } is the standard ordered basis for Rn. Also, { 1, x, x2, · · · , xn }

is the standard ordered basis for Pn(R).

Definition 2.2.2

Let β = {x1, · · · , xn } be an ordered basis for a finite-dimensional vector space V. For x ∈ V,

let c1, · · · , cn ∈ F be the unique scalars such that x = c1x1 + c2x2 + · · ·+ cnxn. We define the

coordinate vector of x relative to β, denoted [x]β, by

[x]β =


c1
...

cn

 .

Example 2.2.1

Consider the vector space P3(R) and the standard ordered basis β = { 1, x, x2, x3 }. Find the

coordinate vector of f(x) = 3 + 7x− 9x2 relative to β.

Solution:

Clearly f(x) = 3 + 7x− 9x2 = 3 · 1 + 7 · x+ (−9) · x2 + 0 · x3, and hence

[f(x)]β = (3, 7,−9, 0) = [3 7 − 9 0]t.
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Definition 2.2.3

Let V and W be two finite-dimensional vector spaces with ordered bases β = {x1, x2, · · · , xn }

and γ = { y1, y2, · · · , ym }, respectively, and let T : V → W be a linear transformation. For

each j, 1 ≤ j ≤ n, we have T(xj) ∈ W and there exist unique scalars cij ∈ F, 1 ≤ i ≤ m,

such that

T(xj) =
m∑
i=1

cij yi.

Then the m× n matrix A = (cij) is called the matrix representation of T in the ordered

bases β and γ and is written A = [T]γβ. If V = W and β = γ, then we write simply A = [T]β.

Note that the jth column of A = [T]γβ then is simply [T(xj)]γ. That is,

A =
[
[T(x1)]γ [T(x2)]γ · · · [T(xn)]γ

]
.

Remark 2.2.2

Following Definition 2.2.3, the following statements hold:

1. If U : V→W is a linear transformation such that [U]γβ = [T]γβ, then U = T.

2. If x ∈ V, then [T(x)]γ = A [x]β, where [x]β and [T(x)]γ are the coordinate vectors of x

and T(x), respectively, with respect to the respective bases β and γ.

3. If x ∈ V, then T (x) =
m∑
i=1

(
[T(x)]γ

)
i
yi =

m∑
i=1

ci yi.

Remark 2.2.3

? Finding [T]γβ:

Let T : V → W be linear transformation from n-dimensional vector space V into m-

dimensional vector space W, and let β = {x1, · · · , xn } and γ = { y1, · · · , ym } be bases

for V and W, respectively. Then we compute the matrix representation of T as follows:

1. Compute T(xj) for j = 1, 2, · · · , n.

2. Find the coordinate vector [T(xj)]γ for T(xj) with respect to γ. That is, express T(xj)

as a linear combination of vectors in γ.

3. Form the matrix representation A of T with respect to β and γ by choosing [T(xj)]γ as

the jth column of A.
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Example 2.2.2

Let T : R3 → R2 be a linear defined by T(x, y, z) = (x+y, y−z). Find a matrix representation

A for T. Use A to evaluate T(u), where u = (1, 2, 3).

Solution:

We use the method described in Remark 2.2.3 and consider β = { (1, 0, 0), (0, 1, 0), (0, 0, 1) }

and γ = { (1, 0), (0, 1) } as standard ordered bases for R3 and R2, respectively. Then

T(1, 0, 0) = (1, 0) = 1 · (1, 0) + 0 · (0, 1) ⇒ [T(1, 0, 0)]γ = (1, 0)

T(0, 1, 0) = (1, 1) = 1 · (1, 0) + 1 · (0, 1) ⇒ [T(0, 1, 0)]γ = (1, 1)

T(0, 0, 1) = (0,−1) = 0 · (1, 0) + (−1) · (0, 1) ⇒ [T(0, 0, 1)]γ = (0,−1).

Therefore, A = [T]γβ =
1 1 0

0 1 −1

.

Note that (1, 2, 3) = (1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1), and that T(Ei) = columni(A), for i =

1, 2, 3. Hence, we can compute T(1, 2, 3) as follows:

T(1, 2, 3) = T(E1) + 2T(E2) + 3T(E3) = (3,−1).

On the other hand, we simply can use Remark 2.2.2 as follows:

[T(1, 2, 3)]γ = A


1

2

3

 =
1 1 0

0 1 −1




1

2

3

 =

 3

−1

 .

Therefore, T(1, 2, 3) = (3,−1).

Example 2.2.3

Let T : P1(R) → P2(R) be a linear defined by T (f(x)) = x f(x). 1 : Find the matrix

representation A for T. 2 : If f(x) = 3x − 2 ∈ P1(R), compute [T (f(x))]γ, where γ is the

standard ordered basis in P2(R). 3 : Evaluate T(f(x)) using A.

Solution:
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1 : We use the method described in Remark 2.2.3 and consider β = { 1, x } and γ = { 1, x, x2 }

as standard ordered bases for P1(R) and P2(R), respectively. Then

T (f(x) = 1) = x · 1 = x = 0 · 1 + 1 · x+ 0 · x2 ⇒ [T(1)]γ = (0, 1, 0)

T (f(x) = x) = x · x = x2 = 0 · 1 + 0 · x+ 1 · x2 ⇒ [T(x)]γ = (0, 0, 1).

Therefore, A = [T]γβ =


0 0
1 0
0 1

.

2 : We can simply compute [T (f(x))]γ directly:

T (f(x)) = xf(x) = x(3x−2) = 3x2−2x = 0 ·1+(−2) ·x+3 ·x2 ⇒ [T ((f(x))]γ = (0,−2, 3).

Or, we can use Remark 2.2.2 part(2) using A. We first write f(x) as a linear combination of

β:

f(x) = −2 · 1 + 3 · x ⇒ [f(x)]β = (−2, 3).

Then using Remark 2.2.2 part(2), we have

[T (f(x))]γ = A [f(x)]β =


0 0
1 0
0 1


−2

3

 =


0
−2
3

 .
Hence [T (f(x))]γ = (0,−2, 3).

3 : Use the result in part 2 , to get T (f(x)) = −2x+ 3x2.

Definition 2.2.4

Let T,U : V → W be arbitrary functions where V and W are vector spaces over F, and let

a ∈ F. We define the usual addition of functions T + U : V→W by

(T + U)(x) = T(x) + U(x) for all x ∈ V,

and aT : V→W by

(aT)(x) = aT(x) for all x ∈ V.
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Theorem 2.2.1

Let V and W be two vector spaces over F, and let T,U : V→W be linear transformations.

Then

1. For all a ∈ F, (aT + U) is linear transformation.

2. The collection of all linear transformations from V to W is a vector space over F.

Proof:

(1) Let x, y ∈ V and c ∈ F. Then

(aT + U)(cx+ y) = aT(cx+ y) + U(cx+ y) = a [T(cx+ y)] + cU(x) + U(y)

= a [cT(x) + T(y)] + cU(x) + U(y)

= acT(x) + aT(y) + cU(x) + U(y)

= c (aT(x) + U(x)) + aT(y) + U(y)

= c(aT + U)(x) + (aT + U)(y).

Thus, aT + U is linear transformation.

(2): Note that the zero transformation T0 is the zero vector. The other conditions of a vector

space can be easily proved.

Definition 2.2.5

Let V and W be two vector spaces over F. We denote the vector space of all linear transfor-

mation from V into W by L (V,W). If V = W, we simply write L (V).

Theorem 2.2.2

Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively,

and let T,U : V→W be linear transformations. Then

1. [T + U]γβ = [T]γβ + [U]γβ, and

2. [aT]γβ = a [T]γβ for all scalars a.
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Example 2.2.4

Define T : M2×2(R)→ P2(R) by T

a b

c d

 = (a+ b) + 2d x+ b x2.

Let β =


1 0

0 0

 ,
0 1

0 0

 ,
0 0

1 0

 ,
0 0

0 1

 and γ = { 1, x, x2 } be ordered bases

for M2×2(R) and P2(R), respectively. Find [T]γβ. Use [T]γβ to evaluate T(D), where

D =
 1 3
−1 2

.

Solution:

We use the method described in Remark 2.2.3. That is,

T

1 0
0 0

 = 1 = 1 · 1 + 0 · x+ 0 · x2 ⇒ [T]γ = (1, 0, 0),

T

0 1
0 0

 = 1 + x2 = 1 · 1 + 0 · x+ 1 · x2 ⇒ [T]γ = (1, 0, 1),

T

0 0
1 0

 = 0 = 0 · 1 + 0 · x+ 0 · x2 ⇒ [T]γ = (0, 0, 0),

T

0 0
0 1

 = 2x = 0 · 1 + 2 · x+ 0 · x2 ⇒ [T]γ = (0, 2, 0).

Thus,

A = [T]γβ =


1 1 0 0
0 0 0 2
0 1 0 0

 .
Note that [D]β = (1, 3,−1, 2), and hence [T(D)]γ = A [D]β = (4, 4, 3). Hence, T(D) =

4 + 4x+ 3x2.

Example 2.2.5

Let β = {x4, x3, x2, x, 1 } be an ordered basis for P4(R) and let γ be the standard ordered

basis for R3. Define T : P4(R) → R3 by T (f(x)) = (f(1)− f(0), f ′(0), f ′′(1)), and let

U : P4(R)→ R3 be a linear transformation having the matrix representation

[U]γβ =


1 0 1 0 1
0 1 −1 1 2
1 −1 1 1 1

 .
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1. Find U(x4 − x2 + 1).

2. Find the matrix representation of T + U; that is, [T + U]γβ.

3. Find the rank and the nullity of U. Exercise!!

Solution:

(1): Let f(x) = x4 − x2 + 1. We compute
[
U
(
f(x)

)]
γ

= [U]γβ [f(x)]β using Remark 2.2.2:

f(x) = x4 − x2 + 1 = 1 · x4 + 0 · x3 + (−1) · x2 + 0 · x+ 1 · 1 ⇒ [f(x)]β = (1, 0,−1, 0, 1).

Thus

[
U
(
f(x)

)]
γ

= [U]γβ [f(x)]β =


1 0 1 0 1
0 1 −1 1 2
1 −1 1 1 1




1
0
−1
0
1

 =
[
1 3 1

]
∈ R3.

We note that, this can be computed directly as follows:
[
U
(
x4 − x2 + 1

)]
γ

=
[
U
(
x4
)
−U

(
x2
)

+ U
(
1
)]
γ

=
[
U
(
x4
)]
γ
−
[
U
(
x2
)]
γ

+
[
U
(
1
)]
γ

= col1([U]γβ)− col3([U]γβ) + col5([U]γβ) = (1, 3, 1).

Therefore, U
(
x4 − x2 + 1

)
= (1, 3, 1).

(2): Note that [T + U]γβ = [T]γβ + [U]γβ. Thus,

T
(
x4
)

= (1, 0, 12) = 1 · (1, 0, 0) + 0 · (0, 1, 0) + 12 · (0, 0, 1) ⇒
[
T(x4)

]
γ

= (1, 0, 12)

T
(
x3
)

= (1, 0, 6) = 1 · (1, 0, 0) + 0 · (0, 1, 0) + 6 · (0, 0, 1) ⇒
[
T(x3)

]
γ

= (1, 0, 6)

T
(
x2
)

= (1, 0, 2) = 1 · (1, 0, 0) + 0 · (0, 1, 0) + 2 · (0, 0, 1) ⇒
[
T(x2)

]
γ

= (1, 0, 2)

T (x) = (1, 1, 0) = 1 · (1, 0, 0) + 1 · (0, 1, 0) + 0 · (0, 0, 1) ⇒ [T(x)]γ = (1, 1, 0)

T (1) = (0, 0, 0) = 0 · (1, 0, 0) + 0 · (0, 1, 0) + 0 · (0, 0, 1) ⇒ [T(1)]γ = (0, 0, 0)

Hence, [T]γβ =


1 1 1 1 0
0 0 0 1 0
12 6 2 0 0

 and therefore

[T + U]γβ = [T]γβ + [U]γβ =


2 1 2 1 1
0 1 −1 2 2
13 5 3 1 1

 .
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(3): R(U) = span {U(x4),U(x3),U(x2),U(x),U(1) }, and hence rank(U) = rank
(

[U]γβ
)

and nullity(U) = nullity
(

[U]γβ
)


1 0 1 0 1
0 1 −1 1 2
1 −1 1 1 1

 r.r.e.f.−−−→


1 0 0 2 3
0 1 0 −1 0
0 0 1 −2 −2


That is rank(U) = 3 and hence nullity(U) = 2.

Also note that { (1, 0, 1), (0, 1,−1), (1,−1, 1) } is a basis for R(U). Also, U is not 1-1 since

its nullity 6= 0.

Example 2.2.6

Let T : P2(R)→M2×2(R), defined by T (f(x)) =
f ′(0) 2f(1)

0 f ′′(3)

.

1. Compute [T]γβ where β and γ are the standard ordered bases for P2(R) and M2×2(R),

respectively. Use [T]γβ to compute T(g(x)), where g(x) = x2 + 2x.

2. Is T 1-1? Explain. Exercise!!

3. Is T onto? Explain. Exercise!!

Solution:

(1): Let β = { 1, x, x2 } and γ =


1 0

0 0

 ,
0 1

0 0

 ,
0 0

1 0

 ,
0 0

0 1

. Then

T(1) =
0 2

0 0

 = 0 ·
1 0

0 0

+ 2 ·
0 1

0 0

+ 0 ·
0 0

1 0

+ 0 ·
0 0

0 1


T(x) =

1 2
0 0

 = 1 ·
1 0

0 0

+ 2 ·
0 1

0 0

+ 0 ·
0 0

1 0

+ 0 ·
0 0

0 1


T(x2) =

0 2
0 2

 = 0 ·
1 0

0 0

+ 2 ·
0 1

0 0

+ 0 ·
0 0

1 0

+ 2 ·
0 0

0 1

 .
Thus

A = [T]γβ =


0 1 0
2 2 2
0 0 0
0 0 2

 .
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Note that [g(x)]β = (0, 2, 1), and hence [T (g(x))]γβ = A [g(x)]β = (2, 6, 0, 2). Therefore,

T(g(x)) =
2 6

0 2

 .
(2): Note that rank(T) = rank([T]γβ). Thus

0 1 0
2 2 2
0 0 0
0 0 2


r.r.e.f.−−−→


1 0 0
0 1 0
0 0 1
0 0 0


Therefore, rank(T) = 3 and hence nullity(T) = 0. Thus, T is 1-1.

(3): T is not onto since rank(T) = 3 < rank(M2×2(R)) = 4.

Example 2.2.7

Let T : P2(R)→ R3 be a linear transformation satisfying:

T(1) = (1, 1, 1), T(1 + x) = (1, 2, 1), and T(1 + x+ x2) = (1, 0, 1).

1. Find a matrix representation of T relative to the standard ordered bases for P2(R) and

R3. Evaluate T (g(x)), where g(x) = x2 − 3x+ 1.

2. Find bases for R(T) and N (T). Exercise!!

Solution:

(1): Consider β = { 1, x, x2 } and γ = { (1, 0, 0), (0, 1, 0), (0, 0, 1) }. Then

T(1) = (1, 1, 1) = 1 · (1, 0, 0) + 1 · (0, 1, 0) + 1 · (0, 0, 1) ⇒ [T(1)]γ = (1, 1, 1)

T(x) = T(1 + x)−T(1) = (0, 1, 0) ⇒ [T(x)]γ = (0, 1, 0)

T(x2) = T(1 + x+ x2)−T(1 + x) = (0,−2, 0) ⇒
[
T(x2)

]
γ

= (0,−2, 0).

Thus

A = [T]γβ =


1 0 0
1 1 −2
1 0 0

 .
Note that, [g(x)]β = (1,−3, 1) and hence [T (g(x))]γ = A [g(x)]β = (1,−4, 1). Therefore,

T (g(x)) = (1,−4, 1).
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(2): Note that

R(T) = span
{

T(1),T(x),T(x2)
}

= span { (1, 1, 1), (0, 1, 0), (0,−2, 0) } = span { (1, 1, 1), (0, 1, 0) }.

Therefore, { (1, 1, 1), (0, 1, 0) } is a basis for R(T).

N (T) =
{
f(x) = a+ bx+ cx2 ∈ P2(R) : T(a+ bx+ cx2) = (0, 0, 0)

}
=
{
a+ bx+ cx2 : aT(1) + bT(x) + cT(x2) = (0, 0, 0)

}
=
{
a+ bx+ cx2 : a(1, 1, 1) + b(0, 1, 0) + c(0,−2, 0) = (0, 0, 0)

}
=
{
a+ bx+ cx2 : (a, a+ b− 2c, a) = (0, 0, 0)

}
=
{
a+ bx+ cx2 : a = 0 and b = 2c

}
=
{

2cx+ cx2 : c ∈ R
}

= span
{

2x+ x2
}
.

Thus, { 2x+ x2 } is a basis for N (T).

Note that we could use Remark 2.2.3 to find a basis for N (T) using the following technique:

[
T(a+ bx+ cx2)

]
β

= A
[
T(a+ bx+ cx2)

]
β

=


1 0 0
1 1 −2
1 0 0



a

b

c

 =


a

a+ b− 2c
a

 .
Therefore, 

a

a+ b− 2c
a

 =


0
0
0


implies that a = 0 and b = 2c. Hence, f(x) = 0 + 2cx+ cx2 and thus { 2x+ x2 } is a basis for

N (T).
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Exercise 2.2.1

Solve the following exercises from the book at pages 84 - 86:

• 2 : a, b, c, and d.

• 3, 4, 5.

• 8.

Exercise 2.2.2

Let T : R2 → R3 be a linear defined by T(x, y) = (2x − 3y,−x, x + 4y). Find a matrix

representation A for T. Use A to evaluate T(u), where u = (2, 4).

Solution:

We use the method described in Remark 2.2.3 and consider β = { (1, 0), (0, 1) } and γ =

{ (1, 0, 0), (0, 1, 0), (0, 0, 1) } as standard ordered bases for R2 and R3, respectively. Then

T(1, 0) = (2,−1, 1) = 2 · (1, 0, 0) + (−1) · (0, 1, 0) + 1 · (0, 0, 1) ⇒ [T(1, 0)]γ = (2,−1, 1)

T(0, 1) = (−3, 0, 4) = −3 · (1, 0, 0) + 0 · (0, 1, 0) + 4 · (0, 0, 1) ⇒ [T(0, 1)]γ = (−3, 0, 4).

Therefore, A = [T]γβ =


2 −3
−1 0
1 4

.

Simply, [T(u)]γ = A [u]β = (−8,−2, 18). Hence, T(u) = (−8,−2, 18).

Exercise 2.2.3

Let T : P3(R) → P2(R) be the linear defined by T (f(x)) = f ′(x). Let β and γ be the

standard ordered bases for P3(R) and P2(R), respectively. Find the matrix representation A

for T with respect to β and γ. Use A to evaluate T(f(x)), where f(x) = 3x2 + 1.

Solution:
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Let β = { 1, x, x2, x3 } and γ = { 1, x, x2 }. Thus

T(1) = 0 = 0 · 1 + 0 · x+ 0 · x2 ⇒ [T(1)]γ = (0, 0, 0)

T(x) = 1 = 1 · 1 + 0 · x+ 0 · x2 ⇒ [T(x)]γ = (1, 0, 0)

T(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2 ⇒
[
T(x2)

]
γ

= (0, 2, 0)

T(x3) = 3x2 = 0 · 1 + 0 · x+ 3 · x2 ⇒
[
T(x3)

]
γ

= (0, 0, 3).

Therefore, A = [T]γβ =


0 1 0 0
0 0 2 0
0 0 0 3

.

Note that [f(x)]β = (1, 0, 3, 0) and hence [T(f(x))]γ = A [f(x)]β = (0, 6, 0). Therefore,

T(f(x)) = 6x.

Exercise 2.2.4

Let A =
1 −1 2

4 1 3

. Assume that T : P2(R) → P1(R) is the linear tranformation defined

by A using the standard ordered bases β and γ for P2(R) and P1(R), respectively. Evaluate

T (g(x)), where g(x) = 2x2 − 3x+ 1.

Solution:

We solve in two methods: 1. Note that [T (2x2 − 3x+ 1)]γ = 2 [T(x2)]γ−3 [T(x)]γ+[T(1)]γ =

2
2

3

− 3
−1

1

+
1

4

 =
8

7

. Hence, T (g(x)) = 8 + 7x.

2. Another way: Note that [g(x)]β = (1,−3, 2) and hence [T (g(x))]γ = A [g(x)]β = (8, 7).

Thus, T (g(x)) = 8 + 7x.
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Section 2.5: The Change of Coordinate Matrix

Definition 2.5.1

Let β and γ be ordered bases for a finite-dimensional vector space V, and let Q = [IV]βγ ,

where IV : V → V is the identity linear transformation. Then Q is called the change of

coordinate matrix (it changes γ-coordinate into β-coordinate). Moreover, Q is invertible

and Q−1 changes β-coordinate into γ-coordinate.

Theorem 2.5.1

Let T be a linear operator on a finite-dimensional vector space V. Let β and γ be two ordered

bases for V, and let Q be the change of coordinate matrix that changes γ-coordinates into

β-coordinates. Then

1. For any x ∈ V, [x]β = Q [x]γ, and

2. [T]γ = Q−1 [T]β Q.

Example 2.5.1

Let β = { (1, 0), (0, 1) } and γ = { (1,−1), (2, 1) } be two ordered bases for R2, and let

T : R2 → R2 be defined by T(a, b) = (a+ b, a− 2b). Find the change of coordinate matrix Q,

that changes γ-coordinates into β-coordinates, and use it to find [T]γ. Find [(5, 1)]β using Q.

Solution:

Note that

IR2(1,−1) = (1,−1) = 1 · (1, 0) + (−1) · (0, 1) & IR2(2, 1) = (2, 1) = 2 · (1, 0) + 1 · (0, 1).

Thus, the matrix that changes γ-coordinates into β-coordinates is

Q =
 1 2
−1 1

 ⇒ Q−1 = 1
3

1 −2
1 1

 .
To find [T]γ, we use [T]γ = Q−1 [T]β Q and

T(1, 0) = (1, 1) = 1 · (1, 0) + 1 · (0, 1)

T(0, 1) = (1,−2) = 1 · (1, 0) + (−2) · (0, 1)

 ⇒ [T]β =
1 1

1 −2

 .
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Thus, [T]γ = Q−1 [T]β Q =
−2 1

1 1

.

? Confirmation:

T(1,−1) = (0, 3) = −2 · (1,−1) + 1 · (2, 1), and

T(2, 1) = (3, 0) = 1 · (1,−1) + 1 · (2, 1).

Finally, note that [(5, 1)]β = Q [(5, 1)]γ, where [(5, 1)]γ = (1, 2) since (5, 1) = 1 · (1,−1) + 2 ·

(2, 1). Therefore, [(5, 1)]β =
 1 2
−1 1

1
2

 =
5

1

 which is true since (5, 1) = 5 · (1, 0) + 1 ·

(0, 1).

Example 2.5.2

Let β = { (1, 1), (1,−1) } and γ = { (2, 4), (3, 1) } be bases for R2. a What is the matrix Q

that changes γ-coordinates into β-coordinates, and use it to find [(1, 7)]β and [(1, 7)]γ. b If

T : R2 → R2 is the linear operator on R2 defined by T(a, b) = (3a− b, a+ 3b), find [T]γ.

Solution:

a : We first consider:

IR2(2, 4) = (2, 4) = c1(1, 1) + c2(1,−1) = 3(1, 1) + (−1)(1,−1), and

IR2(3, 1) = (3, 1) = c1(1, 1) + c2(1,−1) = 2(1, 1) + 1(1,−1).

Thus, the matrix that changes γ-coordinates into β-coordinates is

Q =
 3 2
−1 1

 ⇒ Q−1 = 1
5

1 −2
1 3

 .
To compute [(1, 7)]β, consider (1, 7) = 2(2, 4) + (−1)(3, 1); hence [(1, 7)]γ =

 2
−1

. Therefore,

[(1, 7)]β = Q [(1, 7)]γ =
 3 2
−1 1

 2
−1

 =
 4
−3

 ,
which is true since (1, 7) = 4(1, 1) + (−3)(1,−1).

To compute [(1, 7)]γ, consider (1, 7) = 4(1, 1)+(−3)(1,−1); hence [(1, 7)]β =
 4
−3

. Therefore,

[(1, 7)]γ = Q−1 [(1, 7)]β = 1
5

1 −2
1 3

 4
−3

 =
 2
−1

 ,
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which is true since (1, 7) = 2(2, 4) + (−1)(3, 1).

b : Note that

T(1, 1) = (2, 4) = 3 · (1, 1) + (−1) · (1,−1),

T(1,−1) = (4,−2) = 1 · (1, 1) + 3 · (1,−1).

Thus [T]β =
 3 1
−1 3

 and hence

[T]γ = Q−1 [T]β Q = · · · =
 4 1
−2 2

 .
Which can be seen if we consider

T(2, 4) = (2, 14) = 4 · (2, 4) + -2 · (3, 1) ⇒ [T(2, 4)]γ = (4,−2). ”1st column of [T]γ ”

T(3, 1) = (8, 6) = 1 · (2, 4) + 2 · (3, 1) ⇒ [T(3, 1)]γ = (1, 2). ”2nd column of [T]γ ”

Example 2.5.3

Let T be the linear operator on R3 defined by

T(a, b, c) = (2a+ b, a+ b+ 3c,−b),

and let β = { (1, 0, 0), (0, 1, 0), (0, 0, 1) } and γ = { (−1, 0, 0), (2, 1, 0), (1, 1, 1) } be bases for

R3. Find [T]β, [T]γ, and the matrix Q that changes the γ-coordinates into β-coordinates.

Solution:

Clearly,

IR3(−1, 0, 0) = (−1, 0, 0) = −1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)

IR3(2, 1, 0) = (2, 1, 0) = 2(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

IR3(1, 1, 1) = (1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1).

Hence

Q =


−1 2 1
0 1 1
0 0 1

 ⇒ Q−1 =


−1 2 −1
0 1 −1
0 0 1

 .
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Computing [T]β:

T(1, 0, 0) = (2, 1, 0) = 2(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

T(0, 1, 0) = (1, 1,−1) = 1(1, 0, 0) + 1(0, 1, 0) + (−1)(0, 0, 1)

T(0, 0, 1) = (0, 3, 0) = 0(1, 0, 0) + 3(0, 1, 0) + 0(0, 0, 1).

Thus [T]β =


2 1 0
1 1 3
0 −1 0

, and hence [T]γ = Q−1 [T]β Q =


0 2 8
−1 4 6
0 −1 −1

.

Confirming:

T(−1, 0, 0) = (−2,−1, 0) = 0(−1, 0, 0) + (−1)(2, 1, 0) + 0(1, 1, 1)

T(2, 1, 0) = (5, 3,−1) = 2(−1, 0, 0) + 4(2, 1, 0) + (−1)(1, 1, 1)

T(1, 1, 1) = (3, 5,−1) = 8(−1, 0, 0) + 6(2, 1, 0) + (−1)(1, 1, 1).
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Exercise 2.5.1

Solve the following exercises from the book at pages 116 - 117:

• 2, 3, 4, 5, 6.
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5
Chapter

Diagonalization

Section 5.1: Eigenvalues and Eigenvectors

Definition 5.1.1

Let A ∈ Mm×n(F). We define the mapping LA : Fn → Fm by LA(x) = Ax for every column

vector x ∈ Fn. We call LA, the left multiplication transformation.

Example 5.1.1

Let A =
2 −1 3

0 1 2

 and LA : R3 → R2. Find LA(x) where x =


1
−1
2

.

Solution:

LA(x) = Ax =
2 −1 3

0 1 2




1
−1
2

 =
9

3

 ∈ R2.

Remark 5.1.1

Let A,B ∈Mm×n(F) and let c ∈ F. Then

1. LA is a linear transformation.

2. [LA]γβ = A, where β and γ are the standard ordered bases for Fn and Fm, respectively.

3. LA = LB if and only if A = B.

4. LA+B = LA + LB and LcA = cLA.

Proof of (2): Let β = (E1, · · · , En ) and γ = (E1, · · · , Em ) be the standard ordered bases for Rn

and Rm, respectively. For any column vector x =


x1...
xn

 ∈ Rn, we have

x = x1E1 + · · ·+ xnEn,

67
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and thus [x]β =


x1...
xn

 = x. Similarly, we have [y]γ = y for all y ∈ Rm.

Now let A ∈ Mm×n(R), and let x ∈ Rn. By definition, LA(x) = Ax. Also by Remark 2.2.2, we

have [LA]γ = [LA]γβ [x]β. Note that since [LA]γ ∈ Rm and [x]β ∈ Rn, we have

LA(x) = [LA]γβ x.

Thus, [LA]γβ x = LA(x) = Ax for all x ∈ Rn. Applying this to E1 =


1
0...
0

, we see that the first column

of [LA]γβ and A are the same. Similarly, we apply it for all Ei for i = 1, · · · , n, we get [LA]γβ = A as

desired.

Definition 5.1.2

A linear operator T on a finite-dimensional vector space V is called diagonalizable if there

is an ordered basis β for V such that [T]β is a diagonal matrix. A square matrix A is called

diagonalizable if LA is diagonalizable.

Definition 5.1.3

Let T be a linear operator on a vector space V. A nonzero vector x ∈ V is called eigenvector

(or e-vector for short) of T if there exists a scalar λ such that T(x) = λ x. The scalar λ is

then called eigenvalue (or e-value for short) corresponding to x.

Remark 5.1.2

Let A ∈Mn×n(F).

• A nonzero vector x ∈ Fn is called e-vector of A if and only if x is an e-vector of LA.

• λ is an e-value of A if and only if λ is an e-value of LA.

Theorem 5.1.1

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there

exists an ordered basis β for V consisting of e-vectors of T. Furthermore, if T is diagonalizable,

β = {x1, x2, · · · , xn } is an ordered basis of e-vectors of T, and D = [T]β = (dij), then D is a
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diagonal matrix and djj is the e-values corresponding to xj for 1 ≤ j ≤ n.

Note that to diagonalize a matrix or a linear operator is to find a basis of e-vectors and the

corresponding e-values.

Example 5.1.2

Consider A =
 1 1
−2 4

, x =
1

1

, y =
1

2

. Then

LA(x) = Ax =
2

2

 = 2
1

1

 = 2x and LA(y) = Ay =
3

6

 = 3
1

2

 = 3y.

That is 2 and 3 are e-values of LA corresponding to e-vectors x and y, respectively.

Note that β = {x, y } is an ordered basis for R2 consisting e-vectors of both A and LA, and

therefore A and LA are both diagonalizable. Moreover,

[LA]β =
2 0

0 3

 ,
where [LA(x)]β = (2, 0), and [LA(y)]β = (0, 3).

Theorem 5.1.2

Let A ∈Mn×n(F). Then a scalar λ is an e-value of A if and only if |A− λIn | = 0.

Proof:

A scalar λ is an e-value of A iff there exists a nonzero vector x ∈ Fn such that

Ax = λx⇔ Ax− λx = 0⇔ (A− λIn)x = 0⇔ A− λIn is singular⇔ |A− λIn | = 0.

Definition 5.1.4

• Let A ∈Mn×n(F). The polynomial f(t) = |A− tIn | is called the characteristic polyno-

mial of A.

• Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We
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define the characteristic polynomial f(t) of T to be

f(t) = |A− tIn | , where A = [T]β .

Example 5.1.3

Find the e-values of A =
1 1

4 1

.

Solution

We use the characteristic polynomial f(λ) = |A− λI2 | = 0.∣∣∣∣∣∣1− λ 1
4 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0.

Therefore, λ = −1 and 3 are the e-values of A.

Example 5.1.4

Let T be a linear operator on P2(R) defined by

T (f(x)) = f(x) + (x+ 1)f ′(x).

Find the e-values of T.

Solution:

Let A = [T]β where β = { 1, x, x2 } is the standard ordered basis for P2(R). Then

T(1) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x) = x+ (x+ 1) = 2x+ 1 = 1 · 1 + 2 · x+ 0 · x2

T(x2) = x2 + (x+ 1)2x = 3x2 + 2x = 0 · 1 + 2 · x+ 3 · x2.

Thus, A =


1 1 0
0 2 2
0 0 3

, and hence

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
1− λ 1 0

0 2− λ 2
0 0 3− λ

∣∣∣∣∣∣∣∣∣ = (1− λ)(2− λ)(3− λ) = 0.

Therefore, λ is an e-value of A iff λ = 1, 2, or 3.
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Note that if A is an n× n matrix, then f(t) = |A− tIn | = (−1)ntn + an−1t
n−1 + · · ·+ a1t + a0,

is of degree n.

Theorem 5.1.3

Let A ∈Mn×n(F) with characteristic polynomial f(t). Then

1. f(t) is a polynomial of degree n with leading coefficient (−1)n.

2. A has at most n distinct e-values.

3. f(0) = a0 = |A |.

The following theorem describes a procedure for computing the e-vectors corresponding to a given

e-value.

Theorem 5.1.4

Let T be a linear operator on a vector space V, and let λ be an e-value of T. A vector x ∈ V

is an e-vector of T corresponding to λ if and only if x 6= 0 and x ∈ N (T− λI).

Example 5.1.5

Let A =
1 1

4 1

. Find all e-vectors of A.

Solution:

We start finding the e-values using f(λ) = |A− λI2 | = 0. Thus

|A− λI2 | =

∣∣∣∣∣∣1− λ 1
4 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0.

Thus λ1 = −1 and λ2 = 3.

For λ1 = −1: Let B1 = A−λ1I2 =
2 1

4 2

. Then x1 =
a
b

 ∈ R2 is an e-vector correspond-

ing to λ1 = −1 iff x1 6= 0 and x1 ∈ N (LB1). That is

LB1(x1) = B1x1 = 0 ⇒
2 1

4 2

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:2 1 0

4 2 0

 ∼
1 1

2 0
0 0 0

 ⇒ a+ 1
2b = 0 ⇒ b = −2a.
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That is, x1 ∈ N (LB1) =

 t
 1
−2

 : 0 6= t ∈ R

. Thus x1 is an e-vector of A corresponding

to λ1 = −1 iff x1 = t

 1
−2

 for some nonzero t ∈ R.

For λ2 = 3: Let B2 = A − λ2I2 =
−2 1

4 −2

. Then x2 =
a
b

 ∈ R2 is an e-vector

corresponding to λ2 = 3 iff x2 6= 0 and x2 ∈ N (LB2). That is

LB2(x2) = B2x2 = 0 ⇒
−2 1

4 −2

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:−2 1 0

4 −2 0

 ∼
1 −1

2 0
0 0 0

 ⇒ a− 1
2b = 0 ⇒ b = 2a.

That is, x2 ∈ N (LB2) =

 t
1

2

 : 0 6= t ∈ R

. Thus x2 is an e-vector of A corresponding to

λ2 = 3 iff x2 = t

1
2

 for some nonzero t ∈ R.

Remark:

Note that γ =


 1
−2

 ,
1

2

 is an ordered basis for R2 containing e-vectors of A. Thus

LA, and hence A, is diagonalizable and if Q =
 1 1
−2 2

, then Q−1AQ =
−1 0

0 3

.

Remark 5.1.3

Note that to find the e-vectors of a linear operator T on an n-dimensional vector space V:

1. Select an ordered basis for V, say β.

2. Let A = [T]β. Then x ∈ V is an e-vector of T corresponding to λ if and only if [x]β,

the coordinate vector of x relative to β, is an e-vector of A corresponding to λ.
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Example 5.1.6

Let T be the linear operator defined on P2(R) by

T (f(x)) = f(x) + (x+ 1)f ′(x).

Find the e-vectors of T and an ordered basis γ for P2(R) so that [T]γ is diagonalizable.

Solution:

Let β = { 1, x, x2 } be an ordered basis for P2(R). Then

T(1) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x) = x+ (x+ 1) = 2x+ 1 = 1 · 1 + 2 · x+ 0 · x2

T(x2) = x2 + (x+ 1)2x = 3x2 + 2x = 0 · 1 + 2 · x+ 3 · x2.

Thus, A = [T]β =


1 1 0
0 2 2
0 0 3

, and hence

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
1− λ 1 0

0 2− λ 2
0 0 3− λ

∣∣∣∣∣∣∣∣∣ = (1− λ)(2− λ)(3− λ) = 0.

Therefore, λ1 = 1, λ2 = 2 and λ3 = 3.

For λ1 = 1: Let B1 = A− λ1I3 =


0 1 0
0 1 2
0 0 2

. Then x1 =


a

b

c

 is an e-vector corresponding

to λ1 = 1 iff x1 6= 0 and x1 ∈ N (LB1). That is

LB1(x1) = B1x1 = 0 ⇒


0 1 0
0 1 2
0 0 2



a

b

c

 =


0
0
0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:

0 1 0 0
0 1 2 0
0 0 2 0

 ∼


0 1 0 0
0 0 1 0
0 0 0 0

 ⇒ b = c = 0 and a = t ∈ R\{0}.

That is, x1 ∈ N (LB1) =

 t


1
0
0

 : 0 6= t ∈ R

. Thus x1 is an e-vector of A corresponding to

λ1 = 1 iff x1 = t


1
0
0

 for some nonzero t ∈ R. Consequently, (using the ordered basis β) the
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e-vectors of T corresponding to λ1 = 1 are of the form

{
t(1 · 1 + 0 · x+ 0 · x2) : t ∈ R\{0}

}
= { t : t ∈ R\{0} }.

For λ2 = 2: Let B2 = A−λ2I3 =


−1 1 0
0 0 2
0 0 1

. Then x2 =


a

b

c

 is an e-vector corresponding

to λ2 = 2 iff x2 6= 0 and x2 ∈ N (LB2). That is

LB2(x2) = B2x2 = 0 ⇒


−1 1 0
0 0 2
0 0 1



a

b

c

 =


0
0
0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:

−1 1 0 0
0 0 2 0
0 0 1 0

 ∼


1 −1 0 0
0 0 1 0
0 0 0 0

 ⇒ a− b = 0 and c = 0⇒ a = b = t ∈ R\{0}.

That is, x2 ∈ N (LB2) =

 t


1
1
0

 : 0 6= t ∈ R

. Thus x2 is an e-vector of A corresponding to

λ2 = 2 iff x2 = t


1
1
0

 for some nonzero t ∈ R. Consequently, (using the ordered basis β) the

e-vectors of T corresponding to λ2 = 2 are of the form

{
t(1 · 1 + 1 · x+ 0 · x2) : t ∈ R\{0}

}
= { t(1 + x) : t ∈ R\{0} }.

For λ3 = 3: Let B3 = A−λ3I3 =


−2 1 0
0 −1 2
0 0 0

. Then x3 =


a

b

c

 is an e-vector correspond-

ing to λ3 = 3 iff x3 6= 0 and x3 ∈ N (LB3). That is

LB3(x3) = B3x3 = 0 ⇒


−2 1 0
0 −1 2
0 0 0



a

b

c

 =


0
0
0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:

−2 1 0 0
0 −1 2 0
0 0 0 0

 ∼


1 0 −1 0
0 1 −2 0
0 0 0 0

 ⇒ a = c and b = 2c⇒ c = t ∈ R\{0}.
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That is, x3 ∈ N (LB3) =

 t


1
2
1

 : 0 6= t ∈ R

. Thus x3 is an e-vector of A corresponding to

λ3 = 3 iff x3 = t


1
2
1

 for some nonzero t ∈ R. Consequently, (using the ordered basis β) the

e-vectors of T corresponding to λ3 = 3 are of the form

{
t(1 · 1 + 2 · x+ 1 · x2) : t ∈ R\{0}

}
=
{
t(1 + 2x+ x2) : t ∈ R\{0}

}
.

Therefore, setting t = 1, we get γ = { 1, 1 + x, 1 + 2x+ x2 } which is an ordered basis for

P2(R) containing e-vectors of T and hence T is diagonalizable and

[T]γ =


1 0 0
0 2 0
0 0 3

 = Q−1 AQ, where Q = [ I ]βγ =


1 1 1
0 1 2
0 0 1

 .
Note that the columns of Q are the vectors [ui]β for i = 1, 2, 3 and ui ∈ γ. That is Q =

[[u1]β [u2]β [u3]β] where ui is the ith vector of γ.

Example 5.1.7

Let T be a linear operator defined on M2×2(R) by T

a b

c d

 =
d b

c a

. Find the

e-vectors of T and an ordered basis γ for M2×2(R) such that [T]γ is a diagonal matrix.

Solution:

Let β =

E11 =
1 0

0 0

 , E12 =
0 1

0 0

 , E21 =
0 0

1 0

 , E22 =
0 0

0 1

. Then,

T
(
E11

)
= E22 = 0 · E11 + 0 · E12 + 0 · E21 + 1 · E22

T
(
E12

)
= E12 = 0 · E11 + 1 · E12 + 0 · E21 + 0 · E22

T
(
E21

)
= E21 = 0 · E11 + 0 · E12 + 1 · E21 + 0 · E22

T
(
E22

)
= E11 = 1 · E11 + 0 · E12 + 0 · E21 + 0 · E22
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Thus, A =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 and hence the e-values of A are

f(λ) = |A− λI4 | =

∣∣∣∣∣∣∣∣∣∣∣
−λ 0 0 1
0 1− λ 0 0
0 0 1− λ 0
1 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
= (1− λ)2(λ2 − 1) = 0

Thus, λ1,2,3 = 1 and λ4 = −1.

For λ = λ1,2,3 = 1: Let B = A − λI4 =


−1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

. Then x =


a

b

c

d

 is an e-vector

corresponding to λ iff x 6= 0 and x ∈ N (LB). That is

LB(x) = Bx = 0 ⇒


−1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1




a

b

c

d

 =


0
0
0
0

 .

This is a homogenous system which can be solved using r.r.e.f. as follows:
−1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 −1 0

 ∼


1 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ⇒ a− d = 0⇒ a = d = s; b = t; c = r,

where s, t, r ∈ R\{0}. That is, x are of the form


s

t

r

s

 : s, t, r ∈ R


=


s


1
0
0
1

+ t


0
1
0
0

+ r


0
0
1
0

 : s, t, r ∈ R


.

Note that s, t, and r are in R not all zeros. Consequently, (using the ordered basis β) the

e-vectors of T corresponding to λ are of the form

s

1 0
0 1

 , t
0 1

0 0

 , r
0 0

1 0

 .
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For λ = λ4 = −1: Let B = A − λI4 =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

. Then x =


a

b

c

d

 is an e-vector

corresponding to λ iff x 6= 0 and x ∈ N (LB). That is

LB(x) = Bx = 0 ⇒


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




a

b

c

d

 =


0
0
0
0

 .

This is a homogenous system which can be solved using r.r.e.f. as follows:
1 0 0 1 0
0 2 0 0 0
0 0 2 0 0
1 0 0 1 0

 ∼


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 ⇒ a+ d = 0; b = c = 0⇒ d = t; a = −t,

where t ∈ R\{0}. That is, x are of the form
t


−1
0
0
1

 : t ∈ R\{0}


.

Consequently, (using the ordered basis β) the e-vectors of T corresponding to λ are of the

form

t

−1 0
0 1

 , for some t ∈ R\{0}.

Thus, γ =


1 0

0 1

 ,
0 1

0 0

 ,
0 0

1 0

 ,
−1 0

0 1

 is an ordered basis for M2×2(R) con-

sisting of e-vectors of T. Therefore T is diagonalizable and

[T]γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = Q−1 AQ.

Where Q is the matrix whose columns are [ui]β for i = 1, 2, 3, 4 and ui ∈ γ.
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Example 5.1.8

Let T be the linear operator defined on R2 by T(a, b) = (−2a + 3b,−10a + 9b). Find the

e-values of T and an ordered basis γ for R2 such that [T]γ is a diagonal matrix.

Solution:

Let β = { (1, 0), (0, 1) }. Then

T(1, 0) = (−2,−10) = −2 · (1, 0) + (−10) · (0, 1)

T(0, 1) = (3, 9) = 3 · (1, 0) + 9 · (0, 1)

Thus A =
 −2 3
−10 9

 and the e-values of A are

f(λ) = |A− λI2 | =

∣∣∣∣∣∣−2− λ 3
−10 9− λ

∣∣∣∣∣∣ = · · · = (λ− 3)(λ− 4) = 0.

Therefore, λ1 = 3 and λ2 = 4.

For λ1 = 3: Let B1 = A − λ1I2 =
 −5 3
−10 6

. Then x1 =
a
b

 ∈ R2 is an e-vector corre-

sponding to λ1 = 3 iff x1 6= 0 and x1 ∈ N (LB1). That is

LB1(x1) = B1x1 = 0 ⇒
 −5 3
−10 6

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows: −5 3 0

−10 6 0

 ∼
1 −3

5 0
0 0 0

 ⇒ a− 3
5b = 0 ⇒ a = 3

5b.

That is, x1 ∈ N (LB1) =

 t
3

5

 : 0 6= t ∈ R

. Thus x1 is an e-vector of A corresponding to

λ1 = 3 iff x1 = t

3
5

 for some nonzero t ∈ R. Consequently, (using the ordered basis β) the

e-vectors of T corresponding to λ = 3 are of the form

t

3
5

 , for some t ∈ R\{0}.
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For λ2 = 4: Let B2 = A − λ2I2 =
 −6 3
−10 5

. Then x2 =
a
b

 ∈ R2 is an e-vector corre-

sponding to λ2 = 4 iff x2 6= 0 and x2 ∈ N (LB2). That is

LB2(x2) = B2x2 = 0 ⇒
 −6 3
−10 5

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows: −6 3 0

−10 5 0

 ∼
1 −1

2 0
0 0 0

 ⇒ a− 1
2b = 0 ⇒ a = 1

2b.

That is, x2 ∈ N (LB2) =

 t
1

2

 : 0 6= t ∈ R

. Thus x2 is an e-vector of A corresponding to

λ2 = 4 iff x2 = t

1
3

 for some nonzero t ∈ R. Consequently, (using the ordered basis β) the

e-vectors of T corresponding to λ = 4 are of the form

t

1
2

 , for some t ∈ R\{0}.

Thus, γ = { (3, 5), (1, 2) } is an ordered basis for R2 consisting of e-vectors of T. Therefore T

is diagonalizable and

[T]γ =
3 0

0 4

 = Q−1 AQ.

Where Q is the matrix whose columns are the vectors of γ. That is, Q =
3 1

5 2

.



80 Chapter 5. Diagonalization

Exercise 5.1.1

Solve the following exercises from the book at pages 256 - 260:

• 2.

• 3 : a, b, and d.

• 4, 5.

• 11 : a, and c.

• 12 : a.

• 14, 15.
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Section 5.2: Diagonalizability

In this section, we introduce a simple test to determine whether an operator or a matrix can be

diagonalized. Also, we present a method for finding an ordered basis of e-vectors.

Theorem 5.2.1

Let T be a linear operator on a finite-dimensional vector space V, and let λ1, λ2, · · · , λk be

distinct e-values of T. If x1, x2, · · · , xk are e-vectors of T such that λi correspond to xi

(1 ≤ i ≤ k), then {x1, x2, · · · , xk } is linearly independent set in V.

Theorem 5.2.2

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct e-values,

then T is diagonalizable.

Example 5.2.1

Is A =
1 1

1 1

 diagonalizable? Explain.

Solution:

We first start to find the e-values of A (and hence of LA) using its characteristic polynomial:

f(λ) = |A− λI2 | =

∣∣∣∣∣∣1− λ 1
1 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 1 = λ2 − 2λ = λ(λ− 2) = 0.

Therefore, λ1 = 0 and λ2 = 2. Since LA is a linear operator on R2 and has two distinct

e-values (0 and 2), then LA (and hence A) is diagonalizable.

Remark 5.2.1

The converse of Theorem 5.2.1 is not true in general. That is if T is diagonalizable, then T

not necessary has distinct e-values.
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Definition 5.2.1

We say that a polynomial f(t) ∈ P(F) splits over F if there are scalars c, a1, a2, · · · , an (not

necessary distinct) in F such that

f(t) = c (t− a1)(t− a2) · · · (t− an).

Example 5.2.2

Note that f(t) = t2 − 1 splits over R, but g(t) = t2 + 1 does not.

Theorem 5.2.3

The characteristic polynomial of any diagonalizable linear operator splits.

Proof:

Let T be a diagonalizable linear operator on the n-dimensional vector space V with an ordered

basis β such that [T]β = D = diag(λ1, λ2, · · · , λn) is a diagonal matrix. The characteristic

polynomial of T is

f(t) =
∣∣∣ [T]β − tIn

∣∣∣ = |D − tI | =

∣∣∣∣∣∣∣∣∣∣∣
λ1 − t 0

. . .

0 λn − t

∣∣∣∣∣∣∣∣∣∣∣
= (λ1 − t)(λ2 − t) · · · (λn − t) = (−1)n(t− λ1) · · · (t− λn).

Definition 5.2.2

Let λ be an e-value of a linear operator or a matrix with characteristic polynomial f(t). The

(algebraic) multiplicity of λ is the largest positive integer k for which (t − λ)k is a factor

of f(t). We write m(λ) to denote λ’s multiplicity.

Example 5.2.3

Consider the characteristic polynomial f(t) = (t − 2)4(t − 3)2(t − 1). Hence λ = 2, 3, 1 are

the e-values with multiplicities: m(λ = 2) = 4, m(λ = 3) = 2, and m(λ = 1) = 1.
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Definition 5.2.3

Let T be a linear operator on a vector space V, and let λ be an e-value of T. Define

Eλ = {x ∈ V : T (x) = λx } = N (T− λIV ).

The set Eλ is called the eigenspace (or e-space for short) of T corresponding to λ. We also

define the eigen space of a square matrix A to be the eigen space of LA.

Remark 5.2.2

Let T be a linear operator on a vector space V, and let λ be an e-value of T. Then

1. Eλ is a subspace of V.

2. Eλ consists of the zero vector and the e-vector of T corresponding to λ.

3. dim(Eλ) is the maximum number of linearly independent e-vectors corresponding to λ.

Theorem 5.2.4

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an e-value of

T having multiplicity m. Then 1 ≤ dim(Eλ) ≤ m.

Theorem 5.2.5: Diagonalization Test

Let T be a linear operator on an n-dimensional vector space V. Then, T is diagonalizable if

and only if both of the following conditions hold.

1. The characteristic polynomial of T splits, and

2. For each e-value λ of T, m(λ) = dim(Eλ) = n− rank(T− λIV ).

Moreover, if T is diagonalizable and βi is an ordered basis for Eλi
for i = 1, · · · , k, then

β = β1 ∪ · · · ∪ βk (in corresponding order of e-values) is an ordered basis for V consisting of

e-vectors of T.
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Example 5.2.4

Let T be a linear operator on P2(R) defined by T (f(x)) = f ′(x). Is T diagonalizable?

Explain.

Solution:

Choose the standard ordered basis β = { 1, x, x2 } for P2(R). Then,

T(1) = 0 = 0 · 1 + 0 · x+ 0 · x2

T(x) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2


⇒ A = [T]β =


0 1 0
0 0 2
0 0 0

 .

The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
−λ 1 0
0 −λ 2
0 0 −λ

∣∣∣∣∣∣∣∣∣ = −λ3 = 0.

Therefore, T has one e-value λ = 0 with multiplicity m(0) = 3. The e-space Eλ corresponding

to λ = 0 is Eλ = N (T− λI3) = N (T). That is,

Eλ =



a

b

c

 ∈ R3 :


0 1 0
0 0 2
0 0 0



a

b

c

 =


0
0
0


 =

 t


1
0
0


.

Hence Eλ is the subspace of P2(R) consisting of the constant polynomials. So, {1} is a basis

for Eλ and hence dim(Eλ) = 1 6= m(0) = 3.

Therefore, there is no ordered basis for P2(R) consisting of e-vectors of T. Therefore, T is

not diagonalizable.

Example 5.2.5

Let T be a linear operator on R3 defined by T(a, b, c) = (4a+c, 2a+3b+2c, a+4c). Determine

the e-space corresponding to each e-value of T.

Solution:
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Choose β = {E1, E2, E3 } the standard ordered basis for R3. Then,

T(E1) = (4, 2, 1) = 4 · E1 + 2 · E2 + 1 · E3

T(E2) = (0, 3, 0) = 0 · E1 + 3 · E2 + 0 · E3

T(E3) = (1, 2, 4) = 1 · E1 + 2 · E2 + 4 · E3


⇒ A = [T]β =


4 0 1
2 3 2
1 0 4

 .

The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
4− λ 0 1

2 3− λ 2
1 0 4− λ

∣∣∣∣∣∣∣∣∣ = · · · = (3− λ)(λ− 3)(λ− 5) = 0

Thus, T has e-values: λ1 = 3 with m(3) = 2 and λ2 = 5 with m(5) = 1.

For Eλ1 : The e-space Eλ1 corresponding to λ1 = 3 is Eλ1 = N (T− 3I3). Therefore

Eλ1 =

 (a, b, c) ∈ R3 :


1 0 1
2 0 2
1 0 1



a

b

c

 =


0
0
0




This is can be solved as follows:
1 0 1 0
2 0 2 0
1 0 1 0

 ∼


1 0 1 0
0 0 0 0
0 0 0 0

 ⇒ a = −c; c = r, b = t ∈ R.

Setting r, t ∈ R, we get

Eλ1 =

 r

−1
0
1

+ t


0
1
0

 : t, r ∈ R

.

Therefore, γ1 =



−1
0
1

 ,


0
1
0


 is a basis for Eλ1 . Thus, dim(Eλ1) = 2 = m(λ1).

For Eλ2 : The e-space Eλ2 corresponding to λ2 = 5 is Eλ2 = N (T− 5I3). Therefore

Eλ2 =

 (a, b, c) ∈ R3 :


−1 0 1
2 −2 2
1 0 −1



a

b

c

 =


0
0
0




This is can be solved as follows:
−1 0 1 0
2 −2 2 0
1 0 −1 0

 ∼


1 0 −1 0
0 1 −2 0
0 0 0 0

 ⇒ a = c, b = 2c; c = t ∈ R.
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Setting r, t ∈ R, we get

Eλ2 =

 t


1
2
1

 : t ∈ R

.

Therefore, γ2 =




1
2
1


 is a basis for Eλ2 . Thus, dim(Eλ2) = 1 = m(λ2).

Afterall, γ = γ1 ∪ γ2 =



−1
0
1

 ,


0
1
0

 ,


1
2
1


 is a basis for R3 consisting e-vectors of T.

Therefore, T is diagonalizable and

[T]γ =


3 0 0
0 3 0
0 0 5

 .

Example 5.2.6

Let A =


3 1 0
0 3 0
0 0 4

. Is A diagonalizable? Explain.

Solution:

The characteristic polynomial of A is

f(t) = |A− tI3 | =

∣∣∣∣∣∣∣∣∣
3− t 1 0

0 3− t 0
0 0 4− t

∣∣∣∣∣∣∣∣∣ = (3− t)2(4− t) = 0.

Thus, λ1 = 3 with m(3) = 2 and λ2 = 4 with m(4) = 1. But we note that

A− λ1I3 =


0 1 0
0 0 0
0 0 1


has rank 2 and hence dim(Eλ1) = 3− 2 = 1 which is different from the multiplicity of λ1.

Therefore, A is not diagonalizable.
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Example 5.2.7

Let T be the linear operator on P2(R) defined by

T (f(x)) = f(1) + f ′(0) · x+ (f ′(0) + f ′′(0)) · x2.

Is T diagonalizable? Explain.

Solution:

Let β = { 1, x, x2 } be the standard ordered basis for P2(R). Then

T(1) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x) = 1 + x+ (1 + 0)x2 = 1 · 1 + 1 · x+ 1 · x2

T(x2) = 1 + 2x2 = 1 · 1 + 0 · x+ 2 · x2


⇒ A = [T]β =


1 1 1
0 1 0
0 1 2

 .

The characteristic polynomial of T is

f(t) = |A− tI3 | =

∣∣∣∣∣∣∣∣∣
1− t 1 1

0 1− t 0
0 1 2− t

∣∣∣∣∣∣∣∣∣ = (1− t)2(2− t) = 0.

Thus, λ1 = 1 with m(1) = 2 and λ2 = 2 with m(2) = 1.

For Eλ1 : The e-space Eλ1 corresponding to λ1 = 1 is Eλ1 = N (T− 1I3). Therefore

Eλ1 =

 (a, b, c) ∈ R3 :


0 1 1
0 0 0
0 1 1



a

b

c

 =


0
0
0




This is can be solved as follows:
0 1 1 0
0 0 0 0
0 1 1 0

 ∼


0 1 1 0
0 0 0 0
0 0 0 0

 ⇒ b = −c.

Setting a = t and c = r both in R, we get

Eλ1 =

 t


1
0
0

+ r


0
−1
1

 : t, r ∈ R

.

Therefore, γ1 =




1
0
0

 ,


0
−1
1


 is a basis for Eλ1 .
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For Eλ2 : The e-space Eλ2 corresponding to λ2 = 2 is Eλ2 = N (T− 2I3). Therefore

Eλ2 =

 (a, b, c) ∈ R3 :


−1 1 1
0 −1 0
0 1 0



a

b

c

 =


0
0
0




This is can be solved as follows:
−1 1 1 0
0 −1 0 0
0 1 0 0

 ∼


1 0 −1 0
0 1 0 0
0 0 0 0

 ⇒ b = 0; a = c.

Setting c = t ∈ R, we get

Eλ1 =

 t


1
0
1

 : t ∈ R

.

Therefore, γ2 =




1
0
1


 is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 =




1
0
0

 ,


0
−1
1

 ,


1
0
1


 is a basis for R3 consisting of e-vectors of A.

Therefore, the vectors in γ are the coordinate vectors relative to β of the vectors in the set

α = { 1,−x+ x2, 1 + x2 } which is an ordered basis for P2(R) consisting e-vectors of T. Thus,

[T]α =


1 0 0
0 1 0
0 0 2

 .

Example 5.2.8

Let A =
0 −2

1 3

. Is A diagonalizable? Explain your answer and compute An for positive

integer n.

Solution:

The characteristic polynomial of A is

f(t) = |A− tI2 | =

∣∣∣∣∣∣−t −2
1 3− t

∣∣∣∣∣∣ = t2 − 3t+ 2 = (t− 1)(t− 2) = 0.
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Thus, λ1 = 1 with m(1) = 1 and λ2 = 2 with m(2) = 1. Then the operator LA has two

distinct e-values and hence A is diagonalizable.

For Eλ1 : The e-space Eλ1 corresponding to λ1 = 1 is Eλ1 = N (A− 1I2). Therefore

Eλ1 =

 (a, b) ∈ R2 :
−1 −2

1 2

a
b

 =
0

0


This is can be solved as follows:−1 −2 0

1 2 0

 ∼
1 2 0

0 0 0

 ⇒ a = −2b.

Setting b = t ∈ R, we get

Eλ1 =

 t
−2

1

 : t ∈ R

.
Therefore, γ1 =


−2

1

 is a basis for Eλ1 .

For Eλ2 : The e-space Eλ2 corresponding to λ2 = 2 is Eλ2 = N (A− 2I2). Therefore

Eλ2 =

 (a, b) ∈ R2 :
−2 −2

1 1

a
b

 =
0

0


This is can be solved as follows:−2 −2 0

1 1 0

 ∼
1 1 0

0 0 0

 ⇒ a = −b.

Setting b = t ∈ R, we get

Eλ2 =

 t
−1

1

 : t ∈ R

.
Therefore, γ2 =


−1

1

 is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 =


−2

1

 ,
−1

1

 is a basis for R2 consisting of e-vectors of A.

Note that D := [LA]γ =
1 0

0 2

 = Q−1 AQ where Q =
−2 −1

1 1

 and Q−1 =
−1 −1

1 2

.

Therefore, A = QDQ−1 and hence An = QDnQ−1; that is

An =
−2 −1

1 1

 1n 0
0 2n

 −1 −1
1 2

 = · · · =
 2− 2n 2− 2n+1

−1 + 2n −1 + 2n+1

 .
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Exercise 5.2.1

Solve the following exercises from the book at pages 279 - 283:

• 2, 3.

• 7, 8.
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Section 5.4: Invariant Subspaces and The Cayley-Hamilton Theorem

Definition 5.4.1

Let T be a linear operator on a vector space V. A subspace W of V is called T-invariant

subspace of V if T (W) ⊆W; that is if T(x) ∈W for all x ∈W.

Remark 5.4.1

Let T be a linear operator on a vector space V. Then the following subspaces of V are

T-invariant:

1. { 0 }.

2. V.

3. R(T).

4. N (T).

5. Eλ for any e-value λ of T.

Example 5.4.1

Let T be the linear operator on R3 defined by T(a, b, c) = (a + b, b + c, 0). Show that the

subspaces of R3, W1 and W2, are T-invariant, where

1 : W1 = { (a, b, 0) : a, b ∈ R }, and 2 : W2 = { (a, 0, 0) : a ∈ R }.

Solution:

1 : Clearly, T(a, b, 0) = (a + b, b, 0) ∈ W1 for all (a, b, 0) ∈ W1. Thus, W1 is a T-invariant

subspace of R3.

2 : Clearly, T(a, 0, 0) = (a, 0, 0) ∈ W2 for all (a, 0, 0) ∈ W1. Thus, W2 is a T-invariant

subspace of R3.

Definition 5.4.2

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The

subspace

W = span
{
x,T(x),T2(x), · · ·

}
,
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where T2(x) = T(T(x)), T3(x) = T(T(T(x))), and so on, is called a T-cyclic subspace of

V generated by x.

Example 5.4.2

Let T be the linear operator on R3 defined by T(a, b, c) = (−b+ c, a+ c, 3c). Determine the

T-cyclic subspace of R3 generated by E1 = (1, 0, 0).

Solution:

We simply compute the set containing E1 and Ti(E1) for i = 1, 2, · · · .

T(E1) = T(1, 0, 0) = (0, 1, 0) = E2,

T2(E1) = T (T (E1)) = T (E2) = (−1, 0, 0) = −E1.

Therefore, W = span {E1,T (E1) ,T2(E1), · · · } = span {E1, E2 } = { (s, t, 0) : s, t ∈ R } is

the T-cyclic subspace of R3 generated by E1.

Remark 5.4.2

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The

subspace W generated by x is the smallest T-invariant subsapce which contains x. That is,

any T-invariant subspace of V containing x must contain W.

Example 5.4.3

Let T be the linear operator on P2(R) defined by T (f(x)) = f ′(x). Determine the T-cyclic

subspace of P2(R) generated by x2.

Solution:

Note that T(x2) = 2x, T2(x2) = T(2x) = 2, and T3(x2) = T(2) = 0. Therefore, W =

span {x2, 2x, 2 } = P2(R) is the T-cyclic subspace of P2(R) generated by x2.
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Example 5.4.4

Let T be the linear operator on R4 defined by T(a, b, c, d) = (a+b+2c−d, b+d, 2c−d, c+d),

and let W = { (t, s, 0, 0) : t, s ∈ R }. Show that W is a T-invariant subspace of R4.

Solution:

Choose arbitrary x = (t, s, 0, 0) ∈W. Then

T(x) = (t+ s, s, 0, 0) ∈W.

Thus, T(W) ⊆W and hence W is a T-invariant subsapce of R4.

Theorem 5.4.1

Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-cyclic

subspace of V generated by x ∈ V. Let dim(W) = k. Then
{
x,T(x), · · · ,Tk−1(x)

}
is a

basis for W.

Example 5.4.5

Let T be the linear operator on R3 defined by T(a, b, c) = (−b + c, a + c, 3c), and let W be

the T-cyclic subspace of R3 generated by E1.

Solution:

Clearly, E1 = (1, 0, 0), T(E1) = (0, 1, 0) = E2, and T2(E1) = T(E2) = (−1, 0, 0) = −E1.

Therefore, W = span {E1, E2 } and hence dim(W) = 2. Thus, by Theorem 5.4.1, γ =

{E1, E2 } is an ordered basis for W.

Theorem 5.4.2: The Cayley-Hamilton Theorem

Let T be a linear operator on a finite-dimensional vector space V, and let f(t) be the char-

acteristic polynomial of T. Then f(T) = T0, the zero transformation. That is, T ”satisfies”

its characteristic equation.
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Theorem 5.4.3: The Cayley-Hamilton Theorem for Matrices

Let A be an n×n matrix, and let f(t) be the characteristic polynomial of A. Then f(A) = 0,

the n× n zero matrix.

Example 5.4.6

Verify the Cayley-Hamilton theorem for the linear operator T defined on R2 by T(a, b) =

(a+ 2b,−2a+ b).

Solution:

Let β = {E1, E2 } be an ordered basis for R2. Then

T(E1) = (1,−2) = E1 + (−2)E2

T(E2) = (2, 1) = 2E1 + E2.

Thus, A = [T]β =
 1 2
−2 1

. The characteristic polynomial of T is therefore

f(t) = |A− tI2 | =

∣∣∣∣∣∣1− t 2
−2 1− t

∣∣∣∣∣∣ = (1− t)2 + 4 = t2 − 2t+ 5 = 0.

That is,

f(T) = (T2 − 2T + 5IT )
a
b


= T2

a
b

− 2T

a
b

+ 5IT

a
b


= T

 a+ 2b
−2a+ b

− 2
 a+ 2b
−2a+ b

+ 5
a
b


=
 (a+ 2b) + 2(−2a+ b)
−2(a+ 2b) + (−2a+ b)

+
−2a− 4b

4a− 2b

+
5a

5b


=
−3a+ 4b
−4a− 3b

+
−2a− 4b

4a− 2b

+
5a

5b

 =
0

0

 = T0

a
b

 .
Note that

f(A) = A2 − 2A+ 5I =
−3 4
−4 −3

+
−2 4

4 −2

+
5 0

0 5

 =
0 0

0 0

 = 0.
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Example 5.4.7

Let T be the linear operator defined on P1(R) by T (f(x)) = f(x) + f ′(x). Verify the Cayley-

Hamilton Theorem for T.

Solution:

Let β = { 1, x }. Then,

T(1) = 1 + 0 = 1 · 1 + 0 · x

T(x) = x+ 1 = 1 · 1 + 1 · x

Thus, [T]β = A =
1 1

0 1

, and the characteristic polynomial of T is therefore,

f(t) |A− tI2 | =

∣∣∣∣∣∣1− t 1
0 1− t

∣∣∣∣∣∣ = (1− t)2 = t2 − 2t+ 1.

Therefore,

f(T) = (T2 − 2T + IT )
 a
bx

 = T2

 a
bx

− 2T

 a
bx

+
 a
bx


= T

 a

b+ bx

− 2
 a

b+ bx

+
 a
bx

 =
 a

(b+ bx) + b

+
 −2a
−2b− 2bx

+
 a
bx


=
 a

2b+ bx

+
 −2a
−2b− 2bx

+
 a
bx

 =
 2a− 2a

(2b− 2b) + (−2bx+ 2bx)


=
0

0

 = T0

 a
bx

 .
Note that,

f(A) = (A2 − 2A+ I2) =
1 2

0 1

− 2
1 1

0 1

+
1 0

0 1


=
1 2

0 1

+
−2 −2

0 −2

1 0
0 1

 =
0 0

0 0

 = 0
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Example 5.4.8

Use Cayley-Hamilton Theorem to find A−1 if A =


1 2 1
0 2 3
0 0 −1

.

Solution:

Note that |A | = −2 6= 0 and hence A−1 exists. The characteristic polynomial of A is

f(t) = |A− tI3 | =

∣∣∣∣∣∣∣∣∣
1− t 2 1

0 2− t 3
0 0 −1− t

∣∣∣∣∣∣∣∣∣
= (1− t)(2− t)(−1− t) = −(2− 3t+ t2)(1 + t)

= −((2 + 2t)− 3t− 3t2 + t2 + t3) = −t3 + 2t2 + t− 2.

Thus,

f(A) = −A3 + 2A2 + A− 2I3 = 0

⇒ 2I3 = −A3 + A2 + A

⇒ I3 = −1
2A

3 + A2 + 1
2A

⇒ I3 =
(
−1

2A
2 + A+ 1

2I3

)
A.

Hence A−1 = −1
2A

2 + A+ 1
2I3.
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Exercise 5.4.1

Solve the following exercises from the book at pages 321 - 327:

• 2, 3, and 6.
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6
Chapter

Inner Product Spaces

Section 6.1: Inner Product and Norms

Remark 6.1.1

Let z = a+ ib ∈ C for some a, b ∈ R, then

1. | z | =
√
a2 + b2 is called the absolute value for modulus of z.

2. z z = | z |2.

3. z + z = 2Re(z) = 2a.

4. z − z = 2Im(z) = 2b.

5. Re(z) ≤ | z |.

6. z = z.

7. z + w = z + w and zw = z w.

Definition 6.1.1

Let V be a vector space over a field F. An inner product on V is a function that assigns, to

every pair of vectors x, y ∈ V, a scalar in F, denoted by 〈x, y 〉, such that for all x, y, z ∈ V

and all c ∈ F, the following conditions hold:

1. 〈x+ y, z 〉 = 〈x, z 〉+ 〈 y, z 〉.

2. 〈 cx, y 〉 = c〈x, y 〉.

3. 〈x, y 〉 = 〈 y, x 〉, where the bar denotes the complex conjugation.

4. 〈x, x 〉 > 0 if x 6= 0.

Note that, Condition (3) reduces to 〈x, y 〉 = 〈 y, x 〉 if F = R.

Example 6.1.1

Let V = C([0, 1]), the vector space of real valued continuous function on [0, 1]. Define

〈 f, g 〉 =
∫ 1

0
f(t)g(t) dt.

99
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Show that 〈 f, g 〉 is an inner product on V.

Solution:

For every f, g, h ∈ V and every c ∈ R, we have

1.

〈 f + g, h 〉 =
∫ 1

0
(f(t) + g(t))h(t) dt =

∫ 1

0
(f(t)h(t) + g(t)h(t)) dt

=
∫ 1

0
f(t)h(t) dt+

∫ 1

0
g(t)h(t) dt = 〈 f, h 〉+ 〈 g, h 〉.

2. 〈 cf, g 〉 =
∫ 1

0
c f(t)g(t) dt = c

∫ 1

0
f(t)g(t) dt = c〈 f, g 〉.

3. 〈 f, g 〉 =
∫ 1

0
f(t)g(t) dt =

∫ 1

0
g(t)f(t) dt = 〈 g, f 〉.

4. If f 6= 0, 〈 f, f 〉 =
∫ 1

0
f(t)f(t) dt =

∫ 1

0
f 2(t) dt > 0.

Thus, 〈 f, g 〉 is an inner product on C([0, 1)].

Example 6.1.2

For x = (a1, a2, · · · , an), y = (b1, b2, · · · , bn) ∈ Fn, define 〈x, y 〉 = ∑n
i=1 aibi. Show that 〈x, y 〉

is an inner product on Fn.

Solution:

For any x = (a1, · · · , an), y = (b1, · · · , bn), z = (c1, · · · , cn) ∈ Fn and k ∈ F, we have

1. 〈x+ y, z 〉 =
n∑
i=1

(ai + bi)ci =
n∑
i=1

(aici + bici) =
n∑
i=1

aici +
n∑
i=1

bici = 〈x, z 〉+ 〈 y, z 〉.

2. 〈 kx, y 〉 =
n∑
i=1

kaibi = k
n∑
i=1

aibi = k〈x, y 〉.

3. 〈x, y 〉 =
n∑
i=1

aibi =
n∑
i=1

aibi =
n∑
i=1

aibi =
n∑
i=1

biai = 〈 y, x 〉.

4. If x 6= 0, 〈x, x 〉 =
n∑
i=1

aiai =
n∑
i=1
| ai |2 > 0.

Remark 6.1.2

Note that, the inner product defined in Example 6.1.2, is called the standard inner product

on Fn. In case of F = R, we have 〈x, y 〉 =
n∑
i=1

aibi = x · y which is the usual dot (or scalar)

product of x and y in Rn.
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Definition 6.1.2

Let A = (aij) ∈ Mm×n(F). We define the conjugate transpose or adjoint of A to be the

n ×m matrix A∗ such that a∗ij = aji for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that if F = R,

then we simply write At instead of A∗.

Example 6.1.3

If A =
i 1 + 2i

2 3 + 4i

, then A∗ =
 −i 2

1− 2i 3− 4i

.

Example 6.1.4

Let V = Mn×n(F), and define 〈A,B 〉 = tr(B∗A) for A,B ∈ V. Show that 〈A,B 〉 is an inner

product on V.

Solution:

For any A,B,C ∈ V and c ∈ F, we have

1. 〈A+B,C 〉 = tr(C∗(A+B)) = tr(C∗A+ C∗B) = tr(C∗A) + tr(C∗B)

= 〈A,C 〉+ 〈B,C 〉.

2. 〈 cA,B 〉 = tr(B∗(cA)) = c tr(B∗A) = c〈A,B 〉.

3. 〈A,B 〉 = tr(B∗A) = tr(B∗A) = tr(A∗B) = 〈B,A 〉.

4. 〈A,A 〉 = tr(A∗A) =
n∑
i=1

bii =
n∑
i=1

n∑
k=1

a∗ikaki =
n∑
i=1

n∑
k=1

akiaki =
n∑
i=1

n∑
k=1
| aki |2. Note that if

A 6= 0, then aki 6= 0 for some k and i. So, 〈A,A 〉 > 0.

Here is a detailed proof of tr(B∗A) = tr(A∗B): Assuming the C = (cij) = B∗A, we have

tr(B∗A) =
n∑
i

cii =
n∑
i

n∑
j

b∗ijaji =
n∑
i

n∑
j

bjiaji

=
n∑
i

n∑
j

bjiaji =
n∑
i

n∑
j

a∗ijbji = tr(A∗B).

Note that, a vector space V over a field F together with specific inner product on V is called an

inner product space. If F = C, we call V a complex inner product space, and if F = R, we call V

a real inner product space.
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Theorem 6.1.1

Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F, the following statements

are true:

1. 〈x, y + z 〉 = 〈x, y 〉+ 〈x, z 〉.

2. 〈x, cy 〉 = c 〈x, y 〉.

3. 〈x, 0 〉 = 〈 0, x 〉 = 0.

4. 〈x, x 〉 = 0 iff x = 0.

5. If 〈x, y 〉 = 〈x, z 〉 for all x ∈ V, then y = z. 〈 y − z, y − z 〉 = 0⇒ y − z = 0⇒ y = z.

Definition 6.1.3

Let V be an inner product space. For x ∈ V, we define the norm or length of x by

‖x‖ =
√
〈x, x 〉.

Note that if V = R, then ‖x‖ = |x | and if V = Rn, then ‖x‖ =
√
〈x, x 〉 =

√
x · x.

Theorem 6.1.2

Let V be an inner product space over a field F. Then for all x, y ∈ V and c ∈ F, the following

statements are true:

1. ‖c x‖ = | c | ‖x‖.

2. ‖x‖ ≥ 0; and ‖x‖ = 0 iff x = 0.

3. (Cauchy-Schwarz Inequality) | 〈x, y 〉 | ≤ ‖x‖ · ‖y‖.

4. (Triangle Inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof:

1. ‖c x‖ =
√
〈 cx, cx 〉 =

√
cc〈x, x 〉 =

√
| c |2 〈x, x 〉 = | c | · ‖x‖.

2. ‖x‖ =
√
〈x, x 〉. If x = 0, then 〈x, x 〉 = 〈 0, 0 〉 = 0. Otherwise, 〈x, x 〉 > 0 and hence

‖x‖ ≥ 0.

3. If y = 0, then the Cauchy-Schwarz Inequality clearly hold. Assume now that y 6= 0.
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For any c ∈ F, we have

0 ≤ ‖x− cy‖2 = 〈x− cy, x− cy 〉 = 〈x, x− cy 〉 − c〈 y, x− cy 〉

= 〈x, x 〉 − c〈x, y 〉 − c〈 y, x 〉+ cc〈 y, y 〉.

Let c = 〈x, y 〉
〈 y, y 〉

, then

0 ≤ 〈x, x 〉 − 〈 y, x 〉
〈 y, y 〉

〈x, y 〉 − 〈x, y 〉
〈 y, y 〉

〈 y, x 〉+ 〈x, y 〉
〈 y, y 〉

· 〈 y, x 〉
����〈 y, y 〉�

���〈 y, y 〉

0 ≤ 〈x, x 〉 − 〈 y, x 〉
〈 y, y 〉

〈x, y 〉 −
�

���
���〈x, y 〉

〈 y, y 〉
〈 y, x 〉+

��������〈x, y 〉
〈 y, y 〉

· 〈 y, x 〉

0 ≤ 〈x, x 〉 − | 〈x, y 〉 |
2

〈 y, y 〉
, where 〈x, y 〉〈 y, x 〉 = 〈x, y 〉〈x, y 〉 = | 〈x, y 〉 |2 .

Therefore, | 〈x, y 〉 |2 ≤ ‖x‖2 ‖y‖2 and hence | 〈x, y 〉 | ≤ ‖x‖ ‖y‖.

4. Consider ‖x+ y‖2 = 〈x+ y, x+ y 〉. Then

‖x+ y‖2 = 〈x, x 〉+ 〈x, y 〉+ 〈 y, x 〉+ 〈 y, y 〉

= ‖x‖2 + 〈x, y 〉+ 〈x, y 〉+ ‖y‖2

= ‖x‖2 + 2Re〈x, y 〉+ ‖y‖2 , where Re〈x, y 〉 ≤ | 〈x, y 〉 |

≤ ‖x‖2 + 2 | 〈x, y 〉 |+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Therefore, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 6.1.4

If x 6= 0 is any vector in an inner product space V, then u = 1
‖x‖ x is a unit vector; that is a

vector with length 1. This procedure is called normalizing.

Definition 6.1.5

Two vectors x and y in V are called orthogonal (or perpendicular) if 〈x, y 〉 = 0. Moreover,

x and y are called orthonormal if they are orthogonal and ‖x‖ = ‖y‖ = 1.
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Example 6.1.5

Note that the set S = { (1, 1, 0), (1,−1, 1), (−1, 1, 2) } in F3 is an orthogonal set of nonzero

vectors, but it is not orthonormal. However, normalizing S, we get

B =
{

1√
2

(1, 1, 0), 1√
3

(1,−1, 1), 1√
6

(−1, 1, 2)
}
,

which is orthonormal in F3.

Example 6.1.6

Let H be the vector space of complex valued functions defined on the interval [0, 2π], with

the inner product on H defined by

〈 f, g 〉 = 1
2π

∫ 2π

0
f(t)g(t) dt.

Show that S =
{
fn(t) = eint : n ∈ Z and t ∈ [0, 2π]

}
is an orthonormal subset of H. Recall

that eix = cosx+ i sin x, eix = e−ix for all x ∈ R, and
∫
eaxdx = 1

a
eax.

Solution:

For any m 6= n in Z, we have

〈 fm(t), fn(t) 〉 = 1
2π

∫ 2π

0
fm(t)fn(t) dt = 1

2π

∫ 2π

0
eimt eint dt

= 1
2π

∫ 2π

0
ei(m−n)t dt = 1

2πi
1

(m− n)e
i(m−n)t

∣∣∣∣2π
0

= 1
2πi(m− n)

[
ei(m−n)2π − e0

]
= 1

2πi(m− n) [1− 1] = 0.

Also, 〈 fn, fn 〉 = 1
2π

∫ 2π

0
ei(n−n)t dt = 1

2π

∫ 2π

0
1 dt = 1

2π (2π − 0) = 2π
2π = 1. Therefore, S is

orthonormal subset of H.

Example 6.1.7

Let V = C3 with the standard inner product. Let x = (2, 1 + i, i) and y = (2− i, 2, 1 + 2i).

1. Compute 〈x, y 〉, 〈 y, x 〉, ‖x‖, ‖y‖, and ‖x+ y‖.

2. Verify both Cauchy-Schwarz Inequality and triangle inequality.

Solution:
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1.

〈x, y 〉 =
3∑
i=1

xiyi = 2(2− i) + (1 + i)(2) + i(1 + 2i)

= 2(2 + i) + 2 + 2i+ i(1− 2i) = 4 + 2i+ 2 + 2i+ i+ 2

= 8 + 5i.

Thus, 〈 y, x 〉 = 〈x, y 〉 = 8 + 5i = 8− 5i. Also

‖x‖ =
√
〈x, x 〉 =

√
2(2) + (1 + i)(1 + i) + i(i)

=
√

4 + (1 + i)(1− i) + i(−i) =
√

4 + 1− i+ i+ 1 + 1 =
√

7.

‖y‖ =
√
〈 y, y 〉 =

√
(2− i)(2− i) + 2(2) + (1 + 2i)(1 + 2i)

=
√

(2− i)(2 + i) + 4 + (1 + 2i)(1− 2i) =
√

4 + 1 + 4 + 1 + 4 =
√

14.

‖x+ y‖ = ‖(4− i, 3 + i, 1 + 3i‖

=
√

(4− i)(4 + i) + (3 + i)(3− i) + (1 + 3i)(1− 3i)

=
√

16 + 1 + 9 + 1 + 1 + 9 =
√

37.

2. Clearly, Cauchy-Schwarz Inequality is satisfied as

| 〈x, y 〉 | =
√

64 + 25 =
√

89 ≤
√

7
√

14 =
√

98.

For triangle inequality, note that

‖x+ y‖ =
√

37 ≤ ‖x‖+ ‖y‖ =
√

7 +
√

14.

Since

(‖x‖+ ‖y‖)2 = (
√

7 +
√

14)2 = 7 + 2
√

98 + 14

= 21 + 2
√

98 ≥ 21 + 2
√

81 = 21 + 2 · 9 = 39

≥ 37 = ‖x+ y‖2 .
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Exercise 6.1.1

Solve the following exercises from the book at pages 336 - 341:

• 2, 3.

• 8 : a and c.

• 9.
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Section 6.2: The Gram-Schmidt Orthogonalization Process

Definition 6.2.1

Let V be an inner product space. A subset of V is called an orthonormal basis for V if it

is an ordered basis that is orthonormal.

Example 6.2.1

• The standard ordered basis for Fn is orthonormal basis for Fn.

• S =
{

1√
5(1, 2), 1√

5(2,−1)
}

is an orthonormal basis for R2.

Theorem 6.2.1

Let V be an inner product space and let S = {x1, x2, · · · , xk } be an orthogonal subset of V

consisting of nonzero vectors. If y ∈ span S, then

y =
k∑
i=1

〈 y, xi 〉
‖xi‖2 xi.

Proof:

Write y =
k∑
i=1

aixi, where a1, · · · , ak ∈ F. Then, for 1 ≤ j ≤ k

〈 y, xj 〉 = 〈
k∑
i=1

aixi, xj 〉 =
k∑
i=1

ai〈xi, xj 〉, where 〈xi, xj 〉 = 0 if i 6= j

= aj〈xj, xj 〉 = aj ‖xj‖2 .

So, aj = 〈 y, xj 〉
‖xj‖2 . Therefore,

y =
k∑
i=1

ai xi =
k∑
i=1

〈 y, xi 〉
‖xi‖2 xi.

Corollary 6.2.1

Let V be an inner product space and let S = {x1, x2, · · · , xk } be an orthonormal subset of

V. If y ∈ span S, then y =
k∑
i=1
〈 y, xi 〉 xi.



108 Chapter 6. Inner Product Spaces

Corollary 6.2.2

Let V be an inner product space and let S = {x1, x2, · · · , xk } be an orthogonal subset of V

consisting of nonzero vectors. Then, S is linearly independent.

Proof:

Suppose that a1x1 + · · · akxk =
k∑
i=1

aixi = 0. Then for all 1 ≤ j ≤ k, we have

〈 0, xj 〉 = 〈
k∑
i=1

aixi, xj 〉 =
k∑
i=1

ai〈xi, xj 〉 = aj〈xj, xj 〉 = aj ‖xj‖2 .

Thus, aj = 〈 0, xj 〉
‖xj‖2 = 0 for all j. So, S is linearly independent.

Theorem 6.2.2: The Gram-Schmidt Process

Let V be an inner product space and S = { y1, y2, · · · , yn } be linearly independent subset of

V. Define S ′ = {x1, x2, · · · , xn }, where x1 = y1 and

xk = yk −
k−1∑
j=1

〈 yk, xj 〉
‖xj‖2 xj, for 2 ≤ j ≤ n.

Then, S ′ is an orthogonal set of nonzero vectors such that span S ′ = span S.

Theorem 6.2.3

Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis

β. Furthermore, if β = {x1, x2, · · · , xn } and y ∈ V, then

y =
n∑
i=1
〈 y, xi 〉xi.

That is [y]β = ( 〈 y, x1 〉, 〈 y, x2 〉, · · · , 〈 y, xn 〉 ). These scalars are called Fourier coefficients.

Corollary 6.2.3

Let T be a linear operator on a finite-dimensional inner product space V with an or-

thonorml basis β = {x1, x2, · · · , xn }, and let A = [T]β = (aij). Then, for any i and j,

aij = 〈T (xj) , xi 〉.
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Example 6.2.2

Let S =
{

1√
2

(1, 1, 0), 1√
3

(1,−1, 1), 1√
6

(−1, 1, 2)
}

be an orthonormal basis for R3. Express

x = (2, 1, 3) ∈ R3 as a linear combination of vectors of S.

Solution:

Consider x = (2, 1, 3) = c1
1√
2(1, 1, 0) + c2

1√
3(1,−1, 1) + c3

1√
6(−1, 1, 2). Then,

c1 = 〈 (2, 1, 3), 1√
2

(1, 1, 0) 〉 = 1√
2

(2 + 1 + 0) = 3√
2
.

c2 = 〈 (2, 1, 3), 1√
3

(1,−1, 1) 〉 = 1√
3

(2− 1 + 3) = 4√
3
.

c3 = 〈 (2, 1, 3), 1√
6

(−1, 1, 2) 〉 = 1√
6

(−2 + 1 + 6) = 5√
6
.

Thus x = (2, 1, 3) = 3
2(1, 1, 0) + 4

3(1,−1, 1) + 5
6(−1, 1, 2).

Example 6.2.3

Use the Gram-Schmidt process to find an orthonormal basis for span S, where

S = { y1 = (1, 0, 1, 0), y2 = (1, 1, 1, 1), y3 = (0, 1, 2, 1) }

is a subset of R4.

Solution:

We first compute S ′ containing orthogonal vectors x1, x2, x3 and then we normalize these

vectors to obtain an orthonormal set S ′′.

• x1 = y1 = (1, 0, 1, 0).

• x2 = y2 −
〈 y2, x1 〉
‖x1‖2 x1, where ‖x1‖2 =

(√
2
)2

= 2, and 〈 y2, x1 〉 = 1 + 0 + 1 + 0 = 2.

Then x2 = y2 − 2
2x1 = (0, 1, 0, 1).

• x3 = y3 −
(
〈 y, x1 〉
‖x1‖2 x1 + 〈 y, x2 〉

‖x2‖2 x2

)
, where ‖x2‖2 =

(√
2
)2

= 2 = ‖x1‖2.

Moreover, 〈 y3, x1 〉 = 0 + 0 + 2 + 0 = 2 and 〈 y3, x2 〉 = 0 + 1 + 0 + 1 = 2. Therefore,

x3 = (0, 1, 2, 1)− 2
2(1, 0, 1, 0)− 2

2(0, 1, 0, 1) = (−1, 0, 1, 0).

Thus, by Theorem 6.2.2, S ′ = { (1, 0, 1, 0), (0, 1, 0, 1), (−1, 0, 1, 0) } is orthogonal set in R4
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such that span S ′ = span S. Therefore,

S ′′ =
{

1√
2

(1, 0, 1, 0), 1√
2

(0, 1, 0, 1), 1√
2

(−1, 0, 1, 0)
}

is orthonormal set in R4.

Example 6.2.4

Let V = P(R) with an inner product defined by 〈 f(x), g(x) 〉 =
∫ 1

−1
f(t)g(t) dt. Use the Gram-

Schmidt process to replace the standard ordered basis S = { 1, t, t2 } by an orthonormal basis

for P2(R). Represent h(x) = 1+2x+3x2 as a linear combination of the vectors of the obtained

orthonormal basis for P2(R).

Solution:

Let S = { y1 = 1, y2 = t, y3 = t2 }. Then S ′ = {x1, x2, x3 }, where

• x1 = y1 = 1.

• x2 = y2 −
〈 y2, x1 〉
‖x1‖2 x1 = t− 〈 t, 1 〉

‖1‖2 1 = t− 〈 t, 1 〉. Note that

‖1‖2 = 〈 1, 1 〉 =
∫ 1

−1
1 dt = t

∣∣∣∣1
−1

= 2,

and

〈 t, 1 〉 =
∫ 1

−1
t · 1 dt = t2

2

∣∣∣∣1
−1

= 1
2 −

1
2 = 0.

Therefore, x2 = t− 0
2 1 = t.

• x3 = y3 −
(
〈 y3, x1 〉
‖x1‖2 x1 + 〈 y3, x2 〉

‖x2‖2 x2

)
= t2 − 〈 t

2, 1 〉
‖1‖2 1− 〈 t

2, t 〉
‖t‖2 t.

Note that ‖1‖2 = 2 and ‖t‖2 =
∫ 1

−1
t2 dt = t3

3

∣∣∣∣1
−1

= 2
3. Moreover,

〈 t2, 1 〉 =
∫ 1

−1
t2 dt = t3

3

∣∣∣∣1
−1

= 2
3, and 〈 t2, t 〉 =

∫ 1

−1
t3 dt = t4

4

∣∣∣∣1
−1

= 0. Therefore,

x3 = t2 − 2/3
2 1− 0

2/3 t = t2 − 1
3 .
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We now normalize S ′ to obtain S ′′ =
{

1
‖x1‖

x1,
1
‖x2‖

x2,
1
‖x3‖

x3

}
as follows:

‖x1‖2 = ‖1‖2 = 2 ⇒ ‖x1‖ =
√

2.

‖x2‖2 = ‖t‖2 = 〈 t, t 〉 = 2
3 ⇒ ‖x2‖ =

√
2
3 .

‖x3‖2 =
∥∥∥∥t2 − 1

3

∥∥∥∥2
= 〈 t2 − 1

3 , t
2 − 1

3 〉 =
∫ 1

−1

(
t2 − 1

3

)2
dt

=
∫ 1

−1
t4 − 2

3t
2 + 1

9 dt =
[
t5

5 −
2
3
t3

3 + 1
9t
]1

−1
= · · · = 8

45

⇒‖x3‖ =
√

8
45 = 2

√
2

3
√

5
.

Thus, S ′′ =

 z1 = 1√
2

1, z2 =
√

3
2 t, z3 = 3

√
5

2
√

2

(
t2 − 1

3

) is orthonormal basis for P2(R).

We now use Theorem 6.2.3 to represent h(x) as a linear combination of the vectors of S ′′.

Note that

〈h(x), z1 〉 =
∫ 1

−1

1√
2

(1 + 2t+ 3t2)dt = 2
√

2

〈h(x), z2 〉 =
∫ 1

−1

√
3
2t(1 + 2t+ 3t2)dt = 2

√
6

3

〈h(x), z3 〉 =
∫ 1

−1

√
5
8(3t2 − 1)(1 + 2t+ 3t2)dt = 2

√
10

5

Therefore, h(x) = 2
√

2z1 + 2
√

6
3 z2 + 2

√
10

5 z3.

Example 6.2.5

Let W = span { (1, 1, 1), (1, 0, 2) } be a subspace of R3. Find an orthonormal basis for W.

Solution:

Consider x1 = (1, 1, 1) and

x2 = (1, 0, 2)− 〈 (1, 0, 2), (1, 1, 1) 〉
‖(1, 1, 1)‖2 (1, 1, 1) = (1, 0, 2)− 3

3(1, 1, 1) = (0,−1, 1).

Thus, S ′ =
{

1√
3(1, 1, 1), 1√

2(0,−1, 1)
}

is an orthonormal basis for W.
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Example 6.2.6

Let W = { (x, y, z) : x+ 3y − 2z = 0 } be a subspace of the inner product space R3. Find an

orthonormal basis for W.

Solution:

Note that

W = { (2z − 3y, y, z) } = span { (2s− 3r, r, s) : r, s ∈ R } = span { (2, 0, 1), (−3, 1, 0) },

where S = { (2, 0, 1), (−3, 1, 0) } is an ordered basis for W. We now construct orthogonal

basis for W and normalize it to an orthonormal basis. Let x1 = (2, 0, 1) and

x2 = (−3, 1, 0)− 〈 (−3, 1, 0), (2, 0, 1) 〉
‖(2, 0, 1)‖2 (2, 0, 1)

= (−3, 1, 0)− −6
5 (2, 0, 1) = (−3

5 , 1,
6
5).

Thus, ‖x2‖ =
√

9
25 + 25

25 + 36
25 =

√
70
5 . Thus, S ′ =

{
1√
5(2, 0, 1), 1√

70(−3, 5, 6)
}

is an orthonormal

basis for W.
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Exercise 6.2.1

Solve the following exercises from the book at pages 352 - 357:

• 2 : a, b, c, g, and h.
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Section 6.3: The Adjoint of a Linear Operator

Recall that A∗ is the conjugate transpose of a matrix. In this section, for a linear operator T on an

inner product space V, we define a related linear operator on V called the adjoint of T, denoted T∗,

whose matrix representation with respect to any orthonormal basis β for V is [T]∗β.

Definition 6.3.1

Let V be a finite-dimensional inner product space , and let T be a linear operator on V. The

adjoint (sometimes called hermitian conjugate) of T is the unique linear operator T∗ on

V such that

〈T (x) , y 〉 = 〈x,T∗ (y) 〉, for all x, y ∈ V.

Remark 6.3.1

Note that

〈x,T (y) 〉 = 〈T (y) , x 〉 = 〈 y,T∗ (x) 〉 = 〈T∗ (x) , y 〉.

Theorem 6.3.1

Let V be a finite-dimensional inner product space , let β be an orthonormal basis for V, and

let T and U be linear operators on V. Then:

1. T∗ is unique linear operator on V.

2. [T∗]β = [T]∗β.

3. ( T + U )∗ = T∗ + U∗, and ( TU )∗ = U∗T∗.

4. ( cT )∗ = cT∗.

5. ( T∗ )∗ = T.

6. IV ∗ = IV .

Example 6.3.1

Let T be the linear operator on C2 defined by T (a, b) = ( 2ai+ 3b, a− b ). Evaluate T∗.

Solution:
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We can find T∗ directly by the definition:

〈 ( a, b ),T∗ (c, d) 〉 = 〈T (a, b) , ( c, d ) 〉 = 〈 ( 2ai+ 3b, a− b ), ( c, d ) 〉

= ( 2ai+ 3b )c+ ( a− b )d = 2aci+ 3bc+ ad− bd

= a
(

2ic+ d
)

+ b
(

3c− d
)

= 〈 ( a, b ), (−2ci+ d, 3c− d ) 〉.

Therefore, T∗ (c, d) = (−2ci+ d, 3c− d ).

On the other hand, we can also find T∗ using the Theorem 6.3.1. Choose β as the standard

orthonormal basis for C2. Clearly, [T]β =
2i 3

1 −1

. Then, [T∗]β = [T]∗β =
−2i 1

3 −1

.

Hence, T∗ (a, b) = (−2ai+ b, 3a− b ).

Example 6.3.2

Let T be the linear operator on R2 defined by T (a, b) = ( 2a+ b, a− 3b ). Evaluate T∗ at

x = ( 3, 5 ).

Solution:

We can find T∗ (3, 5) directly by the definition:

〈 ( a, b ),T∗ (3, 5) 〉 = 〈T (a, b) , ( 3, 5 ) 〉 = 〈 ( 2a+ b, a− 3b ), ( 3, 5 ) 〉

= ( 6a+ 3b ) + 5a− 15b = 11a− 12b

= 〈 ( a, b ), ( 11,−12 ) 〉.

Therefore, T∗ (3, 5) = ( 11,−12 ).

On the other hand, we can also find T∗ (3, 5) using the Remark 2.2.2. Choose β as an

orthonormal basis for R2. Clearly, [T]β =
2 1

1 −3

. Then, [T∗]β = [T]∗β =
2 1

1 −3

, and

[( 3, 5 )]β =
3

5

. Hence,

[T∗ (3, 5)]β = [T]∗β [( 3, 5 )]β =
2 1

1 −3

3
5

 =
 11
−12

 .
Therefore, T∗ (3, 5) = (11,−12).
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Example 6.3.3

Let T be the linear operator on P1(R) defined by T (f) = f ′+3f with 〈 f, g 〉 =
∫ 1

−1
f(t)g(t)dt.

Evaluate T∗ at f(x) = 4 − 2x. Get 1 bonus point when you evaluate T∗ (h(x)), where

h(x) = a+ bx ∈ P1(R). Hand it over to me at my office.

Solution (1):

Using the definition: Let g(x) = a+ bx for a, b ∈ R. Then, T (g) = b+ 3a+ abx.

〈 g,T∗ (f) 〉 = 〈T (g) , f 〉 = 〈 ( 3a+ b+ 3bx ), ( 4− 2x ) 〉

=
∫ 1

−1
( 3a+ b+ 3bx )( 4− 2x ) = · · · = 24a+ 4b.

Assuming that T∗ (f) = c+ dx, we get:

〈 g,T∗ (f) 〉 = 〈 ( a+ bx ), ( c+ dx ) 〉

=
∫ 1

−1
( a+ bx )( c+ dx ) = · · · = 2ac+ 2

3bd.

By equating the two results, we get c = 12 and d = 6 and hence T∗ (f = 4− 2x) = 12 + 6x.

Solution (2):

We can find T∗ (f) using the Remark 2.2.2. Choose β =
{
v1 = 1√

2 , v2 =
√

3
2x
}

as an or-

thonormal basis for P1(R) (Use Gram-Schmidt process to find such basis). Then,

T (v1) = 3 1√
2

= 3v1 + 0v2 ⇒ [T (v1)]β = (3, 0).

T (v2) =
√

3
2 + 3

√
3
2x =

√
3v1 + 3v2 ⇒ [T (v2)]β = (

√
3, 3).

Hence [T]β =
3

√
3

0 3

 and thus [T]∗β =
 3 0√

3 3

. Furthermore, observe that [f(x)]β =(
〈 4− 2x, 1√

2 〉, 〈 4− 2x,
√

3
2x 〉

)
=
(

4
√

2,−2
√

2
3

)
. Therefore,

[T (f(x))]∗β =
 3 0√

3 3

 4
√

2
−2
√

2
3

 =
12
√

2
2
√

6

 .
That is, T∗ (4− 2x) = 12

√
2v1 + 2

√
6v2 = 12 + 6x. In the general case when h(x) = a + bx,

we use the matrix multiplication since using the definition is rather difficult. Observe that

[h(x)]β =
(
a
√

2, b
√

2
3

)
. Hence

[T (h(x))]∗β = [T]∗β [h]β =
 3 0√

3 3

a√2
b
√

2
3

 =
 3a

√
2

a
√

6 + b
√

6

 .
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That is, T∗ (a+ bx) =
(

3a
√

2
)
v1 +

√
6( a+ b )v2 = 3a+ 3( a+ b )x.

Example 6.3.4

Let V be an inner product space , and let y, z ∈ V. Define T : V→ V by T (x) = 〈x, y 〉z for

all x ∈ V. Show that T is linear, and evaluate T∗ (x).

Solution:

We first show that T is linear. For any x1, x2 ∈ V and any c ∈ F.

T (cx1 + x2) = 〈 cx1 + x2, y 〉z = 〈 cx1, y 〉z + 〈x2, y 〉z

= c〈x1, y 〉z + 〈x2, y 〉z = cT (x1) + T (x2) .

Hence, T is linear. Furthermore,

〈u,T∗ (x) 〉 = 〈T (u) , x 〉 = 〈 〈u, y 〉z, x 〉

= 〈u, y 〉〈 z, x 〉 = 〈u, 〈 z, x 〉y 〉 = 〈u, 〈x, z 〉y 〉.

Therefore, T∗ (x) = 〈x, z 〉y.
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Exercise 6.3.1

Solve the following exercises from the book at pages 352 - 357:

• 2 : a, b, c, g, and h.
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Section 6.4: Self-Adjoint, Normal, and Unitary Operators

In this section, we present more properties of special linear operators. Furthermore, we consider the

diagonalization problem for these operators.

Definition 6.4.1

Let V be an inner product space , and let T be a linear operator on V. Then:

1. T is called self-adjoint (Hermitian) if T = T∗.

2. An n× n-real or complex matrix A is called self-adjoint (Hermitian) matrix if A =

A∗.

3. T is called normal if TT∗ = T∗T.

4. An n× n-real or complex matrix A is called normal matrix if AA∗ = A∗A.

Remark 6.4.1

If T is a linear operator on an inner product space V and β is an orthonormal basis for V,

then:

1. T is self-adjoint if and only if [T]β is self-adjoint.

2. T is normal if and only if [T]β is normal.

3. If T is self-adjoint, then T is normal.

Theorem 6.4.1

Let V be an inner product space , and let T be a normal operator on V. Then:

1. ‖T (x)‖ = ‖T∗ (x)‖ for all x ∈ V.

2. If x is an eigenvector of T, then x is an eigenvector of T∗. In fact, if T (x) = λx, then

T∗ (x) = λx.

3. If λ1 and λ2 are distinct eigenvalues of T with corresponding eigenvectors x1 and x2,

respectively, then x1 and x2 are orthogonal.

Proof:
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1. For any vector x ∈ V, we have:

‖T (x)‖2 = 〈T (x) ,T (x) 〉 = 〈x,T∗T (x) 〉 = 〈x,TT∗ (x) 〉

= 〈T∗ (x) ,T∗ (x) 〉 = ‖T∗ (x)‖2 .

Therefore, ‖T (x)‖ = ‖T∗ (x)‖.

2. Observe that for any c ∈ F, ( T− cI )∗ = T∗ − cI and that ( T− cI ) is normal as T

normal (prove it!). Now assume that for some x ∈ V, T (x) = λx. Then ( T− λI )(x) =

0, where T− λI is normal.

Then, by (1), we have

0 = ‖( T− λI )(x)‖ = ‖( T− λI )∗(x)‖

=
∥∥∥(T∗ − λI

)
(x)
∥∥∥ =

∥∥∥T∗ (x)− λx
∥∥∥ =

∥∥∥(T∗ − λI
)
(x)
∥∥∥ .

Hence, T∗ (x) = λx.

3. Let λ1 6= λ2 be two eigenvalues of T with corresponding eigenvectors x1 and x2. Then,

by part (2), we have:

(λ1 − λ2 )〈x1, x2 〉 = 〈λ1x1, x2 〉 − 〈 x1, λ2x2 〉

= 〈T (x1) , x2 〉 − 〈 x1,T∗ (x2) 〉 = 0.

But since λ1 − λ2 6= 0, then 〈x1, x2 〉 = 0.

Theorem 6.4.2

Let T be a linear operator on a finite-dimensional inner product space V over C. Then T is

normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Theorem 6.4.3

Let T be a self-adjoint linear operator on a finite-dimensional inner product space V. Then

every eigenvalues of T is real.

Proof:
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Assume that T (x) = λx for x 6= 0. Then

λx = T (x) = T∗ (x) = λx.

Therefore, λ = λ and hence λ is real.

Theorem 6.4.4

Let T be a linear operator on a finite-dimensional inner product space over R. Then, T is

self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors

of T.

Lemma 6.4.1

Let T be a self-adjoint operator on a finite-dimensional inner product space V. If 〈x,T (x) 〉 =

0, for all x ∈ V, then T = T0.

Proof:

Choose an orthonormal basis β for V consisting of eigenvectors of T. If x ∈ β, then T (x) = λx

for some λ. Then

0 = 〈x,T (x) 〉 = 〈x, λx 〉 = λ〈x, x 〉.

So, λ = 0. Hence T (x) = 0 for all x ∈ β, and thus T = T0.

Definition 6.4.2

Let T be a linear operator on a finite-dimensional inner product space V over F. If ‖T (x)‖ =

‖x‖ for all x ∈ V, we call T a unitary operator if F = C and an orthogonal operator if

F = R. Moreover, a square matrix A is called an orthogonal matrix if AAT = ATA = I and

unitary matrix if AA∗ = A∗A = I.

Remark 6.4.2

Note that, the condition AA∗ = I is equivalent to the statement that the rows of A form an

orthonormal basis for Fn. The same statement can be made on the columns of A and the

condition A∗A = I.
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Remark 6.4.3

A linear operator T on a inner product space V is unitary (orthogonal) if and only if [T]β is

unitary (orthogonal, respectively), for some orthonormal basis β for V.

Theorem 6.4.5

Let T be a linear operator on a finite-dimensional inner product space V. Then the following

statements are equivalent:

1. TT∗ = T∗T = IV .

2. 〈T (x) ,T (y) 〉 = 〈x, y 〉 for all x, y ∈ V.

3. If β is an orthonormal basis for V, then T (β) is an orthonormal basis for V.

4. ‖T (x)‖ = ‖x‖ for all x ∈ V.

Proof:

We proof that each statement implies the following one as follows:

1. 1→ 2: Let x, y ∈ V, then 〈x, y 〉 = 〈T∗T (x) , y 〉 = 〈T (x) ,T (y) 〉.

2. 2 → 3: Let β = {x1, x2, · · · , xn } be an orthonormal basis for V. So T (β) =

{T (x1) ,T (x2) , · · · ,T (xn) }. It follows that 〈T (xi) ,T (xj) 〉 = 〈xi, xj 〉 = δij where

δij = 1 if i = j and δij = 0 otherwise. Hence, T (β) is an orthonormal basis for V.

3. 3 → 4: Let x ∈ V and let β = {x1, x2, · · · , xn} be an orthonormal basis for V. Then

x = ∑n
i=1 aixi for some scalars ai and hence

‖x‖2 = 〈x, x 〉 = 〈
n∑
i=1

aixi,
n∑
j=1

ajxj 〉 =
n∑
i=1

n∑
j=1

aiaj〈xi, xj 〉

=
n∑
i=1

n∑
j=1

aiajδij =
n∑
i=1

aiai =
n∑
i=1
| ai |2 .

In a similar way, T (x) = ∑n
i=1 aiT (xi), and using the fact that T (β) is also orthonor-

mal, we obtain ‖T (x)‖2 = ∑n
i=1 | ai |

2. Therefore, ‖T (x)‖ = ‖x‖.

4. 4→ 1: For any x ∈ V,

〈x, x 〉 = ‖x‖2 = ‖T (x)‖2 = 〈T (x) ,T (x) 〉 = 〈x,T∗T (x) 〉.

Thus, T∗T (x) = x and hence ( T∗T− IV )(x) = 0. Thus, 〈x, ( T∗T− IV )(x) 〉 = 0

for all x ∈ V. Also, ( T∗T− IV ) is clearly self-adjoint. By Lemma 6.4.1, we get

( T∗T− IV ) = T0 and therefore, T∗T = IV .
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Definition 6.4.3

Two square matrices A and B are said to be unitarily equivalent (orthogonally equiv-

alent) if and only if there exists a unitary (orthogonal, respectively) matrix P such that

A = P ∗BP .

Theorem 6.4.6

Let A be n× n matrix. Then:

1. If A is complex. Then, A is normal if and only if A is unitarily equivalent to a diagonal

matrix.

2. If A is real. Then, A is symmetric if and only if A is orthogonally equivalent to a real

diagonal matrix.

Example 6.4.1

Let T be a linear operator on an inner product space V. Let U1 = T + T∗ and U2 = TT∗.

Show that U1 and U2 are both self-adjoint.

Solution:

Clearly

U∗1 = ( T + T∗ )∗ = T∗ + ( T∗ )∗ = T∗ + T = T + T∗ = U1.

U∗2 = ( TT∗ )∗ = ( T∗ )∗T∗ = TT∗ = U2.

Example 6.4.2

Let T be a linear operator on V = R2 defined by T (a, b) = ( 2a− 2b,−2a+ 5b ). Determine

whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis β = { (1, 0), (0, 1) }. Then, A = [T]β =
 2 −2
−2 5

. Therefore,

A is self-adjoint and hence it is normal. That is, T is self-adjoint and normal operator.

We now produce an orthonormal basis for V consisting of eigenvectors of T. Consider the
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characteristic polynomial:

f(λ) = |A− λI2 | =

∣∣∣∣∣∣2− λ −2
−2 5− λ

∣∣∣∣∣∣ = · · · = (λ− 1 )(λ− 6 ) = 0.

Therefore, λ1 = 1 and λ2 = 6. For Eλ1 : The eigenspace Eλ1 corresponding to λ1 = 1 is

Eλ1 = N (T− I2). Therefore

Eλ1 =

 (a, b) ∈ R2 :
 1 −2
−2 4

a
b

 =
0

0

.
Which implies that a = 2b. That is,

Eλ1 = { t( 2, 1 ) : t ∈ R }.

Therefore, γ1 = { ( 2, 1 ) } is a basis for Eλ1 .

For Eλ2 : The eigenspace Eλ2 corresponding to λ2 = 6 is Eλ2 = N (T− 6I2). Therefore

Eλ2 =

 (a, b) ∈ R2 :
−4 −2
−2 −1

a
b

 =
0

0

.
Which implies that a = −1

2b. That is,

Eλ2 = { t( 1,−2 ) : t ∈ R }.

Therefore, γ2 = { ( 1,−2 ) } is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 = { ( 2, 1 ), ( 1,−2 ) } is orthogonal basis for V consisting of eigenvectors of

T. Normalizing the vectors of γ, we obtain γ∗ which is orthonormal basis for V consisting of

eigenvectors of T, where

γ∗ =
{

1√
5

( 2, 1 ), 1√
5

( 1,−2 )
}
.

We note that, we can confirm our solution by confirming that Q−1AQ = diag(1, 6), where

Q = 1√
5

2 1
1 −2

.

Example 6.4.3

Let T be a linear operator V = R3 defined by T (a, b, c) = (−a+ b, 5b, 4a− 2b+ 5c ). Deter-

mine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis
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of eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis β = { (1, 0, 0), (0, 1, 0), (0, 0, 1) }. Then, A = [T]β =
−1 1 0
0 5 0
4 −2 5

. Then A∗ =


−1 0 4
1 5 −2
0 0 5

. Therefore, A is not self-adjoint as A∗ 6= A.

Furthermore, (AA∗ )11 = 2 while (A∗A )11 = 17. Hence A is not normal. Therefore it has no

orthonormal basis for V consisting of eigenvectors of T.

Example 6.4.4

Let T be a linear operator on V = C2 defined by T (a, b) = ( 2a+ bi, a+ 2b ). Determine

whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis β = { (1, 0), (0, 1) }. Then, A = [T]β =
2 i

1 2

. Then A∗ = 2 1
−i 2

. Therefore, A is not self-adjoint. However, AA∗ = A∗A =
 5 2 + 2i

2− 2i 5

.

That is, T is normal operator. We now produce an orthonormal basis for V consisting of

eigenvectors of T. Consider the characteristic polynomial:

f(λ) = |A− λI2 | =

∣∣∣∣∣∣2− λ i

1 2− λ

∣∣∣∣∣∣ = λ2−4λ+(4−i) =
(
λ− (2 +

√
i)
)(
λ− (2−

√
i)
)

= 0.

Therefore, λ1 = 2 +
√
i and λ2 = 2−

√
i.

For Eλ1 : The eigenspace Eλ1 corresponding to λ1 = 2 +
√
i is Eλ1 = N (T − (2 +

√
i)I2).

Therefore

Eλ1 =

 (a, b) ∈ C2 :
−√i i

1 −
√
i

a
b

 =
0

0

.
Which implies that a = b

√
i. That is,

Eλ1 =
{
t
(√

i, 1
)

: t ∈ R
}
.

Therefore, γ1 =
{ (√

i, 1
) }

is a basis for Eλ1 .
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For Eλ2 : The eigenspace Eλ2 corresponding to λ2 = 2 −
√
i is Eλ2 = N (T − (2 −

√
i)I2).

Therefore

Eλ2 =

 (a, b) ∈ C2 :
√i i

1
√
i

a
b

 =
0

0

.
Which implies that a = −b

√
i. That is,

Eλ2 =
{
t
(√

i,−1
)

: t ∈ R
}
.

Therefore, γ2 =
{ (√

i,−1
) }

is a basis for Eλ2 .

Thus, γ = γ1∪γ2 =
{ (√

i, 1
)
,
(√

i,−1
) }

is orthogonal basis for V consisting of eigenvectors

of T. Normalizing the vectors of γ, we obtain γ∗ which is orthonormal basis for V consisting

of eigenvectors of T, where

γ∗ =
{

1√
2
(√

i, 1
)
,

1√
2
(√

i,−1
)}

.

We note that, we can confirm our solution by confirming that Q−1AQ = diag(2+
√
i, 2−

√
i),

where Q = 1√
2

√i √
i

1 −1

.

Example 6.4.5

Let T be a linear operator on V = P2(R) defined by T (f) = f ′, where 〈 f, g 〉 =
∫ 1

0 f(t)g(t)dt.

Determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal

basis of eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

We first consider the standard ordered basis for P2(R) which β = { 1, x, x2 }. Note that β is

not orthonormal and hence we use the Gram-Schmidt process to construct orthogonal basis

and then normalize it to obtain an orthonormal basis. Let β = {u1 = 1, u2 = x, u3 = x2 }.

Then, β′ = { v1, v2, v3 } is orthogonal basis for P2(R), where v1 = u1 = 1. And,

v2 = u2 −
(
〈u2, v1 〉
‖v1‖2 v1

)
= x−

(
〈x, 1 〉
〈 1, 1 〉 · 1

)
= x− 1

2 ,
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where 〈x, 1 〉 = 1
2 and 〈 1, 1 〉 = 1. And,

v3 = u3 −
(
〈u3, v1 〉
‖v1‖2 v1 + 〈u3, v2 〉

‖v2‖2 v2

)
= x2 −

 〈x2, 1 〉
‖1‖2 · 1 +

〈x2, (x− 1
2) 〉∥∥∥x− 1

2

∥∥∥2 (x− 1
2)


= x2 −

( 1
3

)
−
( 1

4 −
1
6

)(
x− 1

2

)
= x2 − x+ 1

6 ,

where
∥∥∥x− 1

2

∥∥∥2
= 1

12 , 〈x2, 1 〉 = 1
3 , and 〈x2, x− 1

2 〉 = 1
12 .

Thus, β′ =
{

1, x− 1
2 , x

2 − x+ 1
6

}
is orthogonal basis for P2(R). We may observe that

‖1‖ = 1,
∥∥∥∥x− 1

2

∥∥∥∥ = 1
2
√

3
, and

∥∥∥∥x2 − x+ 1
6

∥∥∥∥ = 1
6
√

5
.

Therefore, γ =
{

1, 2
√

3
(
x− 1

2

)
, 6
√

5
(
x2 − x+ 1

6

) }
is orthonormal basis for P2(R). We

now compute the representation of T relative to γ. Note that, we can compute the Fourier

coefficients as in Theorem 6.2.3:

T (1) = 0 ⇒ [T (1)]γ = (0, 0, 0).

T
(
2
√

3
(
x− 1

2

))
= 2
√

3 ⇒
[
T
(
2
√

3
(
x− 1

2

))]
γ

= ( 2√
3 , 0, 0).

T
(
6
√

5
(
x2 − x+ 1

6

))
= 12

√
5x− 6

√
5 ⇒

[
T
(
6
√

5
(
x2 − x+ 1

6

))]
γ

= (0, 2
√

15, 0).

That is [T]γ =


0 2

√
3 0

0 0 2
√

15
0 0 0

. Hence, T is not self-adjoint and not normal, for instance

([T]γ [T]∗γ)11 = 12 while ([T]∗γ [T]γ)11 = 0. Therefore, there is no orthonormal basis for P2(R)

consisting of eigenvectors of T.

Example 6.4.6

Let T be a linear operator on V = M2×2(R) defined by T

a b

c d

 =
c d

a b

. Determine

whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:
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Choose the standard orthonormal basis β = {E11, E12, E21, E22 }. Then,

T

1 0
0 0

 =
0 0

1 0

 ⇒

T

1 0
0 0


β

= (0, 0, 1, 0)

T

0 1
0 0

 =
0 0

0 1

 ⇒

T

0 1
0 0


β

= (0, 0, 0, 1)

T

0 0
1 0

 =
1 0

0 0

 ⇒

T

0 0
1 0


β

= (1, 0, 0, 0)

T

0 0
0 1

 =
0 1

0 0

 ⇒

T

0 0
0 1


β

= (0, 1, 0, 0).

Therefore, A = [T]β =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

. Then A and hence T is self-adjoint and normal.

We now produce an orthonormal basis for V consisting of eigenvectors of T. Consider the

characteristic polynomial:

f(λ) = |A− λI4 | =

∣∣∣∣∣∣∣∣∣∣∣
−λ 0 1 0
0 −λ 0 1
1 0 −λ 0
0 1 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
λ2 − 1

)2
= 0.

Therefore, λ1 = −1 and λ2 = 1.

For Eλ1 : The eigenspace Eλ1 corresponding to λ1 = −1 is Eλ1 = N (T + I4). Therefore

Eλ1 =


(a, b, c, d) ∈ R4 :


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




a

b

c

d

 =


0
0
0
0




.

Which implies that a = −c and b = −d. That is,

Eλ1 = { t( 1, 0,−1, 0 ), r( 0, 1, 0,−1 ) : t, r ∈ R }.

Therefore, γ1 = { ( 1, 0,−1, 0 ), ( 0, 1, 0,−1 ) } is a basis for Eλ1 .

For Eλ2 : The eigenspace Eλ2 corresponding to λ2 = 1 is Eλ2 = N (T− I4). Therefore

Eλ2 =


(a, b, c, d) ∈ R4 :


−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1




a

b

c

d

 =


0
0
0
0




.
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Which implies that a = c and b = d. That is,

Eλ2 = { t( 1, 0, 1, 0 ), r( 0, 1, 0, 1 ) : t, r ∈ R }.

Therefore, γ2 = { ( 1, 0, 1, 0 ), ( 0, 1, 0, 1 ) } is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 = { ( 1, 0,−1, 0 ), ( 0, 1, 0,−1 ), ( 1, 0, 1, 0 ), ( 0, 1, 0, 1 ) } is orthogonal basis

for V consisting of eigenvectors of T. Normalizing the vectors of γ, we obtain γ∗ which is

orthonormal basis for V consisting of eigenvectors of T, where

γ∗ =
{

1√
2

( 1, 0,−1, 0 ), 1√
2

( 1, 0,−1, 0 ), 1√
2

( 1, 0, 1, 0 ), 1√
2

( 1, 0, 1, 0 )
}
.

Example 6.4.7

Let A =
1 2

2 1

. Show that A is orthogonally equivalent to a diagonal matrix, and find an

orthogonal or unitary matrix P and a diagonal matrix D such that P ∗AP = D.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We

then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from

orthonormal basis) so that P ∗AP = D = diag(λ1, λ2).

f(λ) = |A− λI2 | =

∣∣∣∣∣∣1− λ 2
2 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 4 = 0.

Thus, λ1 = −1 and λ2 = 3.

For Eλ1 : The eigenspace Eλ1 corresponding to λ1 = −1 is Eλ1 = N (T + I2). Therefore

Eλ1 =

 (a, b) ∈ R2 :
2 2

2 2

a
b

 =
0

0

.
Which implies that a = −b. That is,

Eλ1 = { t( 1,−1 ) : t ∈ R }.

Therefore, γ1 = { ( 1,−1 ) } is a basis for Eλ1 .

For Eλ2 : The eigenspace Eλ2 corresponding to λ2 = 3 is Eλ2 = N (T− 3I2). Therefore

Eλ2 =

 (a, b) ∈ R2 :
−2 2

2 −2

a
b

 =
0

0

.
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Which implies that a = b. That is,

Eλ2 = { t( 1, 1 ) : t ∈ R }.

Therefore, γ2 = { ( 1, 1 ) } is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 = { ( 1,−1 ), ( 1, 1 ) } is orthogonal basis consisting of eigenvectors of

A. Normalizing the vectors of γ, we obtain γ∗ which is orthonormal basis consisting of

eigenvectors of A, where

γ∗ =
{

1√
2

( 1,−1 ), 1√
2

( 1, 1 )
}
.

Finally, P ∗AP = D, where P = 1√
2

 1 1
−1 1

 and D = diag(−1, 3).

Example 6.4.8

Let A =


0 2 2
2 0 2
2 2 0

. Show that A is orthogonally equivalent to a diagonal matrix, and find

an orthogonal or unitary matrix P and a diagonal matrix D such that P ∗AP = D.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We

then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from

orthonormal basis) so that P ∗AP = D = diag(λ1, λ2.λ3).

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
−λ 2 2
2 −λ 2
2 2 −λ

∣∣∣∣∣∣∣∣∣ = · · · = (λ+ 2)2(4− λ) = 0.

Thus, λ1 = −2 and λ2 = 4.

For Eλ1 : The eigenspace Eλ1 corresponding to λ1 = −2 is Eλ1 = N (T + 2I2). Therefore

Eλ1 =

 (a, b, c) ∈ R3 :


2 2 2
2 2 2
2 2 2



a

b

c

 =


0
0
0


.

Which implies that a = −b− c. That is,

Eλ1 = { t( 1,−1, 0 ), r( 1, 0,−1 ) : t, r ∈ R }.
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Therefore, γ1 = {u1 = ( 1,−1, 0 ), u2 = ( 1, 0,−1 ) } is a basis for Eλ1 . We note that γ1 is not

orthogonal set, and hence we use Gram-Schmidt process to orthogonalize it. Let v1 = u1 =

( 1,−1, 0 ), and

v2 = u2 −
〈u2, v1 〉
‖v1‖2 v1 = ( 1, 0,−1 )− 〈 ( 1, 0,−1 ), ( 1,−1, 0 ) 〉

‖( 1,−1, 0 )‖2 ( 1,−1, 0 ) =
( 1

2 ,
1
2 ,−1

)
.

Hence, γ∗1 =
{

( 1,−1, 0 ),
(

1
2 ,

1
2 ,−1

) }
is orthogonal basis for Eλ1 .

For Eλ2 : The eigenspace Eλ2 corresponding to λ2 = 4 is Eλ2 = N (T− 4I2). Therefore

Eλ2 =

 (a, b) ∈ R2 :


−4 2 2
2 −4 2
2 2 −4



a

b

c

 =


0
0
0


.

Which implies that a = b = c. That is,

Eλ2 = { t( 1, 1, 1 ) : t ∈ R }.

Therefore, γ2 = { ( 1, 1, 1 ) } is a basis for Eλ2 .

Thus, γ = γ∗1 ∪ γ2 =
{

( 1,−1, 0 ),
(

1
2 ,

1
2 ,−1

)
, ( 1, 1, 1 )

}
is orthogonal basis consisting of

eigenvectors of A. Normalizing the vectors of γ, we obtain γ∗ which is orthonormal basis

consisting of eigenvectors of A, where

γ∗ =

 1√
2

( 1,−1, 0 ),
√

2
3

( 1
2 ,

1
2 ,−1

)
,

1√
3

( 1, 1, 1 )

.
Finally, P ∗AP = D, where

P =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

 , and D = diag(−2,−2, 4).
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Exercise 6.4.1

Solve the following exercises from the book at pages 352 - 357:

• 2 : a, b, c, g, and h.
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