Advanced Linear Algebra: Math 363

Dr. Abdullah Al-Azemi
Mathematics Department
Kuwait University

December 21, 2019

Contents

0 Review 1
0.1 Fields 1
0.2 Some Facts About Complex Numbers \mathbb{C} 3
1 Vector Spaces 5
1.2 Vector Spaces 5
1.3 Subspaces 10
1.4 Linear Combinations and Systems of Linear Equations 14
1.5 Linear Dependence and Linear Independence 21
1.6 Bases and Dimension 26
2 Linear Transformations and Matrices 35
2.1 Linear Transformations, Null Space, and Ranges 35
2.2 The Matrix Representation of Linear Transformation 49
2.5 The Change of Coordinate Matrix 61
5 Diagonalization 67
5.1 Eigenvalues and Eigenvectors 67
5.2 Diagonalizability 81
5.4 Invariant Subspaces and The Cayley-Hamilton Theorem 91
6 Inner Product Spaces 99
6.1 Inner Product and Norms 99
6.2 The Gram-Schmidt Orthogonalization Process 107
6.3 The Adjoint of a Linear Operator 114
6.4 Self-Adjoint, Normal, and Unitary Operators 119

Section 0.1: Fields

Definition 0.1.1

A field \mathbb{F} is a set on which two operations + and \cdot (called addition and multiplication, respectively) are defined, such that for each pair of elements $x, y \in \mathbb{F}$, there are unique elements $x+y$ and $x \cdot y$ in \mathbb{F} for which the following properties hold for all elements $a, b, c \in \mathbb{F}$.

F1. $a+b=b+a$ and $a \cdot b=b \cdot a$
(Commutativity).
F2. $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(associativity).

F3. There are unique elements 0 and 1 in \mathbb{F} such that

$$
\text { (identities): } \quad 0+a=a \text { and } 1 \cdot a=a
$$

F4. For each element $a \in \mathbb{F}$ and each nonzero element $b \in \mathbb{F}$, there exist unique elements c and d in \mathbb{F} such that

$$
\text { (inverses): } \quad a+c=0 \text { and } b \cdot d=1
$$

F5. $a \cdot(b+c)=a \cdot b+a \cdot c$
(distributivity).

Example 0.1.1
The following sets are fields with the usual definitions of addition and multiplication:

1. real numbers \mathbb{R}, and rational numbers \mathbb{Q}.
2. $\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$.

Example 0.1.2
The field $\mathbb{Z}_{2}=\{0,1\}$ with the operations of addition and multiplication defined by

$$
\begin{aligned}
& 0+0=0, \quad 0+1=1+0=1, \quad 1+1=0, \\
& 0 \cdot 0=0, \quad 0 \cdot 1=1 \cdot 0=0, \quad \text { and } 1 \cdot 1=1 .
\end{aligned}
$$

Remark 0.1.1

The sets $\mathbb{Z}^{+}, \mathbb{Z}^{-}$, and \mathbb{Z} are not fields since the property $\mathbf{F} 4$ does not hold for all of the three sets.

Theorem 0.1.1

For any elements a, b, and c in a field \mathbb{F}, the following statements hold:

1. The Cancellation Laws $\left\{\begin{array}{l}\text { If } a+c=b+c, \text { then } a=b, \\ \text { If } a c=b c \text { and } c \neq 0, \text { then } a=b .\end{array}\right.$
2. $a \cdot 0=0$.
3. $(-a) \cdot b=a \cdot(-b)=-(a \cdot b)$.
4. $(-a) \cdot(-b)=a \cdot b$.

Definition 0.1.2

In a field \mathbb{F}, the smallest positive integer p such that the sum of $p 1^{\prime} s$ is 0 is called the characteristic of \mathbb{F}. If no such positive integer exists, then \mathbb{F} is said to have characteristic zero.

Note that \mathbb{Z}_{2} has characteristic 2, while \mathbb{R} has characteristic zero.

Section 0.2: Some Facts About Complex Numbers \mathbb{C}

Definition 0.2.1

A compleax number is an expression of the form $z=a+b i$, where a and b are real numbers called the real part and the imaginary part of z, respectively. Note that $i=\sqrt{-1}$ and hence $i^{2}=-1$.

The sum and product of two complex numbers $z=a+b i$ and $w=c+d i$ are defined by

$$
z+w=(a+c)+(b+d) i, \text { and } z w=(a+b i)(c+d i)=(a c-d b)+(a d+b c) i
$$

Definition 0.2.2

The complex conjugate of a complex number $z=a+b i$ is the complex number $\bar{z}=a-b i$. Moreover, the absolute value (or modulus) of z is the real number $\sqrt{a^{2}+b^{2}}$.

Let $z=a+i b, w=c+d i \in \mathbb{C}$ for some $a, b, c, d \in \mathbb{R}$, then the following statements are true:

Facts

1. $\overline{\bar{z}}=z$.
2. $\overline{z+w}=\bar{z}+\bar{w}$.
3. $\overline{z w}=\bar{z} \cdot \bar{w}$.
4. $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}$, if $w \neq 0$.
5. $z \bar{z}=|z|^{2}$.
6. $|z w|=|z| \cdot|w|$.
7. $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$, if $w \neq 0$.
8. $|z|-|w| \leq|z+w| \leq|z|+|w|$.
9. $z+\bar{z}=2 \operatorname{Re}(z)=2 a$.
10. $z-\bar{z}=2 \operatorname{Im}(z)=2 b$.

Section 1.2: Vector Spaces

An object of the form $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, where x_{1}, \cdots, x_{n} are elements of a field \mathbb{F}, is called an n-tuple. Such object is called a vector. Moreover, the set of all vectors with entries from \mathbb{F} is denoted by \mathbb{F}^{n}.

The elements $x_{1} \cdots, x_{n}$ are called the entries or components.

Definition 1.2.1

A vector space (or linear space) \mathbb{V} over a field \mathbb{F} is a set of elements on which two operations (called addition and scalar multiplication) are defined so that
(α) If $x, y \in \mathbb{V}$, then $x+y \in \mathbb{V}$; that is, " \mathbb{V} is closed under + ".
VS1. $x+y=y+x$ for all $x, y \in \mathbb{V}$.
VS2. $(x+y)+z=x+(y+z)$ for all $x, y, z \in \mathbb{V}$.
VS3. There exists an element $\mathbf{0}$ in \mathbb{V} such that $x+\mathbf{0}=x$ for each $x \in \mathbb{V}$.
VS4. For each $x \in \mathbb{V}$, there exists an element $y \in \mathbb{V}$ such that $x+y=\mathbf{0}$.
(β) If $x \in \mathbb{V}$ and $a \in \mathbb{F}$, then $a x \in \mathbb{V}$; that is, " \mathbb{V} is closed under \cdot ".
VS5. For each $x \in \mathbb{V}, 1 x=x$.
VS6. For each pair of elements $a, b \in \mathbb{F}$ and each element $x \in \mathbb{V},(a b) x=a(b x)$.
VS7. For each $a \in \mathbb{F}$ and $x, y \in \mathbb{V}, a(x+y)=a x+a y$.
VS8. For each $a, b \in \mathbb{F}$ and $x \in \mathbb{V},(a+b) x=a x+b x$.

Remark 1.2.1

A vector space \mathbb{V} along with operation + and \cdot is denoted by $(\mathbb{V},+, \cdot)$.

Theorem 1.2.1

For any positive integer $n,\left(\mathbb{R}^{n},+, \cdot\right)$ is a vector space.

Example 1.2.1

Let $M_{m \times n}(\mathbb{F})=\{$ all $m \times n$ matrices over a field $\mathbb{F}\}$. Then $\left(M_{m \times n}(\mathbb{F}),+, \cdot\right)$ is a vector space where for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in M_{m \times n}(\mathbb{F})$ and for $c \in \mathbb{F}$, we have

$$
(A+B)_{i j}=\left(a_{i j}+b_{i j}\right) \text { and }(c A)_{i j}=c a_{i j},
$$

for all $1 \leq i \leq m$ and $1 \leq j \leq n$.

Example 1.2.2

Let S be a nonempty set and \mathbb{F} be any field, and let $\mathcal{F}(S, \mathbb{F})$ denote the set of all functions from S to \mathbb{F}. Two functions $f, g \in \mathcal{F}(S, \mathbb{F})$ are called equal if $f(x)=g(x)$ for each $x \in S$. The set $\mathcal{F}(S, \mathbb{F})$ is a vector space with the operations of addition and scalar multiplication defined for $f, g \in \mathcal{F}(S, \mathbb{F})$ and $c \in \mathbb{F}$ by

$$
(f+g)(x)=f(x)+g(x) \quad \text { and } \quad(c f)(x)=c f(x)
$$

for each $x \in S$.

Example 1.2.3

Let $S=\{(a, b): a, b \in \mathbb{R}\}$. For any $(a, b),(x, y) \in S$ and $c \in \mathbb{R}$, define

$$
(a, b) \oplus(x, y)=(a+x, b-y) \quad \text { and } \quad c \odot(a, b)=(c a, c b) .
$$

Is (S, \oplus, \odot) a vector space?

Solution:

No. Since (VS1), (VS2), and (VS8) are not satisfied (verify!). For instace, $(1,2) \oplus(1,3) \neq$ $(1,3) \oplus(1,2)$.

Theorem 1.2.2: Cancellation Law for Vector Addition

If x, y, and z are vectors in a vector space \mathbb{V} such that $x+z=y+z$, then $x=y$.

Proof:

There is a vector $v \in \mathbb{V}$ such that $z+v=\mathbf{0}$. Then

$$
\begin{aligned}
x & =x+\mathbf{0}=x+(z+v)=(x+z)+v \\
& =(y+z)+v=y+(z+v)=y+\mathbf{0}=y .
\end{aligned}
$$

Theorem 1.2.3

Let $(\mathbb{V},+, \cdot)$ be a vector space. Then
(a) The zero vector in \mathbb{V} is unique.
(b) The addition inverse for each element in \mathbb{V} is unique.

Proof:

(a): Assume that $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are two zeros in \mathbb{V}, then for any $x \in \mathbb{V}$, we have $x+\mathbf{0}_{1}=x=x+\mathbf{0}_{2}$. Thus, using the cancellation law we have

$$
x+\mathbf{0}_{1}=x+\mathbf{0}_{2} \quad \Rightarrow \quad \mathbf{0}_{1}=\mathbf{0}_{2} .
$$

(b): For any $x \in \mathbb{V}$, assume that y and z are two additive inverses for x. Then, by cancellation law we have

$$
x+y=0=x+z \quad \Rightarrow \quad y=z .
$$

Theorem 1.2.4

In any vector space \mathbb{V}, the following statements are true.
(a) $0 x=\mathbf{0}$ for each $x \in \mathbb{V}$.
(b) $(-a) x=-(a x)=a(-x)$ for each $a \in \mathbb{F}$ and each $x \in \mathbb{V}$.
(c) $a \mathbf{0}=\mathbf{0}$ for each $a \in \mathbb{F}$.

Proof:

(a): Clearly $0 x+\mathbf{0}=0 x=(0+0) x=0 x+0 x$, and by cancellation law, $0 x=\mathbf{0}$.
(b): The element $-(a x)$ is the unique element in \mathbb{V} such that $a x+[-(a x)]=0$. But $a x+(-a) x=(a+(-a)) x=0 x=\mathbf{0}$ as well. Hence, $-(a x)=(-a) x$. Moreover,

$$
a(-x)=a[(-1) x]=(a(-1)) x=(-a) x .
$$

(c): Note that $\mathbf{0}=\mathbf{0}+\mathbf{0}$. Thus,

$$
a \mathbf{0}+\mathbf{0}=a \mathbf{0}=a(\mathbf{0}+\mathbf{0})=a \mathbf{0}+a \mathbf{0} .
$$

By the cancellation law, we get $a \mathbf{0}=\mathbf{0}$.

Exercise 1.2.1

Solve the following exercises from the book at pages 12-16:

- 13, 17, 18.

Section 1.3: Subspaces

Definition 1.3.1

A subset \mathbb{W} of a vector space \mathbb{V} over a field \mathbb{F} is called subspace of \mathbb{V} if \mathbb{W} is a vector space over \mathbb{F} with operations of addition and scalar multiplication defined on \mathbb{V}.

Note that, if \mathbb{V} is any vector space, then $\{\mathbf{0}\}$ and \mathbb{V} are both subspaces of \mathbb{V}.

Theorem 1.3.1

Let \mathbb{V} be a vector space over a field \mathbb{F} and \mathbb{W} is a subset of \mathbb{V}. Then, \mathbb{W} is a subspace of \mathbb{V} if and only if:

1. $0 \in \mathbb{W}$.
2. For any $x, y \in \mathbb{W}, x+y \in \mathbb{W}$.
3. For any $x \in \mathbb{W}$ and any $a \in \mathbb{F}, a x \in \mathbb{W}$.

Example 1.3.1

Show that the set \mathbb{W} of all symmetric matrices (that is matrices with property $A^{t}=A$) is a subspace of $M_{n \times n}(\mathbb{F})$.

Solution:

We need to show the three conditions of Theorem 1.3.1.

1. Clearly, $\mathbf{0}_{n \times n}^{t}=\mathbf{0}_{n \times n}$ and hence $\mathbf{0}_{n \times n} \in \mathbb{W}$.
2. Let $A, B \in \mathbb{W}$. Then $A^{t}=A$ and $B^{t}=B$ and hence $(A+B)^{t}=A^{t}+B^{t}=A+B$. Thus, $A+B \in \mathbb{W}$.
3. Let $A \in \mathbb{W}$ and $a \in \mathbb{F}$. Then $A^{t}=A$ and hence $(a A)^{t}=a A^{t}=a A$. Thus, $a A \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{F})$.

Note that the set \mathbb{W} of all non-singular matrices in $M_{n \times n}(\mathbb{F})$ is not a subspace of $M_{n \times n}(\mathbb{F})$. Can you guess why!?

Definition 1.3.2

The trace of an $n \times n$ matrix A, denoted $\operatorname{tr}(A)$, is the sum of the diagonal entries of A. That is, for $A=\left(a_{i j}\right)$,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\cdots+a_{n n} .
$$

Example 1.3.2: Exercise \#6 @ page 20
Show that $\operatorname{tr}(c A+d B)=c \operatorname{tr}(A)+d \operatorname{tr}(B)$ for any $n \times n$ matrices A and B.

Solution:

If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $c A=\left(c a_{i j}\right)$ and $d B=\left(d b_{i j}\right)$ for $1 \leq i, j \leq n$. Thus

$$
\begin{aligned}
\operatorname{tr}(c A+d B) & =\left(c a_{11}+d b_{11}\right)+\left(c a_{22}+d b_{22}\right)+\cdots+\left(c a_{n n}+d b_{n n}\right) \\
& =c\left(a_{11}+a_{22}+\cdots+a_{n n}\right)+d\left(b_{11}+b_{22}+\cdots+b_{n n}\right) \\
& =c \operatorname{tr}(A)+d \operatorname{tr}(B) .
\end{aligned}
$$

Example 1.3.3

Show that the set $\mathbb{W}=\left\{A \in M_{n \times n}(\mathbb{F}): \operatorname{tr}(A)=0\right\}$ is a subspace of $M_{n \times n}(\mathbb{F})$.

Solution:

We need to show the three conditions of Theorem 1.3.1.

1. $\operatorname{tr}\left(\mathbf{0}_{n \times n}\right)=\sum_{i=1}^{n} 0=0$ and hence $\mathbf{0}_{n \times n} \in \mathbb{W}$.
2. Let $A, B \in \mathbb{W}$. Then $\operatorname{tr}(A)=\operatorname{tr}(B)=0$ and hence

$$
\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)=0+0=0
$$

Thus $A+B \in \mathbb{W}$.
3. Let $A \in \mathbb{W}$ and $c \in \mathbb{F}$, then $\operatorname{tr}(c A)=c \operatorname{tr}(A)=0$ and hence $c A \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of $M_{n \times n}(\mathbb{F})$.

Example 1.3.4

Let $\mathbb{W}=\{(x, y, z): z=x-y\}$. Show that \mathbb{W} is a subspace of \mathbb{R}^{3}.

Solution:

1. Clearly $\mathbf{0}=(0,0,0) \in \mathbb{W}$ since $0=0-0$.
2. Let $x=(a, b, c), y=(d, e, f) \in \mathbb{W}$. Then $c=a-b$ and $f=d-e$, and hence $x+y=(a+d, b+e, c+f)$ which is in \mathbb{W} since

$$
c+f=(a-b)+(d-e)=(a+d)-(b+e) .
$$

3. Let $x=(a, b, c) \in \mathbb{W}$ and $k \in \mathbb{F}$. Then $c=a-b$ and hence $k c=k a-k b$; that is $k x=(k a, k b, k c) \in \mathbb{W}$.

Therefore, \mathbb{W} is a subspace of \mathbb{R}^{3}.

Definition 1.3.3

Let $\mathbb{P}(\mathbb{F})$ denote the set of all polynomials with coefficients from a field \mathbb{F}. For integer $n \geq 0$, let $\mathbb{P}_{n}(\mathbb{F})$ be the set of all polynomials of degree less than or equal n with coefficients from \mathbb{F}.

For instance, $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{P}_{n}(\mathbb{F})$. Note that $f(x)=0$ means that $a_{n}=a_{n-1}=\cdots=a_{1}=a_{0}=0$ and hence f is called the zero polynomial. For our convenience, we define the degree of the zero polynomial as -1 .

Example 1.3.5

Show that $\mathbb{P}_{n}(\mathbb{F})$ is a subspace of $\mathbb{P}(\mathbb{F})$.

Solution:

1. Note that the zero polynomial is of degree -1 and hence it is in $\mathbb{P}_{n}(\mathbb{F})$.
2. Clearly the sum of two polynomial of degrees less than or equal n is another polynomial of degree less than or equal n.
3. The product of a scalar and a polynomial of degree less than or equal n is a polynomial of degree less than or equal n.

Therefore, $\mathbb{P}_{n}(\mathbb{F})$ is a subspace of $\mathbb{P}(\mathbb{F})$.

Exercise 1.3.1

Solve the following exercises from the book at pages 19-23:

- $6,8: a, b, c$.
- 11.

Section 1.4: Linear Combinations and Systems of Linear Equations

Definition 1.4.1

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a nonempty subset of vectors in a vector space \mathbb{V} over a field \mathbb{F}. A vector $x \in \mathbb{V}$ is called a linear combination of vectors in S if there exist $c_{1}, c_{2}, \cdots, c_{n} \in \mathbb{F}$ such that

$$
\begin{equation*}
x=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \tag{1.4.1}
\end{equation*}
$$

In that case, the scalars $c_{1}, c_{2}, \cdots, c_{n}$ are called the coefficients of the linear combination.

Recall from Math-111: To solve a system of linear equations $A x=B$, we simplify the original system $[A \mid B]$ to its reduced row echelon form (r.r.e.f for short) using the following elementary row operations:

1. Interchanging two rows.
2. Multiplying a row by a nonzero scalar.
3. Adding a multiple of a row to another.

Example 1.4.1
Is $x=(2,1,5)$ a linear combination of $S=\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq \mathbb{R}^{3}$, where $x_{1}=(1,2,1), x_{2}=$ $(1,0,2)$, and $x_{3}=(1,1,0)$? Explain.

Solution:

Note that x is a linear combination of $\left\{x_{1}, x_{2}, x_{3}\right\}$ if we find scalars $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that $x=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$. Thus, we consider

$$
(2,1,5)=c_{1}(1,2,1)+c_{2}(1,0,2)+c_{3}(1,1,0)
$$

That is

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}=2 \\
& 2 c_{1}+0+c_{3}=1 \\
& c_{1}+2 c_{2}+0=5
\end{aligned}
$$

We then find the r.r.e.f. of that system as follows:

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 \\
1 & 2 & 0 & 5
\end{array}\right] \quad \xrightarrow{\text { r..e.f. }}\left[\begin{array}{lll|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

That is, $c_{1}=1, c_{2}=2$, and $c_{3}=-1$ and therefore $x=x_{1}+2 x_{2}-x_{3}$.

Definition 1.4.2

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a nonempty subset of vectors in a vector space \mathbb{V} over a field \mathbb{F}. The span of S, denoted span S, is the set of all linear combinations of the vectors in S. For convenience, we define span $\phi=\{0\}$, where ϕ is the empty set.

Theorem 1.4.1

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a subset of vectors in a vector space \mathbb{V}. The span S is a subspace of \mathbb{V}.

Proof:

Proved in Math 111. Let $\mathbb{W}=\operatorname{span} S=\left\{z: z=c_{1} x_{1}+\cdots c_{n} x_{n}\right\} \subseteq \mathbb{V}$. Then

1. $0 z=0 x_{1}+0 x_{2}+\cdots+0 x_{n}=0 \in \mathbb{W}$.
2. Let $z_{1}=c_{1} x_{1}+\cdots+c_{n} x_{n}, z_{2}=d_{1} x_{1}+\cdots+d_{n} x_{n} \in \mathbb{W}$. Then,

$$
z_{1}+z_{2}=\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)+\left(d_{1} x_{1}+\cdots+d_{n} x_{n}\right)=\left(c_{1}+d_{1}\right) x_{1}+\cdots+\left(c_{n}+d_{n}\right) x_{n} \in \mathbb{W} .
$$

3. Let $z=c_{1} x_{1}+\cdots+c_{n} x_{n} \in \mathbb{W}$ and let a be any scalar. Then

$$
a z=a\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)=a c_{1} x_{1}+\cdots+a c_{n} x_{n} \in \mathbb{W} .
$$

Therefore, \mathbb{W} is a subspace of \mathbb{V}.

Example 1.4.2

Let $S=\left\{1+x, 2-x^{2}, 1+x+x^{2}\right\}$ be a subset of $\mathbb{P}_{2}(\mathbb{R})$. Is x^{2} a linear combination of S ? Explain.

Solution:

Considering the system $x^{2}=c_{1}(1+x)+c_{2}\left(2-x^{2}\right)+c_{3}\left(1+x+x^{2}\right)$, we get

$$
x^{2}=\left(c_{1}+2 c_{2}+c_{3}\right) \cdot 1+\left(c_{1}+c_{3}\right) \cdot x+\left(-c_{2}+c_{3}\right) \cdot x^{2} .
$$

Hence

$$
\begin{array}{r}
c_{1}+2 c_{2}+c_{3}=0 \\
c_{1}+0+c_{3}=0 \\
0-c_{2}+c_{3}=1
\end{array}
$$

We then find the r.r.e.f. of that system as follows:

$$
\left[\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & -1 & 1 & 1
\end{array}\right] \quad \xrightarrow{\text { r.r.e.f. }}\left[\begin{array}{lll|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Therefore, $x^{2}=-1 \cdot(1+x)+0 \cdot\left(2-x^{2}\right)+1 \cdot\left(1+x+x^{2}\right)$, and x^{2} is a linear combination of S.

Example 1.4.3: Solving Example 1.3.4 in a different way

Show that $\mathbb{W}=\{(x, y, z): z=x-y\}$ is a subspace of \mathbb{R}^{3}.

Solution:

Note that $\mathbb{W}=\{(x, y, x-y): x, y \in \mathbb{R}\}=\{x(1,0,1)+y(0,1,-2): x, y \in \mathbb{R}\}$. That is, $\mathbb{W}=\operatorname{span}\{(1,0,1),(0,1,-1)\}$. Therefore, \mathbb{W} is a subspace of \mathbb{R}^{3}.

Example 1.4.4

Show that $\mathbb{W}=\left\{\left(\begin{array}{cc}a & a-b \\ a+b & b\end{array}\right): a, b \in \mathbb{R}\right\}$ is a subspace of $M_{2 \times 2}(\mathbb{R})$.

Solution:

Clearly $\mathbb{W}=\left\{a\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)+b\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right): a, b \in \mathbb{R}\right\}=\operatorname{span}\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)\right\}$ and therefore it is a subspace of $M_{2 \times 2}(\mathbb{R})$.

Example 1.4.5
Determine whether $x=\left(\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right) \quad$ is \quad in the $\operatorname{span} S$, where $S=$ $\left\{\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}$.

Solution:

Consider the system $\left(\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right)=a\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)+c\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$. Thus,

$$
1=a+c, 2=b+c,-3=-a, \text { and } 4=b .
$$

Therefore, $a=3, b=4, c=-2$ and hence $x \in \operatorname{span} S$ since it is a linear combination of S.

Definition 1.4.3

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a subset of a vector space \mathbb{V}. If every vector in \mathbb{V} is a linear combination of S, we say that S spans (or generates) \mathbb{V} or that \mathbb{V} is spanned (or generated) by S.

Example 1.4.6
Show that $S=\left\{x_{1}, x_{2}, x_{3}\right\}$ spans \mathbb{R}^{3}, where $x_{1}=(1,1,0), x_{2}=(1,0,1)$, and $x_{3}=(0,1,1)$.

Solution (1):

Let $x=(a, b, c) \in \mathbb{R}^{3}$ by an arbitrary vector. Consider the system $x=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$ and work its matrix form to get the system in its reduced form as follows:

$$
\left[\begin{array}{lll|r}
1 & 1 & 0 & a \\
1 & 0 & 1 & b \\
0 & 1 & 1 & c
\end{array}\right] \quad \xrightarrow{\text { r.r.e.f. }}\left[\begin{array}{lll|r}
1 & 0 & 0 & \frac{1}{2}(a+b-c) \\
0 & 1 & 0 & \frac{1}{2}(a-b+c) \\
0 & 0 & 1 & \frac{1}{2}(-a+b+c)
\end{array}\right]
$$

Thus, $c_{1}=\frac{1}{2}(a+b-c), c_{2}=\frac{1}{2}(a-b+c), c_{3}=\frac{1}{2}(-a+b+c)$ and hence S generates \mathbb{R}^{3}.

Solution (2):

We can solve the problem if we know that this system has at least one solution. So, we
compute the determinant of the associate matrix to the system

$$
\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=-2 \neq 0
$$

Therefore, the system has a unique soltion and hence S spans \mathbb{R}^{3}.

Remark 1.4.1

For any nonnegative $n, S=\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ spans $\mathbb{P}_{n}(\mathbb{R})$.

Example 1.4.7
Does the set $S=\left\{1-x, x-x^{2}, 1+x^{2}\right\}$ spans $\mathbb{P}_{2}(\mathbb{R})$? Explain.

Solution:

Consider any polynomial $a x^{2}+b x+c \in \mathbb{P}_{2}(\mathbb{R})$. Then
$a x^{2}+b x+c=c_{1}(1-x)+c_{2}\left(x-x^{2}\right)+c_{3}\left(1+x^{2}\right)=\left(c_{1}+c_{3}\right) \cdot 1+\left(-c_{1}+c_{2}\right) \cdot x+\left(-c_{2}+c_{3}\right) \cdot x^{2}$.
Thus $\left[\begin{array}{ccc|c}1 & 0 & 1 & c \\ -1 & 1 & 0 & b \\ 0 & -1 & 1 & a\end{array}\right]$ has a unique solution since

$$
\left|\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right|=2 \neq 0
$$

Thus, S spans $\mathbb{P}_{2}(\mathbb{R})$.

Example 1.4.8: Exercise \#13 @ page 34
Show that if S_{1} and S_{2} are subsets of a vector space \mathbb{V} such that $S_{1} \subseteq S_{2}$, then span $S_{1} \subseteq$ span S_{2}. If moreover, span $S_{1}=\mathbb{V}$, then span $S_{2}=\mathbb{V}$.

Solution:

Let $S_{1}=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \subseteq S_{2}$ and let $x \in \operatorname{span} S_{1}$. Then x can be written as a linear
combination of vectos of S_{1}; that is

$$
x=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{k} x_{k},
$$

for some scalars c_{1}, \cdots, c_{k}. But then x is also a linear combination of vectors in S_{2} since all vectors $x_{1}, \cdots, x_{k} \in S_{2}$. Thus span $S_{1} \subseteq$ span S_{2}.

If span $S_{1}=\mathbb{V}$, then we know that span S_{2} is a subspace of \mathbb{V} containing span $S_{1}=\mathbb{V}$. Therefore, span $S_{2}=\mathbb{V}$.

Exercise 1.4.1

Solve the following exercises from the book at pages 32-35:

- $2: a, b, c, 3: a, b, c, 4: a, b$.
- $5: a, b, e, f, g, h$.
- 6-9.
- 13.

Section 1.5: Linear Dependence and Linear Independence

It is clear that there are many different subsets that generates a subspace \mathbb{W} of a vector space \mathbb{V}. In this section, we will try to get these subsets as small as possible by removing unnecessary vectors from those subsets.

Remark 1.5.1

\mathbb{R}^{n} is generated by $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ where E_{i} is the vector whose all entries are 0 except for entry at position i which equals 1 .

Definition 1.5.1

The set of vectors $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ in a vector space \mathbb{V} is said to be linearly dependent if there exist scalars $c_{1}, c_{2}, \cdots, c_{n}$, not all zero, such that

$$
\begin{equation*}
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0 \tag{1.5.1}
\end{equation*}
$$

Otherwise, S is said to be linearly independent. That is, if whenever Equation (1.5.1) hold, we must have $c_{1}=c_{2}=\cdots=c_{n}=0$. In that case, we say that the zero vector has only the trivial representation as a linear combination of the vectors of S.

Remark 1.5.2

The homogenous system $A x=0$ (with a square matrix A) has only trivial solution if and only if $|A| \neq 0$.

Example 1.5.1

Determine whether the set $S=\left\{x_{1}=(1,0,1), x_{2}=(2,1,2), x_{3}=(1,1,1)\right\}$ is linearly dependent or independent in \mathbb{R}^{3}.

Solution (1):
We consider the homogenous system: $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}=0$. Solving this system, we see that

$$
\left[\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 2 & 1 & 0
\end{array}\right] \quad \xrightarrow{\text { r..e.f. }}\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

That is, $c_{1}-c_{3}=0$ and $c_{2}+c_{3}=0$. If $c_{3}=t \in \mathbb{R}$, the system has non-trivial solutions $c_{1}=t, c_{2}=-t, c_{3}=t$ and hence S is linearly dependent.

Solution (2):

Note that the determinant of matrix A (the matrix whose columns are the vectors of S) is 0 , and hence the set S is linearly dependent.

Example 1.5.2

Find the values, if any, of α so that the set S is linearly independent in \mathbb{R}^{3}, where

$$
S=\left\{x_{1}=(-1,0,-1), x_{2}=(2,1,2), x_{3}=(\alpha, 1,1)\right\}
$$

Solution:

Simply use the determinant of a matrix whose columns are the vectors of S. Consider the homogenous system $A x=0$ where $A=\left[\begin{array}{ccc}-1 & 2 & \alpha \\ 0 & 1 & 1 \\ -1 & 2 & 1\end{array}\right]$. Thus the system has only trivial solution if and only if S is linearly independent. Therefore, the $|A| \neq 0$. That is,

$$
\left|\begin{array}{ccc}
-1 & 2 & \alpha \\
0 & 1 & 1 \\
-1 & 2 & 1
\end{array}\right| \neq 0 \Leftrightarrow-1\left|\begin{array}{cc}
1 & 1 \\
2 & 1
\end{array}\right|-\left|\begin{array}{cc}
2 & \alpha \\
1 & 1
\end{array}\right| \neq 0 \Leftrightarrow 1-(2-\alpha) \neq 0 \Leftrightarrow \alpha \neq 1
$$

Thus, S is linearly independent only if $\alpha \neq 1$.

Theorem 1.5.1

Let S_{1} and S_{2} be two subsets of a vector space \mathbb{V} with $S_{1} \subseteq S_{2}$. Then

1. If S_{1} is linealry dependent, then S_{2} is linearly dependent.
2. If S_{2} is linearly independent, then S_{1} is linealry independent.

Example 1.5.3: Exercise \#2(a) @ page 40
Determine whether $S=\left\{\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right),\left(\begin{array}{cc}-2 & 6 \\ 4 & -8\end{array}\right)\right\}$ is linearly dependent or linealry independent set in $M_{2 \times 2}(\mathbb{R})$?

Solution:

Consider the system $a\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right)+b\left(\begin{array}{cc}-2 & 6 \\ 4 & -8\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Thus, we solve the following system

$$
\left[\begin{array}{rr|r}
1 & -2 & 0 \\
-3 & 6 & 0 \\
-2 & 4 & 0 \\
4 & -8 & 0
\end{array}\right] \quad \xrightarrow{\text { r.r.e.f. }}\left[\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

That is $a=2 b$ and the set is linearly dependent.

Example 1.5.4
Let $S=\left\{1-x, x-x^{2},-1+x^{2}\right\} \subseteq \mathbb{P}_{2}(\mathbb{R})$. Determine whether or not S is linearly dependent.

Solution:

Consider

$$
\begin{array}{r}
c_{1}(1-x)+c_{2}\left(x-x^{2}\right)+c_{3}\left(-1+x^{2}\right)=0 \\
\left(c_{1}-c_{3}\right) \cdot 1+\left(-c_{1}+c_{2}\right) \cdot x+\left(-c_{2}+c_{3}\right) \cdot x^{2}=0
\end{array}
$$

By equating the coefficients of x^{n} on both sides of the equation for $n=0,1,2$, we obtain the following homogenous system:

$$
\begin{aligned}
c_{1}-c_{3} & =0 \\
-c_{1}+c_{2} & =0 \\
-c_{2}+c_{3} & =0
\end{aligned}
$$

That is

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

But

$$
\left|\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right|=0
$$

Which implies that the system has a non-trivial solution and hence S is linearly dependent.

Exercise 1.5.1

Solve the following exercises from the book at pages 40-42:

- $2: a, b, c, d, e, f$.
- $4,5,6,9$

Exercise 1.5.2

Let x and y be two linearly independent vectors in a vector space \mathbb{V}. Show that the condition for the vectors $a x+b y$ and $c x+d y$ to be linearly dependent is $a d-b c=0$.

Solution:

Consider

$$
r_{1}(a x+b y)+r_{2}(c x+d y)=0 .
$$

Then, $\left(r_{1} a+r_{2} c\right) x+\left(r_{1} b+r_{2} d\right) y=0$ and hence $\left(r_{1} a+r_{2} c\right)=\left(r_{1} b+r_{2} d\right)=0$ since x and y are linearly independent. Considering the second system

$$
\begin{align*}
& a r_{1}+c r_{2}=0 \tag{1.5.2}\\
& b r_{1}+d r_{2}=0
\end{align*}
$$

For $a x+b y$ and $c x+d y$ to be linear dependent, we must have nontrivial solutions to the system represented in (1.5.2). That is, $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|=0$. That is $a d-b c=0$.

Section 1.6: Bases and Dimension

Let \mathbb{V} be a vector space with a subspace \mathbb{W}. We note that if S is a generating set for \mathbb{W} and no proper subset of S is a generating set for \mathbb{W}, then S must be a linearly independent set.

Definition 1.6.1

A set β of distinct nonzero vectors in a vector space \mathbb{V} is called a basis for \mathbb{V} if and only if

1. β spans (generates) \mathbb{V}, and
2. β is linearly independent set in \mathbb{V}.

Moreover, the dimension of \mathbb{V} is the number of vectors in its finite basis β, denoted by $\operatorname{dim}(\mathbb{V})$. In that case, we say that \mathbb{V} is a finite-dimensional vector space.

Remark 1.6.1

1. In \mathbb{F}^{n}, the set $\left\{E_{1}=(1,0, \cdots, 0), E_{2}=(0,1,0, \cdots, 0), \cdots, E_{n}=(0, \cdots, 0,1)\right\}$ is a basis for \mathbb{F}^{n}. This basis is called the standard basis for \mathbb{F}^{n}. Therefore, $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$.
2. Let $E^{i j}$ denote the matrix in $M_{m \times n}(\mathbb{F})$ whose all entries are 0 except the $i j$-entry is 1 . The set $\left\{E^{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is the standard basis for $M_{m \times n}(\mathbb{F})$. Therefore, $\operatorname{dim}\left(M_{m \times n}(\mathbb{F})\right)=m n$.
3. The set $\beta=\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ is the standard basis for the vector space $\mathbb{P}_{n}(\mathbb{F})$, and therefore $\operatorname{dim}\left(\mathbb{P}_{n}(\mathbb{F})\right)=n+1$.

Theorem 1.6.1

Let \mathbb{V} be a vector space and $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a nonempty subset of \mathbb{V}. Then β is a basis for \mathbb{V} if and only if each $x \in \mathbb{V}$ can be uniquely expressed as a linear combination of vectors in β, that is, can be expressed in the form

$$
x=a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}, \quad \text { for unique scalars } a_{1}, a_{2}, \cdots, a_{n} .
$$

Proof:

Proved in Math-111. " $\Rightarrow "$: Let β be a basis for \mathbb{V}. If $x \in \mathbb{V}$, then $x \in \operatorname{span} \beta=\mathbb{V}$, and hence

$$
x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

for some scalars a_{1}, \cdots, a_{n}. Assume that x has another expression as

$$
x=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n},
$$

for some scalars b_{1}, \cdots, b_{n}. Thus

$$
0=x-x=\left(a_{1}-b_{1}\right) x_{1}+\left(a_{2}-b_{2}\right) x_{2}+\cdots+\left(a_{n}-b_{n}\right) x_{n} .
$$

But β is linearly independent set and hence $a_{i}-b_{i}=0$ and therefore $a_{i}=b_{i}$ for $i=1, \cdots, n$. Thus, x has a unique expression as a linear combination of vectors in β.
$" \Leftarrow "$: Assume that every vector $x \in \mathbb{V}$ can be uniquely expressed as a linear combination of vectors in β. Then $\mathbb{V}=\boldsymbol{\operatorname { s p a n }} \beta$.

Also, $0 \in \mathbb{V}$, and there is unique scalars a_{1}, \cdots, a_{n} such that $0=a_{1} x_{1}+\cdots+a_{n} x_{n}$. Note that multiplying both sides by a constant does not change the expression by assumption. Hence, $a_{1}=a_{2}=\cdots=a_{n}=0$. Thus β is linearly independent and hence β is a basis for \mathbb{V}.

Theorem 1.6.2

If a vector space \mathbb{V} is generated by a finite set S, then some subset of S is a basis for \mathbb{V}.

Corollary 1.6.1

Every basis for a finite-dimensional vector space \mathbb{V} contains the same number of vectors.

Theorem 1.6.3

Let \mathbb{V} be an n-dimensional vector space and let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a subset (with n vectors) of \mathbb{V}. Then,

1. If β spans \mathbb{V}, then β is a basis for \mathbb{V}.
2. If β is linearly independent, then β is a basis for \mathbb{V}.

Theorem 1.6.4

Let \mathbb{W} be a subspace of a finite-dimensional vector space \mathbb{V}. Then \mathbb{W} is finite-dimensional subspace and $\operatorname{dim}(\mathbb{W}) \leq \operatorname{dim}(\mathbb{V})$. Moreover, if $\operatorname{dim}(\mathbb{W})=\operatorname{dim}(\mathbb{V})$, then $\mathbb{W}=\mathbb{V}$.

Example 1.6.1

Determine whether $S=\left\{x_{1}=(1,0,-1), x_{2}=(2,5,1), x_{3}=(0,-4,3)\right\}$ is a basis for \mathbb{R}^{3}.

Solution:

Note that S contains $3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, and thus it is enough to show that S is linearly independent (or S spans \mathbb{R}^{3}). In either cases, we can simply show that the associate matrix of the system is not equal to zero. That is

$$
\left|\begin{array}{ccc}
1 & 2 & 0 \\
0 & 5 & -4 \\
-1 & 1 & 3
\end{array}\right|=(15+4)-(-8)=27 \neq 0
$$

Thus S is a basis for \mathbb{R}^{3}.

Example 1.6.2
Let $\mathbb{W}=\{(x, y, z): 2 x+3 y-z=0\}$. Show that \mathbb{W} is a subspace of \mathbb{R}^{3} and find its dimension.

Solution:

Clearly, $\mathbb{W}=\{(x, y, 2 x+3 y): x, y \in \mathbb{R}\}=\{x(1,0,2)+y(0,1,3)\}$. Therefore, $\mathbb{W}=$ span $\{(1,0,2),(0,1,3)\}$ which shows that \mathbb{W} is a subspace of \mathbb{R}^{3}. Moreover, the set $\{(1,0,2),(0,1,3)\}$ is linearly independent set and hence it is a basis for \mathbb{W}. Therefore, $\operatorname{dim}(\mathbb{W})=2$.

Example 1.6.3

Let $\mathbb{W}=\{(x, y, z, w): x+y+z=0$ and $w=2 x\}$.

1. Show that \mathbb{W} is a subspace of \mathbb{R}^{4}.
2. Find a basis for \mathbb{W}.

Solution:

(1): Clearly,

$$
\begin{aligned}
\mathbb{W}=\{(x, y,-x-y, 2 x): x, y \in \mathbb{R}\} & =\{x(1,0,-1,2)+y(0,1,-1,0): x, y \in \mathbb{R}\} \\
& =\operatorname{span}\{(1,0,-1,2),(0,1,-1,0)\}
\end{aligned}
$$

Therefore, \mathbb{W} is a subspace of \mathbb{R}^{4}.
(2): Consider the system $c_{1}(1,0,-1,2)+c_{2}(0,1,-1,0)=(0,0,0,0)$. It is clear that $c_{1}=c_{2}=0$ and hence $\{(1,0,-1,2),(0,1,-1,0)\}$ is linearly independent set and is a basis for \mathbb{W}.

Example 1.6.4

Let $\mathbb{W}=\left\{\left(\begin{array}{cc}a+b & c \\ 2 c & a-b\end{array}\right) \in M_{2 \times 2}(\mathbb{R})\right\}$.

1. Show that \mathbb{W} is a subspace of $M_{2 \times 2}(\mathbb{R})$.
2. What is $\operatorname{dim}(\mathbb{W})$?

Solution:

(1): Note that

$$
\begin{aligned}
\mathbb{W} & =\left\{a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+c\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right)\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

So, \mathbb{W} is a subspace of $M_{2 \times 2}(\mathbb{R})$.
(2): Consider the homogenous system $c_{1}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+c_{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)+c_{3}\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Thus,

$$
c_{1}+c_{2}=0, c_{3}=0,2 c_{3}=0, \quad \text { and } c_{1}-c_{2}=0
$$

Hence $c_{1}=c_{2}=c_{3}=0$. Therefore, $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)\right\}$ is a basis for \mathbb{W} and $\operatorname{dim}(\mathbb{W})=3$.

Example 1.6.5

Let $\mathbb{W}=\left\{f(x) \in \mathbb{P}_{2}(\mathbb{R}): f(1)=0\right\}$.

1. Show that \mathbb{W} is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.
2. What is $\operatorname{dim}(\mathbb{W})$?

Solution:

Note that $f(x)=a+b x+c x^{2}$ so that $f(1)=a+b+c=0$. That is $c=-a-b$. Hence $f(x)=a+b x+(-a-b) x^{2}=a\left(1-x^{2}\right)+b\left(x-x^{2}\right)$. Therefore, $\mathbb{W}=\operatorname{span} S$, where $S=\left\{1-x^{2}, x-x^{2}\right\}$. Clearly, S is linearly independent (each element is not a composite of the other). Hence S is a basis for \mathbb{W} and $\operatorname{dim}(\mathbb{W})=2$.

Definition 1.6.2

Let \mathbb{V} be a vector space with a basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. If $x \in \mathbb{V}$, then $x=c_{1} x_{1}+$ $c_{2} x_{2}+\cdots+c_{n} x_{n}$ is uniquely represented with scalars $c_{1}, c_{2}, \cdots, c_{n}$. We call thses scalars the coordinates of x in the basis β, denoted by

$$
[x]_{\beta}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

Example 1.6.6

Let $\beta=\left\{E_{1}, E_{2}, E_{3}\right\}$ be the standard basis for \mathbb{R}^{3}, and let $\gamma=\left\{x_{1}, x_{2}, x_{3}\right\}$, where $x_{1}=$ $(1,1,1), x_{2}=(0,1,1)$, and $x_{3}=(0,0,1)$.

1. Show that γ is another basis for \mathbb{R}^{3}.
2. Find $[x]_{\beta}$ and $[x]_{\gamma}$ for $x=(2,-1,4)$.

Solution:

(1): Note that $|\beta|=|\gamma|=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$. So, we only need to show that γ is linearly independent (or γ spans \mathbb{R}^{3}). Consider $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}=0$ which is a homogenous system with $A x=0$, where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $x=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$. Clearly then $|A|=1 \neq 0$ and hence γ is linearly independent and it is a basis for \mathbb{R}^{3}.
(2): Note that $[x]_{\beta}=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$ since $x=2 E_{1}-E_{2}+4 E_{3}$.

Now consider $c_{1}(1,1,1)+c_{2}(0,1,1)+c_{3}(0,0,1)=(2,-1,4)$ to get $c_{1}=2, c_{1}+c_{2}=-1$, and
$c_{1}+c_{2}+c_{3}=4$. Therefore, $x=2 x_{1}+(-3) x_{2}+5 x_{3}$ and hence $[x]_{\gamma}=\left[\begin{array}{c}2 \\ -3 \\ 5\end{array}\right]$.

Exercise 1.6.1

Solve the following exercises from the book at pages 53-58:

- $2: a, b, 3: a, b$.
- $4,5,7$.
- 11,12 .

Exercise 1.6.2

Let $\mathbb{W}=\left\{f(x) \in \mathbb{P}_{3}(\mathbb{R}): f(0)=f^{\prime}(0)\right.$ and $\left.f(1)=f^{\prime}(1)\right\}$. Find a basis for \mathbb{W}.

Solution:

Note that any $f(x) \in \mathbb{W}$ is of the form $f(x)=a+b x+c x^{2}+d x^{3}$. Thus, $f(0)=f^{\prime}(0)$ implies that $a=b$. Also, $f(1)=f^{\prime}(1)$ implies $a+b+c+d=b+2 c+3 d$. These two equations implies $a=b=c+2 d$. Thus

$$
f(x)=(c+2 d)+(c+2 d) x+c x^{2}+d x^{3}=c\left(1+x+x^{2}\right)+d\left(2+2 x+x^{3}\right) .
$$

Therefore, $\mathbb{W}=\operatorname{span}\left\{1+x+x^{2}, 2+2 x+x^{3}\right\}$. Clearly $S=\left\{1+x+x^{2}, 2+2 x+x^{3}\right\}$ is a basis for \mathbb{W}.

Exercise 1.6.3

Let $\mathbb{W}=\left\{a+b x+c x^{2} \in \mathbb{P}_{2}(\mathbb{R}): a=b=c\right\}$. Show that \mathbb{W} is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.

Solution:

Note that $\mathbb{W}=\left\{a\left(1+x+x^{2}\right): a \in \mathbb{R}\right\}$. Thus, $\mathbb{W}=\operatorname{span} S$, where $S=\left\{1+x+x^{2}\right\}$ and hence \mathbb{W} is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.

Exercise 1.6.4

Let $\mathbb{W}=\left\{a+b x \in \mathbb{P}_{1}(\mathbb{R}): b=a^{2}\right\}$. Is \mathbb{W} a subspace of $\mathbb{P}_{1}(\mathbb{R})$? Explain your answer.

Solution:

No. Clearly $f(x)=1+x, g(x)=2+4 x \in \mathbb{W}$, but $f(x)+g(x)=3+5 x \notin \mathbb{W}$.

Exercise 1.6.5

Exercise \#11 @ page 55: Let x and y be distinct vectors of a vector space \mathbb{V}. Show that if $\beta=\{x, y\}$ is a basis for \mathbb{V} and a and b are nonzero scalars, then both $\gamma_{1}=\{x+y, a x\}$ and $\gamma_{2}=\{a x, b y\}$ are also bases for \mathbb{V}.

Solution:

Since β is a basis for \mathbb{V}, then $\operatorname{dim}(\mathbb{V})=2$. So it is enough to check if both γ_{1} and γ_{2} are linearly independent.

For γ_{1} : Assume that $s(x+y)+t(a x)=0$. Then, $(s+t a) x+(s) y=0$, and hence $s=0$ and $s+t a=0$ which implies that $t=0$ since $a \neq 0$. Therefore, γ_{1} is linearly independent and hence it is a basis for \mathbb{V}.

For γ_{2} : Assume that $s(a x)+t(b y)=0$. Then, $(s a) x+(t b) y=0$ and hence $s a=t b=0$ implies that $s=t=0$ since a and b are both nonzero. Therefore, γ_{2} is linearly independent and hence it is a basis for \mathbb{V}.

Linear Transformations and Matrices

In this chapter we consider special functions defined on vector spaces that preserve the structure. These special functions are called linear transformations.

The preserved structure of vector space \mathbb{V} over a field \mathbb{F} is its addition and scalar multiplication operations, or, simply, its linear combinations.

Note that we assume that all vector spaces in this chapter are over a common field \mathbb{F}.

Section 2.1: Linear Transformations, Null Space, and Ranges

Definition 2.1.1

Let \mathbb{V} and \mathbb{W} be two vector spaces. A linear transformation $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ is a function such that:

1. $\mathbf{T}(x+y)=\mathbf{T}(x)+\mathbf{T}(y)$ for any $x, y \in \mathbb{V}$.
2. $\mathbf{T}(c x)=c \mathbf{T}(x)$ for any $c \in \mathbb{F}$ and any $x \in \mathbb{V}$.

Note that the addition operation in $x+y$ refers to that defined in \mathbb{V}, while the addition in $\mathbf{T}(x)+\mathbf{T}(y)$ refers to that defined in \mathbb{W}. Moreover, if $\mathbb{V}=\mathbb{W}$, we say that \mathbf{T} is a linear operator on \mathbb{V}. We sometime simply call \mathbf{T} linear.

Remark 2.1.1

Let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a function for vector spaces \mathbb{V} and \mathbb{W}. Then for any scalar c, and any $x, y \in \mathbb{V}$, we have

1. If \mathbf{T} is linear, then $\mathbf{T}\left(0_{\mathbb{V}}\right)=0_{\mathbb{W}}$: For any $x \in \mathbb{V}, \mathbf{T}(0)=\mathbf{T}(0 x)=0 \mathbf{T}(x)=0$.
2. \mathbf{T} is linear iff $\mathbf{T}(c x+y)=c \mathbf{T}(x)+\mathbf{T}(y)$.
3. $\mathbf{T}(x-y)=\mathbf{T}(x)-\mathbf{T}(y)$.
4. \mathbf{T} is linear iff $\mathbf{T}\left(\sum_{i=1}^{n} c_{i} x_{i}\right)=\sum_{i=1}^{n} c_{i} \mathbf{T}\left(x_{i}\right)$, for scalars c_{1}, \cdots, c_{n} and $x_{1}, \cdots, x_{n} \in \mathbb{V}$.

To see that a linear transformation $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{V}$ preserves linear combination, assume that $v \in \mathbb{V}$
such that $v=3 s+5 t-2 u$ for some vectors $s, t, u \in \mathbb{V}$. Then, $\mathbf{T}(v)=\mathbf{T}(3 s+5 t-2 u)=3 \mathbf{T}(s)+$ $5 \mathbf{T}(t)-2 \mathbf{T}(u)$.

In what follows, we usually use property (2) above to prove that a given transformation is linear.

Definition 2.1.2

Let \mathbb{V} and \mathbb{W} be two vector spaces. We define the trivial linear transformation $\mathbf{T}_{0}: \mathbb{V} \rightarrow \mathbb{W}$ defined by $\mathbf{T}_{0}(x)=0$ for all $x \in \mathbb{V}$. Also, we define the identity linear transformation $\mathbf{I}_{\mathbb{V}}: \mathbb{V} \rightarrow \mathbb{V}$ defined by $\mathbf{T}(x)=x$ for all $x \in \mathbb{V}$.

Example 2.1.1

Define $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\mathbf{T}(x, y)=(x,-y)$. Such linear transformation (show it) is called reflection.

Example 2.1.2

Define $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\mathbf{T}(x, y)=(x, 0)$. Such linear transformation (show it) is called projection.

Example 2.1.3

Define $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{T}(x, y)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Such linear transformation (show it) is called rotation.

Example 2.1.4

Define $\mathbf{T}: M_{m \times n}(\mathbb{F}) \rightarrow M_{n \times m}(\mathbb{F})$ by $\mathbf{T}(A)=A^{t}$. Show that \mathbf{T} is linear.

Solution (1):

We show that \mathbf{T} is linear by showing that \mathbf{T} satisfies the conditions of the definition of linear transformation.
(1): For any $A, B \in M_{m \times n}(\mathbb{F}), \mathbf{T}(A+B)=(A+B)^{t}=A^{t}+B^{t}=\mathbf{T}(A)+\mathbf{T}(B)$.
(2): For any $c \in \mathbb{F}$ and any $A \in M_{m \times n}(\mathbb{F}), \mathbf{T}(c A)=(c A)^{t}=c A^{t}=c \mathbf{T}(A)$.

Therefore, \mathbf{T} is linear.

Solution (2):

We use Remark 2.1.1 to show that \mathbf{T} is linear. For all $A, B \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$, we have

$$
\mathbf{T}(c A+B)=(c A+B)^{t}=(c A)^{t}+B^{t}=c A^{t}+B^{t}=c \mathbf{T}(A)+\mathbf{T}(B)
$$

Therefore, \mathbf{T} is linear.

Example 2.1.5

Show that $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $\mathbf{T}(x, y)=(2 x+y, x-y)$ is linear.

Solution:

We use Remark 2.1.1 to show that \mathbf{T} is linear. Let $c \in \mathbb{R}$ and $(a, b),(x, y) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
\mathbf{T}(c(a, b)+(x, y)) & =\mathbf{T}((c a+x, c b+y))=(2(c a+x)+(c b+y),(c a+x)-(c b+y)) \\
& =((2 c a+c b)+(2 x+y),(c a-c b)+(x-y)) \\
& =(2 c a+c b, c a-c b)+(2 x+y, x-y)=c(2 a+b, a-b)+(2 x+y, x-y) \\
& =c \mathbf{T}(a, b)+\mathbf{T}(x, y) .
\end{aligned}
$$

Therefore, \mathbf{T} is linear.

Example 2.1.6
Define $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})$ by $\mathbf{T}(f(x))=x f(x)+x^{2}$. Is \mathbf{T} a linear transformation? Explain.

Solution:

For any $f(x), g(x) \in \mathbb{P}_{2}(\mathbb{R})$ and any $c \in \mathbb{R}$, we have

$$
\mathbf{T}(c f(x)+g(x))=x(c f(x)+g(x))+x^{2}=c(x f(x))+x g(x)+x^{2},
$$

but

$$
c \mathbf{T}(f(x))+\mathbf{T}(g(x))=c\left(x f(x)+x^{2}\right)+x g(x)+x^{2}=c(x f(x))+x g(x)+(\mathrm{c}+1) x^{2} .
$$

Therefore, \mathbf{T} is not linear.

Example 2.1.7

Let $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a linear transformation for which $\mathbf{T}(3,-1,2)=5$ and $\mathbf{T}(1,0,1)=2$.
What is $\mathbf{T}(-1,1,0)$?

Solution:

We first write $(-1,1,0)$ as a linear combination of $(3,-1,2)$ and $(1,0,1)$. Consider

$$
(-1,1,0)=c_{1}(3,-1,2)+c_{2}(1,0,1)
$$

Thus, $c_{1}=-1$ and $c_{2}=2$. Therefore,

$$
\begin{aligned}
\mathbf{T}(-1,1,0) & =\mathbf{T}[(-1)(3,-1,2)+(2)(1,0,1)] \\
& =-\mathbf{T}(3,-1,2)+2 \mathbf{T}(1,0,1) \\
& =-1(5)+2(2)=-5+4=-1
\end{aligned}
$$

Example 2.1.8

Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear for which $\mathbf{T}(t+1)=t^{2}-1$ and $\mathbf{T}(t-1)=t^{2}+t$. What is $\mathbf{T}(7 t+3)$?

Solution:

Consider $7 t+3=c_{1}(t+1)+c_{2}(t-1)$ which implies that $c_{1}+c_{2}=7$ and $c_{1}-c_{2}=3$. That is, $c_{1}=5$, and $c_{2}=2$. Therefore,

$$
\begin{aligned}
\mathbf{T}(7 t+3) & =\mathbf{T}[5(t+1)+2(t-1)] \\
& =5 \mathbf{T}(t+1)+2 \mathbf{T}(t-1) \\
& =5\left(t^{2}-1\right)+2\left(t^{2}+t\right)=7 t^{2}+2 t-5 .
\end{aligned}
$$

Definition 2.1.3

Let \mathbb{V} and \mathbb{W} be two vector spaces (over \mathbb{F}), and let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. The null space (or kernel) of \mathbf{T}, denoted $\mathcal{N}(\mathbf{T})$, is the set of all vectors $x \in \mathbb{V}$ such that
$\mathbf{T}(x)=0$; that is

$$
\mathcal{N}(\mathbf{T})=\{x \in \mathbb{V}: \mathbf{T}(x)=0\} \subseteq \mathbb{V}
$$

The range (or image) of \mathbf{T}, denoted $\mathcal{R}(\mathbf{T})$, is the set of all images (under \mathbf{T}) of vectors in \mathbb{V}. That is

$$
\mathcal{R}(\mathbf{T})=\{\mathbf{T}(x): x \in \mathbb{V}\} \subseteq \mathbb{W}
$$

Example 2.1.9

Find the null space and the range of: (1) $\mathbf{I}_{\mathbb{V}}: \mathbb{V} \rightarrow \mathbb{V}$. (2) $\mathbf{T}_{0}: \mathbb{V} \rightarrow \mathbb{V}$.

Solution:

(1): $\mathcal{N}\left(\mathbf{I}_{\mathbb{V}}\right)=\left\{x \in \mathbb{V}: \mathbf{I}_{\mathbb{V}}(x)=0\right\}=\{0\}$.
(1): $\mathcal{R}\left(\mathbf{I}_{\mathbb{V}}\right)=\left\{\mathbf{I}_{\mathbb{V}}(x): x \in \mathbb{V}\right\}=\mathbb{V}$.
(2): $\mathcal{N}\left(\mathbf{T}_{0}\right)=\left\{x \in \mathbb{V}: \mathbf{T}_{0}(x)=0\right\}=\mathbb{V}$.
(2): $\mathcal{R}\left(\mathbf{T}_{0}\right)=\left\{\mathbf{T}_{0}(x): x \in \mathbb{V}\right\}=\{0\}$.

Theorem 2.1.1

Let \mathbb{V} and \mathbb{W} be vector spaces and $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be linear. Then $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$ are subspaces of \mathbb{V} and \mathbb{W}, respectively.

Proof:

We first show that $\mathcal{N}(\mathbf{T})$ is a subspace of \mathbb{V} :

1. $\mathbf{T}\left(0_{\mathbb{V}}\right)=0_{\mathbb{W}}$ and hence $0_{\mathbb{V}} \in \mathcal{N}(\mathbf{T})$.
2. Let $x, y \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(x)=\mathbf{T}(y)=0_{\mathbb{W}}$ and

$$
\mathbf{T}(x+y)=\mathbf{T}(x)+\mathbf{T}(y)=0_{\mathbb{W}}+0_{\mathbb{W}}=0_{\mathbb{W}} \quad \Rightarrow \quad x+y \in \mathcal{N}(\mathbf{T})
$$

3. Let $c \in \mathbb{F}$ and $x \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(c x)=c \mathbf{T}(x)=c 0_{\mathbb{W}}=0_{\mathbb{W}}$, and hence $c x \in \mathcal{N}(\mathbf{T})$.

Therefore, $\mathcal{N}(\mathbf{T})$ is a subspace of \mathbb{V}.
Next we show that $\mathcal{R}(\mathbf{T})$ is a subspace of \mathbb{W}.

1. $\mathbf{T}\left(0_{\mathbb{V}}\right)=0_{\mathbb{W}}$ and hence $0_{\mathbb{W}} \in \mathcal{R}(\mathbf{T})$.
2. Let $x, y \in \mathcal{R}(\mathbf{T})$, then there exist $u, v \in \mathbb{V}$ such that $\mathbf{T}(u)=x$ and $\mathbf{T}(v)=y$ and hence

$$
\mathbf{T}(u+v)=\mathbf{T}(u)+\mathbf{T}(v)=x+y \quad \Rightarrow \quad x+y \in \mathcal{R}(\mathbf{T})
$$

3. Let $c \in \mathbb{F}$ and $x \in \mathcal{R}(\mathbf{T})$, then there exists $u \in \mathbb{V}$ such that $\mathbf{T}(u)=x$, and as $c u \in \mathbb{V}$, we have $\mathbf{T}(c u)=c \mathbf{T}(u)=c x \in \mathcal{R}(\mathbf{T})$.

Therefore, $\mathcal{R}(\mathbf{T})$ is a subspace of \mathbb{W}.

Remark 2.1.2

The next theorem provides a method for finding a spanning set (and therefore a basis) for the range of \mathbf{T}, namely for $\mathcal{R}(\mathbf{T})$.

Theorem 2.1.2

Let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. If $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is a basis for \mathbb{V}, then

$$
\mathcal{R}(\mathbf{T})=\operatorname{span} \mathbf{T}(\beta)=\operatorname{span}\left\{\mathbf{T}\left(x_{1}\right), \mathbf{T}\left(x_{2}\right), \cdots, \mathbf{T}\left(x_{n}\right)\right\} .
$$

Proof:

Since $x_{i} \in \mathbb{V}$, then $\mathbf{T}\left(x_{i}\right) \in \mathcal{R}(\mathbf{T})$ for each i. Because $\mathcal{R}(\mathbf{T})$ is a subspace of $\mathbb{W}, \mathcal{R}(\mathbf{T})$ contains span $\left\{\mathbf{T}\left(x_{1}\right), \mathbf{T}\left(x_{2}\right), \cdots, \mathbf{T}\left(x_{n}\right)\right\}=$ span $\mathbf{T}(\beta)$. Thus, span $\mathbf{T}(\beta) \subseteq \mathcal{R}(\mathbf{T})$.

Now suppose that $y \in \mathcal{R}(\mathbf{T})$. Then $y=\mathbf{T}(x)$ for some $x \in \mathbb{V}$. But because β is a basis for \mathbb{V}, we have $x=\sum_{i=1}^{n} c_{i} x_{i}$, for $c_{1}, c_{2}, \cdots, c_{n} \in \mathbb{F}$. Thus,

$$
\begin{aligned}
y & =\mathbf{T}(x)=\mathbf{T}\left(c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}\right) \\
& =c_{1} \mathbf{T}\left(x_{1}\right)+c_{2} \mathbf{T}\left(x_{2}\right)+\cdots+c_{n} \mathbf{T}\left(x_{n}\right) .
\end{aligned}
$$

Thus, $y \in \operatorname{span} \mathbf{T}(\beta)$. Hence $\mathcal{R}(\mathbf{T}) \subseteq$ span $\mathbf{T}(\beta)$. Therefore, $\mathcal{R}(\mathbf{T})=\boldsymbol{\operatorname { s p a n }} \mathbf{T}(\beta)$.

Example 2.1.10
Let $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by

$$
\mathbf{T}(f(x))=\left(\begin{array}{cc}
f(1)-f(2) & 0 \\
0 & f(0)
\end{array}\right) .
$$

Find a basis for $\mathcal{R}(\mathbf{T})$.

Solution:

Consider the standard basis $\beta=\left\{1, x, x^{2}\right\}$ for $\mathbb{P}_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
\mathcal{R}(\mathbf{T}) & =\operatorname{span} \mathbf{T}(\beta)=\operatorname{span}\left\{\mathbf{T}(1), \mathbf{T}(x), \mathbf{T}\left(x^{2}\right)\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{cc}
1-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1-2 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1-4 & 0 \\
0 & 0
\end{array}\right)\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-3 & 0 \\
0 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

Considering the system $c_{1}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)+c_{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)+c_{3}\left(\begin{array}{cc}-3 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, we note that $c_{2}=-3 c_{3}$. Thus

$$
\mathcal{R}(\mathbf{T})=\operatorname{span}\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)\right\} .
$$

Therefore, $\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)\right\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and $\operatorname{dim}(\mathcal{R}(\mathbf{T}))=2$.

Definition 2.1.4

Let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. If $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$ are finite-dimensional, then we define the nullity of \mathbf{T}, denoted $\operatorname{nullity}(\mathbf{T})$, and the $\mathbf{r a n k}$ of \mathbf{T}, denoted $\operatorname{rank}(\mathbf{T})$, to be the dimensions of $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$, respectively.

Theorem 2.1.3

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. If \mathbb{V} is finite-demensional, then

$$
\operatorname{nullity}(\mathbf{T})+\operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathbb{V})
$$

Definition 2.1.5

Let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. Then \mathbf{T} is said to be one-to-one (or simply $1-1)$ if for all $x, y \in \mathbb{V}$, if $\mathbf{T}(x)=\mathbf{T}(y)$, then $x=y$.
Moreover, \mathbf{T} is said to be onto \mathbb{W} if $\mathcal{R}(\mathbf{T})=\mathbb{W}$. That is for all $y \in \mathbb{W}$, there is $x \in \mathbb{V}$ such that $\mathbf{T}(x)=y$.

Theorem 2.1.4

Let \mathbb{V} and \mathbb{W} be two vector spaces, and let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. Then, \mathbf{T} is ono-to-one iff $\mathcal{N}(\mathbf{T})=\{0\}$.

Proof:

$" \Rightarrow "$ Assume that \mathbf{T} is 1-1. If $x \in \mathcal{N}(\mathbf{T})$, then $\mathbf{T}(x)=0=\mathbf{T}(0)$, and hence $x=0$. Therefore, $\mathcal{N}(\mathbf{T})=\{0\}$.
$" \Leftarrow ":$ Now let $\mathcal{N}(\mathbf{T})=\{0\}$. Assume that $\mathbf{T}(x)=\mathbf{T}(y)$ for $x, y \in \mathbb{V}$. Then,

$$
\mathbf{T}(x)-\mathbf{T}(y)=\mathbf{T}(x-y)=0 .
$$

Hence $x-y \in \mathcal{N}(\mathbf{T})=\{0\}$ and thus $x-y=0$ which implies that $x=y$. Therefore, \mathbf{T} is 1-1.

Theorem 2.1.5

Let \mathbb{V} and \mathbb{W} be two vector spaces of equal finite dimension, and $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. Then the following statements are equivalent:

1. \mathbf{T} is 1-1
2. \mathbf{T} is onto.
3. $\mathcal{N}(\mathbf{T})=\{0\}$.
4. $\operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathbb{V})$.
5. $\operatorname{nullity}(\mathbf{T})=0$.

Proof:

Note that $\operatorname{nullity}(\mathbf{T})+\operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathbb{V})$. Then,

$$
\begin{aligned}
\mathbf{T} \text { is 1-1 } & \Leftrightarrow \mathcal{N}(\mathbf{T})=\{0\} \quad \Leftrightarrow \quad \operatorname{nullity}(\mathbf{T})=0 \\
& \Leftrightarrow \operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathbb{V}) \quad \Leftrightarrow \quad \operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathcal{R}(\mathbf{T}))=\operatorname{dim}(\mathbb{W}) \\
& \Leftrightarrow \mathcal{R}(\mathbf{T})=\mathbb{W} \quad \Leftrightarrow \quad \mathbf{T} \text { is onto. }
\end{aligned}
$$

Example 2.1.11

Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear transformation defined by

$$
\mathbf{T}(x, y)=(2 x-3 y, y)
$$

Show that \mathbf{T} is $1-1$ and onto.

Solution:

We simply show that $\mathcal{N}(\mathbf{T})=\{(0,0)\}$.

$$
\begin{aligned}
\mathcal{N}(\mathbf{T}) & =\left\{(x, y) \in \mathbb{R}^{2}: \mathbf{T}(x, y)=(0,0)\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}:(2 x-3 y, y)=(0,0)\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: 2 x-3 y=0 \text { and } y=0\right\} \\
& =\{(0,0)\} .
\end{aligned}
$$

Therefore, \mathbf{T} is 1-1 and onto.

Example 2.1.12

Let $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\mathbf{T}(x, y, z)=(x, y)$. Find $\mathcal{N}(\mathbf{T}), \mathcal{R}(\mathbf{T}), \operatorname{nullity}(\mathbf{T})$ and $\operatorname{rank}(\mathbf{T})$.

Solution:

First,

$$
\mathcal{N}(\mathbf{T})=\left\{(x, y, z) \in \mathbb{R}^{3}: \mathbf{T}(x, y, z)=(x, y)=(0,0)\right\}=\{(0,0, z): z \in \mathbb{R}\}
$$

Thus $\{(0,0,1)\}$ is a basis for $\mathcal{N}(\mathbf{T})$ and hence $\operatorname{nullity}(\mathbf{T})=1$.

Next,

$$
\mathcal{R}(\mathbf{T})=\left\{\mathbf{T}(x, y, z)=(x, y) \in \mathbb{R}^{2}\right\}=\{x(1,0)+y(0,1): x, y \in \mathbb{R}\}=\mathbb{R}^{2}
$$

Thus, $\operatorname{rank}(\mathbf{T})=2$.

Example 2.1.13

Let $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})$ be the linear transformation defined by $\mathbf{T}(f(x))=f^{\prime}(x)+\int_{0}^{x} f(t) d t$.
(1) Is \mathbf{T} one-to-one? (2) Is \mathbf{T} onto? Explain.

Solution:

(1): We show that \mathbf{T} is 1-1 iff $\mathcal{N}(\mathbf{T})=\{0\}$. Consider the basis $\beta=\left\{1, x, x^{2}\right\}$ for $\mathbb{P}_{2}(\mathbb{R})$. Then,

$$
\mathcal{R}(\mathbf{T})=\operatorname{span}\left\{\mathbf{T}(1), \mathbf{T}(x), \mathbf{T}\left(x^{2}\right)\right\}=\operatorname{span}\left\{x, 1+\frac{x^{2}}{2}, 2 x+\frac{x^{3}}{3}\right\} .
$$

Since $\left\{x, 1+\frac{x^{2}}{2}, 2 x+\frac{x^{3}}{3}\right\}$ is linearly independent set (It can be shown easily), it is a basis for $\mathcal{R}(\mathbf{T})$. Thus, $\operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathcal{R}(\mathbf{T}))=3=\operatorname{dim}\left(\mathbb{P}_{2}(\mathbb{R})\right)$. Therefore, $\operatorname{nullity}(\mathbf{T})=0$ and hence $\mathcal{N}(\mathbf{T})=\{0\}$ and then \mathbf{T} is 1-1.
(2) $\operatorname{rank}(\mathbf{T})=3<\operatorname{dim}\left(\mathbb{P}_{3}(\mathbb{R})\right)$ and hence $\mathcal{R}(\mathbf{T}) \neq \mathbb{P}_{3}(\mathbb{R})$. Therefore, \mathbf{T} is not onto.

Example 2.1.14

For each of the following linear transformations, determine $\mathcal{N}(\mathbf{T})$ and $\mathcal{R}(\mathbf{T})$; find their bases; is $\mathbf{T} 1-1$ or onto? Explain.

1. $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $\mathbf{T}(x, y, z)=(x-y, 2 z)$.
2. $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{T}(x, y)=(x+y, 0,2 x-y)$.
3. $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $\mathbf{T}(x, y, z)=(x+y, x-y)$.
4. $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{T}(x, y)=(x+y, x-y, x)$.

Solution:

(1):

$$
\begin{aligned}
\mathcal{N}(\mathbf{T}) & =\{(x, y, z): \mathbf{T}(x, y, z)=(0,0)\} \\
& =\{(x, y, z): x-y=0 \text { and } 2 z=0\} \\
& =\{(x, x, 0): x \in \mathbb{R}\}=\{x(1,1,0)\} .
\end{aligned}
$$

Then, $\operatorname{nullity}(\mathbf{T})=1$ since $\{(1,1,0\}$ is a basis for $\mathcal{N}(\mathbf{T})$, and \mathbf{T} is not 1-1.
Note that $\operatorname{rank}(\mathbf{T})=3-\operatorname{nullity}(\mathbf{T})=2$. Thus, $\operatorname{rank}(\mathbf{T})=2$ and hence $\mathcal{R}(\mathbf{T})=\mathbb{R}^{2}$. Therefore, $\{(1,0),(0,1)\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and \mathbf{T} is onto. We note that we can compute $\mathcal{R}(\mathbf{T})$ by considering

$$
\mathcal{R}(\mathbf{T})=\operatorname{span}\{\mathbf{T}(1,0,0), \mathbf{T}(0,1,0), \mathbf{T}(0,0,1)\} .
$$

Parts (2), (3), and (4) are left as exercises. (2):

$$
\begin{aligned}
\mathcal{N}(\mathbf{T}) & =\{(x, y): \mathbf{T}(x, y)=(0,0,0)\} \\
& =\{(x, y): x+y=0 \text { and } 2 x-y=0\}=\{(0,0,0)\}
\end{aligned}
$$

Thus, $\operatorname{nullity}(\mathbf{T})=0$ and \mathbf{T} is 1-1 and basis for $\mathcal{N}(\mathbf{T})=\phi$. The $\operatorname{rank}(\mathbf{T})=\operatorname{dim}(\mathcal{R}(\mathbf{T}))=$ $2<\operatorname{dim}\left(\mathbb{R}^{3}\right)$ and hence \mathbf{T} is not onto.

$$
\begin{aligned}
\mathcal{R}(\mathbf{T}) & =\operatorname{span}\{\mathbf{T}(1,0), \mathbf{T}(0,1)\} \\
& =\operatorname{span}\{(1,0,2),(1,0,-1)\}
\end{aligned}
$$

It is clear that $\{(1,0,2),(1,0,-1)\}$ is linearly independent and hence is a basis for $\mathcal{R}(\mathbf{T})$.

Theorem 2.1.6

Let \mathbb{V} and \mathbb{W} be two vector spaces, and suppose that $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is a basis for \mathbb{V}. For any vectors $y_{1}, y_{2}, \cdots, y_{n} \in \mathbb{W}$, there exists exactly one linear transformation $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ such that $\mathbf{T}\left(x_{i}\right)=y_{i}$ for $i=1, \cdots, n$.

Corollary 2.1.1

Let \mathbb{V} and \mathbb{W} be vector spaces, and suppose that \mathbb{V} has a finite basis $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. If $\mathbf{T}, \mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ are linear transformations and $\mathbf{U}\left(x_{i}\right)=\mathbf{T}\left(x_{i}\right)$ for $i=1, \cdots, n$, then $\mathbf{U}=\mathbf{T}$.

Example 2.1.15

Let $\mathbf{U}, \mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear transformations and let \mathbf{T} be defined by $\mathbf{T}(x, y)=(2 y-x, 3 x)$.
If $\mathbf{U}(1,2)=(3,3)$ and $\mathbf{U}(1,1)=(1,3)$, show that $\mathbf{T}=\mathbf{U}$.

Solution:

Note that $\{(1,1),(1,2)\}$ is a basis for \mathbb{R}^{2} and that $\mathbf{T}(1,1)=(1,3)=\mathbf{U}(1,1)$ and $\mathbf{T}(1,2)=$ $(3,3)=\mathbf{U}(1,2)$. Therefore, $\mathbf{U}=\mathbf{T}$.

Exercise 2.1.1

Solve the following exercises from the book at pages 74-79:

- $2,3,4,5$.
- $8,11,12,13$.

Exercise 2.1.2

Show that $\mathbf{T}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by $\mathbf{T}(x, y, z, w)=(x, y)$ is linear.

Solution:

Let $k \in \mathbb{R}$ and $(a, b, c, d),(x, y, z, w) \in \mathbb{R}^{4}$. Then

$$
\begin{aligned}
\mathbf{T}(k(a, b, c, d)+(x, y, z, w)) & =\mathbf{T}((k a, k b, k c, k d)+(x, y, z, w)) \\
& =\mathbf{T}(k a+x, k b+y, k c+z, k d+w)=(k a+x, k b+y) \\
& =k(a, b)+(x, y) \\
& =k \mathbf{T}(a, b, c, d)+\mathbf{T}(x, y, z, w) .
\end{aligned}
$$

Exercise 2.1.3

Show that $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathbf{T}(x, y)=(x+y, 3 x)$ is linear.

Solution:

Let $k \in \mathbb{R}$ and $(a, b),(x, y) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
\mathbf{T}(k(a, b)+(x, y)) & =\mathbf{T}((k a, k b)+(x, y)) \\
& =\mathbf{T}(k a+x, k b+y)=((k a+x)+(k b+y), 3 k a+3 x) \\
& =(k a+k b, 3 k a)+(x+y, 3 x) \\
& =k \mathbf{T}(a, b)+\mathbf{T}(x, y) .
\end{aligned}
$$

Exercise 2.1.4

Let $\mathbf{C}(\mathbb{R})$ denote the set of all real valued continuous functions on \mathbb{R}. Define $\mathbf{T}: \mathbf{C}(\mathbb{R}) \rightarrow \mathbb{R}$ by $\mathbf{T}(f(x))=\int_{a}^{b} f(x) d x$ for all $a, b \in \mathbb{R}$ with $a<b$. Show that \mathbf{T} is linear.

Solution:

For any $f(x), g(x) \in \mathbf{C}(\mathbb{R})$ and any $c \in \mathbb{R}$, we have

$$
\begin{aligned}
\mathbf{T}(c f(x)+g(x)) & =\int_{a}^{b}(c f(x)+g(x)) d x=c \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& =c \mathbf{T}(f(x))+\mathbf{T}(g(x))
\end{aligned}
$$

Therefore, \mathbf{T} is linear.

Exercise 2.1.5

Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\mathbf{T}(x, y)=(2 x+y, x-y)$. Find $\mathcal{N}(\mathbf{T}), \mathcal{R}(\mathbf{T}), \operatorname{nullity}(\mathbf{T})$ and $\operatorname{rank}(\mathbf{T})$.

Solution:

$\mathcal{N}(\mathbf{T})=\left\{(x, y) \in \mathbb{R}^{2}: \mathbf{T}(x, y)=(2 x+y, x-y)=(0,0)\right\}$. Thus, $2 x+y=0$ and $x-y=0$ which implies that $x=y=0$. Thus, $\mathcal{N}(\mathbf{T})=\{(0,0)\}$. Therefore, nullity $(\mathbf{T})=0$ and hence $\operatorname{rank}(\mathbf{T})=2=\operatorname{dim}\left(\mathbb{R}^{2}\right)$. Therefore, $\mathcal{R}(\mathbf{T})=\mathbb{R}^{2}$, and we are done.
Or, we can compute the basis of $\mathcal{R}(\mathbf{T})$ as follows

$$
\mathcal{R}(\mathbf{T})=\left\{\mathbf{T}(x, y)=(2 x+y, x-y) \in \mathbb{R}^{2}\right\}=\{x(2,1)+y(1,-1)\}
$$

Therefore, $\{(2,1),(1,-1)\}$ is a basis for $\mathcal{R}(\mathbf{T})$ and $\operatorname{rank}(\mathbf{T})=2$.

Section 2.2: The Matrix Representation of Linear Transformation

In this section, we consider the representation of a linear transformation by a matrix. That is, we develope a one-to-one correspondence between matrices and linear transformations that allows us to utilize properties of one to study properties of the other.

Definition 2.2.1

Let \mathbb{V} be a finite-dimensional vector space. An ordered basis for \mathbb{V} is a finite sequence of linearly independent vectors in \mathbb{V} that generates \mathbb{V}.

Remark 2.2.1

Note that $\beta_{1}=\left\{E_{1}, E_{2}, E_{3}\right\}$ can be considered as ordered basis for \mathbb{R}^{3}, while $\beta_{2}=$ $\left\{E_{2}, E_{1}, E_{3}\right\}$ is also an ordered basis for \mathbb{R}^{3}, but $\beta_{1} \neq \beta_{2}$ as ordered basis. In particular, $\left\{E_{1}, \cdots, E_{n}\right\}$ is the standard ordered basis for \mathbb{R}^{n}. Also, $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ is the standard ordered basis for $\mathbb{P}_{n}(\mathbb{R})$.

Definition 2.2.2

Let $\beta=\left\{x_{1}, \cdots, x_{n}\right\}$ be an ordered basis for a finite-dimensional vector space \mathbb{V}. For $x \in \mathbb{V}$, let $c_{1}, \cdots, c_{n} \in \mathbb{F}$ be the unique scalars such that $x=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$. We define the coordinate vector of x relative to β, denoted $[x]_{\beta}$, by

$$
[x]_{\beta}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Example 2.2.1

Consider the vector space $\mathbb{P}_{3}(\mathbb{R})$ and the standard ordered basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$. Find the coordinate vector of $f(x)=3+7 x-9 x^{2}$ relative to β.

Solution:

Clearly $f(x)=3+7 x-9 x^{2}=3 \cdot 1+7 \cdot x+(-9) \cdot x^{2}+0 \cdot x^{3}$, and hence

$$
[f(x)]_{\beta}=(3,7,-9,0)=\left[\begin{array}{llll}
3 & 7 & -9 & 0
\end{array}\right]^{t} .
$$

Definition 2.2.3

Let \mathbb{V} and \mathbb{W} be two finite-dimensional vector spaces with ordered bases $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $\gamma=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$, respectively, and let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. For each $j, 1 \leq j \leq n$, we have $\mathbf{T}\left(x_{j}\right) \in \mathbb{W}$ and there exist unique scalars $c_{i j} \in \mathbb{F}, 1 \leq i \leq m$, such that

$$
\mathbf{T}\left(x_{j}\right)=\sum_{i=1}^{m} c_{i j} y_{i}
$$

Then the $m \times n$ matrix $A=\left(c_{i j}\right)$ is called the matrix representation of \mathbf{T} in the ordered bases β and γ and is written $A=[\mathbf{T}]_{\beta}^{\gamma}$. If $\mathbb{V}=\mathbb{W}$ and $\beta=\gamma$, then we write simply $A=[\mathbf{T}]_{\beta}$. Note that the $j^{\text {th }}$ column of $A=[\mathbf{T}]_{\beta}^{\gamma}$ then is simply $\left[\mathbf{T}\left(x_{j}\right)\right]_{\gamma}$. That is,

$$
A=\left[\begin{array}{llll}
{\left[\mathbf{T}\left(x_{1}\right)\right]_{\gamma}} & {\left[\mathbf{T}\left(x_{2}\right)\right]_{\gamma}} & \cdots & {\left[\mathbf{T}\left(x_{n}\right)\right]_{\gamma}}
\end{array}\right]
$$

Remark 2.2.2

Following Definition 2.2.3, the following statements hold:

1. If $\mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ is a linear transformation such that $[\mathbf{U}]_{\beta}^{\gamma}=[\mathbf{T}]_{\beta}^{\gamma}$, then $\mathbf{U}=\mathbf{T}$.
2. If $x \in \mathbb{V}$, then $[\mathbf{T}(x)]_{\gamma}=A[x]_{\beta}$, where $[x]_{\beta}$ and $[\mathbf{T}(x)]_{\gamma}$ are the coordinate vectors of x and $\mathbf{T}(x)$, respectively, with respect to the respective bases β and γ.
3. If $x \in \mathbb{V}$, then $\mathbf{T}(x)=\sum_{i=1}^{m}\left([\mathbf{T}(x)]_{\gamma}\right)_{i} y_{i}=\sum_{i=1}^{m} c_{i} y_{i}$.

Remark 2.2.3

\star Finding $[\mathbf{T}]_{\beta}^{\gamma}$:
Let $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ be linear transformation from n-dimensional vector space \mathbb{V} into m dimensional vector space \mathbb{W}, and let $\beta=\left\{x_{1}, \cdots, x_{n}\right\}$ and $\gamma=\left\{y_{1}, \cdots, y_{m}\right\}$ be bases for \mathbb{V} and \mathbb{W}, respectively. Then we compute the matrix representation of \mathbf{T} as follows:

1. Compute $\mathbf{T}\left(x_{j}\right)$ for $j=1,2, \cdots, n$.
2. Find the coordinate vector $\left[\mathbf{T}\left(x_{j}\right)\right]_{\gamma}$ for $\mathbf{T}\left(x_{j}\right)$ with respect to γ. That is, express $\mathbf{T}\left(x_{j}\right)$ as a linear combination of vectors in γ.
3. Form the matrix representation A of \mathbf{T} with respect to β and γ by choosing $\left[\mathbf{T}\left(x_{j}\right)\right]_{\gamma}$ as the $j^{\text {th }}$ column of A.

Example 2.2.2

Let $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear defined by $\mathbf{T}(x, y, z)=(x+y, y-z)$. Find a matrix representation A for \mathbf{T}. Use A to evaluate $\mathbf{T}(u)$, where $u=(1,2,3)$.

Solution:

We use the method described in Remark 2.2.3 and consider $\beta=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $\gamma=\{(1,0),(0,1)\}$ as standard ordered bases for \mathbb{R}^{3} and \mathbb{R}^{2}, respectively. Then

$$
\begin{array}{ll}
\mathbf{T}(1,0,0)=(1,0)=1 \cdot(1,0)+0 \cdot(0,1) & \Rightarrow \quad[\mathbf{T}(1,0,0)]_{\gamma}=(1,0) \\
\mathbf{T}(0,1,0) & =(1,1)=1 \cdot(1,0)+1 \cdot(0,1) \\
\mathbf{T}(0,0,1) & \Rightarrow \quad[\mathbf{T}(0,1,0)]_{\gamma}=(1,1) \\
(0,-1)=0 \cdot(1,0)+(-1) \cdot(0,1) & \Rightarrow \quad[\mathbf{T}(0,0,1)]_{\gamma}=(0,-1)
\end{array}
$$

Therefore, $A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right]$.
Note that $(1,2,3)=(1,0,0)+2(0,1,0)+3(0,0,1)$, and that $\mathbf{T}\left(E_{i}\right)=\operatorname{column}_{i}(A)$, for $i=$ $1,2,3$. Hence, we can compute $\mathbf{T}(1,2,3)$ as follows:

$$
\mathbf{T}(1,2,3)=\mathbf{T}\left(E_{1}\right)+2 \mathbf{T}\left(E_{2}\right)+3 \mathbf{T}\left(E_{3}\right)=(3,-1) .
$$

On the other hand, we simply can use Remark 2.2.2 as follows:

$$
[\mathbf{T}(1,2,3)]_{\gamma}=A\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

Therefore, $\mathbf{T}(1,2,3)=(3,-1)$.

Example 2.2.3

Let $\mathbf{T}: \mathbb{P}_{1}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be a linear defined by $\mathbf{T}(f(x))=x f(x)$. (1): Find the matrix representation A for \mathbf{T}. (2): If $f(x)=3 x-2 \in \mathbb{P}_{1}(\mathbb{R})$, compute $[\mathbf{T}(f(x))]_{\gamma}$, where γ is the standard ordered basis in $\mathbb{P}_{2}(\mathbb{R})$. (3): Evaluate $\mathbf{T}(f(x))$ using A.

Solution:

(1): We use the method described in Remark 2.2.3 and consider $\beta=\{1, x\}$ and $\gamma=\left\{1, x, x^{2}\right\}$ as standard ordered bases for $\mathbb{P}_{1}(\mathbb{R})$ and $\mathbb{P}_{2}(\mathbb{R})$, respectively. Then

$$
\begin{aligned}
\mathbf{T}(f(x)=1)=x \cdot 1=x=0 \cdot 1+1 \cdot x+0 \cdot x^{2} & \Rightarrow[\mathbf{T}(1)]_{\gamma}=(0,1,0) \\
\mathbf{T}(f(x)=x)=x \cdot x=x^{2}=0 \cdot 1+0 \cdot x+1 \cdot x^{2} & \Rightarrow[\mathbf{T}(x)]_{\gamma}=(0,0,1) .
\end{aligned}
$$

Therefore, $A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.
(2): We can simply compute $[\mathbf{T}(f(x))]_{\gamma}$ directly:
$\mathbf{T}(f(x))=x f(x)=x(3 x-2)=3 x^{2}-2 x=0 \cdot 1+(-2) \cdot x+3 \cdot x^{2} \Rightarrow\left[\mathbf{T}((f(x))]_{\gamma}=(0,-2,3)\right.$.
Or, we can use Remark 2.2.2 part(2) using A. We first write $f(x)$ as a linear combination of β :

$$
f(x)=-2 \cdot 1+3 \cdot x \quad \Rightarrow \quad[f(x)]_{\beta}=(-2,3)
$$

Then using Remark 2.2.2 part(2), we have

$$
[\mathbf{T}(f(x))]_{\gamma}=A[f(x)]_{\beta}=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right]
$$

Hence $[\mathbf{T}(f(x))]_{\gamma}=(0,-2,3)$.
(3): Use the result in part (2), to get $\mathbf{T}(f(x))=-2 x+3 x^{2}$.

Definition 2.2.4

Let $\mathbf{T}, \mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ be arbitrary functions where \mathbb{V} and \mathbb{W} are vector spaces over \mathbb{F}, and let $a \in \mathbb{F}$. We define the usual addition of functions $\mathbf{T}+\mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ by

$$
(\mathbf{T}+\mathbf{U})(x)=\mathbf{T}(x)+\mathbf{U}(x) \quad \text { for all } x \in \mathbb{V}
$$

and $a \mathbf{T}: \mathbb{V} \rightarrow \mathbb{W}$ by

$$
(a \mathbf{T})(x)=a \mathbf{T}(x) \quad \text { for all } x \in \mathbb{V} .
$$

Theorem 2.2.1

Let \mathbb{V} and \mathbb{W} be two vector spaces over \mathbb{F}, and let $\mathbf{T}, \mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ be linear transformations. Then

1. For all $a \in \mathbb{F},(a \mathbf{T}+\mathbf{U})$ is linear transformation.
2. The collection of all linear transformations from \mathbb{V} to \mathbb{W} is a vector space over \mathbb{F}.

Proof:

(1) Let $x, y \in \mathbb{V}$ and $c \in \mathbb{F}$. Then

$$
\begin{aligned}
(a \mathbf{T}+\mathbf{U})(c x+y) & =a \mathbf{T}(c x+y)+\mathbf{U}(c x+y)=a[\mathbf{T}(c x+y)]+c \mathbf{U}(x)+\mathbf{U}(y) \\
& =a[c \mathbf{T}(x)+\mathbf{T}(y)]+c \mathbf{U}(x)+\mathbf{U}(y) \\
& =a c \mathbf{T}(x)+a \mathbf{T}(y)+c \mathbf{U}(x)+\mathbf{U}(y) \\
& =c(a \mathbf{T}(x)+\mathbf{U}(x))+a \mathbf{T}(y)+\mathbf{U}(y) \\
& =c(a \mathbf{T}+\mathbf{U})(x)+(a \mathbf{T}+\mathbf{U})(y)
\end{aligned}
$$

Thus, $a \mathbf{T}+\mathbf{U}$ is linear transformation.
(2): Note that the zero transformation \mathbf{T}_{0} is the zero vector. The other conditions of a vector space can be easily proved.

Definition 2.2.5

Let \mathbb{V} and \mathbb{W} be two vector spaces over \mathbb{F}. We denote the vector space of all linear transformation from \mathbb{V} into \mathbb{W} by $\mathcal{L}(\mathbb{V}, \mathbb{W})$. If $\mathbb{V}=\mathbb{W}$, we simply write $\mathcal{L}(\mathbb{V})$.

Theorem 2.2.2

Let \mathbb{V} and \mathbb{W} be finite-dimensional vector spaces with ordered bases β and γ, respectively, and let $\mathbf{T}, \mathbf{U}: \mathbb{V} \rightarrow \mathbb{W}$ be linear transformations. Then

1. $[\mathbf{T}+\mathbf{U}]_{\beta}^{\gamma}=[\mathbf{T}]_{\beta}^{\gamma}+[\mathbf{U}]_{\beta}^{\gamma}$, and
2. $[a \mathbf{T}]_{\beta}^{\gamma}=a[\mathbf{T}]_{\beta}^{\gamma}$ for all scalars a.

Example 2.2.4

Define $\mathbf{T}: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ by $\mathbf{T}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a+b)+2 d x+b x^{2}$.
Let $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ and $\gamma=\left\{1, x, x^{2}\right\}$ be ordered bases for $M_{2 \times 2}(\mathbb{R})$ and $\mathbb{P}_{2}(\mathbb{R})$, respectively. Find $[\mathbf{T}]_{\beta}^{\gamma}$. Use $[\mathbf{T}]_{\beta}^{\gamma}$ to evaluate $\mathbf{T}(D)$, where $D=\left(\begin{array}{cc}1 & 3 \\ -1 & 2\end{array}\right)$.

Solution:

We use the method described in Remark 2.2.3. That is,

$$
\begin{aligned}
& \mathbf{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \Rightarrow[\mathbf{T}]_{\gamma}=(1,0,0) \\
& \mathbf{T}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=1+x^{2}=1 \cdot 1+0 \cdot x+1 \cdot x^{2} \Rightarrow[\mathbf{T}]_{\gamma}=(1,0,1) \\
& \mathbf{T}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \Rightarrow[\mathbf{T}]_{\gamma}=(0,0,0), \\
& \mathbf{T}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=2 x=0 \cdot 1+2 \cdot x+0 \cdot x^{2} \Rightarrow[\mathbf{T}]_{\gamma}=(0,2,0)
\end{aligned}
$$

Thus,

$$
A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Note that $[D]_{\beta}=(1,3,-1,2)$, and hence $[\mathbf{T}(D)]_{\gamma}=A[D]_{\beta}=(4,4,3)$. Hence, $\mathbf{T}(D)=$ $4+4 x+3 x^{2}$.

Example 2.2.5

Let $\beta=\left\{x^{4}, x^{3}, x^{2}, x, 1\right\}$ be an ordered basis for $\mathbb{P}_{4}(\mathbb{R})$ and let γ be the standard ordered basis for \mathbb{R}^{3}. Define $\mathbf{T}: \mathbb{P}_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ by $\mathbf{T}(f(x))=\left(f(1)-f(0), f^{\prime}(0), f^{\prime \prime}(1)\right)$, and let $\mathbf{U}: \mathbb{P}_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be a linear transformation having the matrix representation

$$
[\mathbf{U}]_{\beta}^{\gamma}=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 & 2 \\
1 & -1 & 1 & 1 & 1
\end{array}\right]
$$

1. Find $\mathbf{U}\left(x^{4}-x^{2}+1\right)$.
2. Find the matrix representation of $\mathbf{T}+\mathbf{U}$; that is, $[\mathbf{T}+\mathbf{U}]_{\beta}^{\gamma}$.
3. Find the rank and the nullity of U. Exercise!!

Solution:

(1): Let $f(x)=x^{4}-x^{2}+1$. We compute $[\mathbf{U}(f(x))]_{\gamma}=[\mathbf{U}]_{\beta}^{\gamma}[f(x)]_{\beta}$ using Remark 2.2.2:

$$
f(x)=x^{4}-x^{2}+1=1 \cdot x^{4}+0 \cdot x^{3}+(-1) \cdot x^{2}+0 \cdot x+1 \cdot 1 \Rightarrow[f(x)]_{\beta}=(1,0,-1,0,1) .
$$

Thus

$$
[\mathbf{U}(f(x))]_{\gamma}=[\mathbf{U}]_{\beta}^{\gamma}[f(x)]_{\beta}=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 & 2 \\
1 & -1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right] \in \mathbb{R}^{3}
$$

We note that, this can be computed directly as follows:

$$
\begin{aligned}
{\left[\mathbf{U}\left(x^{4}-x^{2}+1\right)\right]_{\gamma} } & =\left[\mathbf{U}\left(x^{4}\right)-\mathbf{U}\left(x^{2}\right)+\mathbf{U}(1)\right]_{\gamma}=\left[\mathbf{U}\left(x^{4}\right)\right]_{\gamma}-\left[\mathbf{U}\left(x^{2}\right)\right]_{\gamma}+[\mathbf{U}(1)]_{\gamma} \\
& =\operatorname{col}_{1}\left([\mathbf{U}]_{\beta}^{\gamma}\right)-\operatorname{col}_{3}\left([\mathbf{U}]_{\beta}^{\gamma}\right)+\operatorname{col}_{5}\left([\mathbf{U}]_{\beta}^{\gamma}\right)=(1,3,1) .
\end{aligned}
$$

Therefore, $\mathbf{U}\left(x^{4}-x^{2}+1\right)=(1,3,1)$.
(2): Note that $[\mathbf{T}+\mathbf{U}]_{\beta}^{\gamma}=[\mathbf{T}]_{\beta}^{\gamma}+[\mathbf{U}]_{\beta}^{\gamma}$. Thus,

$$
\begin{aligned}
\mathbf{T}\left(x^{4}\right) & =(1,0,12)=1 \cdot(1,0,0)+0 \cdot(0,1,0)+12 \cdot(0,0,1) \Rightarrow\left[\mathbf{T}\left(x^{4}\right)\right]_{\gamma}=(1,0,12) \\
\mathbf{T}\left(x^{3}\right) & =(1,0,6)=1 \cdot(1,0,0)+0 \cdot(0,1,0)+6 \cdot(0,0,1) \Rightarrow\left[\mathbf{T}\left(x^{3}\right)\right]_{\gamma}=(1,0,6) \\
\mathbf{T}\left(x^{2}\right) & =(1,0,2)=1 \cdot(1,0,0)+0 \cdot(0,1,0)+2 \cdot(0,0,1) \Rightarrow\left[\mathbf{T}\left(x^{2}\right)\right]_{\gamma}=(1,0,2) \\
\mathbf{T}(x) & =(1,1,0)=1 \cdot(1,0,0)+1 \cdot(0,1,0)+0 \cdot(0,0,1) \Rightarrow[\mathbf{T}(x)]_{\gamma}=(1,1,0) \\
\mathbf{T}(1) & =(0,0,0)=0 \cdot(1,0,0)+0 \cdot(0,1,0)+0 \cdot(0,0,1) \Rightarrow[\mathbf{T}(1)]_{\gamma}=(0,0,0)
\end{aligned}
$$

Hence, $[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 12 & 6 & 2 & 0 & 0\end{array}\right]$ and therefore

$$
[\mathbf{T}+\mathbf{U}]_{\beta}^{\gamma}=[\mathbf{T}]_{\beta}^{\gamma}+[\mathbf{U}]_{\beta}^{\gamma}=\left[\begin{array}{ccccc}
2 & 1 & 2 & 1 & 1 \\
0 & 1 & -1 & 2 & 2 \\
13 & 5 & 3 & 1 & 1
\end{array}\right]
$$

(3): $\mathcal{R}(\mathbf{U})=\operatorname{span}\left\{\mathbf{U}\left(x^{4}\right), \mathbf{U}\left(x^{3}\right), \mathbf{U}\left(x^{2}\right), \mathbf{U}(x), \mathbf{U}(1)\right\}$, and hence $\operatorname{rank}(\mathbf{U})=\operatorname{rank}\left([\mathbf{U}]_{\beta}^{\gamma}\right)$ and $\operatorname{nullity}(\mathbf{U})=\operatorname{nullity}\left([\mathbf{U}]_{\beta}^{\gamma}\right)$

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 & 2 \\
1 & -1 & 1 & 1 & 1
\end{array}\right] \quad \xrightarrow{\text { r.r.e.f. }}\left[\begin{array}{rrrrr}
1 & 0 & 0 & 2 & 3 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -2 & -2
\end{array}\right]
$$

That is $\operatorname{rank}(\mathbf{U})=3$ and hence $\operatorname{nullity}(\mathbf{U})=2$.
Also note that $\{(1,0,1),(0,1,-1),(1,-1,1)\}$ is a basis for $\mathcal{R}(\mathbf{U})$. Also, \mathbf{U} is not $1-1$ since its nullity $\neq 0$.

Example 2.2.6

Let $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$, defined by $\mathbf{T}(f(x))=\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right)$.

1. Compute $[\mathbf{T}]_{\beta}^{\gamma}$ where β and γ are the standard ordered bases for $\mathbb{P}_{2}(\mathbb{R})$ and $M_{2 \times 2}(\mathbb{R})$, respectively. Use $[\mathbf{T}]_{\beta}^{\gamma}$ to compute $\mathbf{T}(g(x))$, where $g(x)=x^{2}+2 x$.
2. Is T 1-1? Explain. Exercise!!
3. Is T onto? Explain. Exercise!!

Solution:

(1): Let $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. Then

$$
\begin{aligned}
& \mathbf{T}(1)=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=0 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathbf{T}(x)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \mathbf{T}\left(x^{2}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)=0 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Thus

$$
A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Note that $[g(x)]_{\beta}=(0,2,1)$, and hence $[\mathbf{T}(g(x))]_{\beta}^{\gamma}=A[g(x)]_{\beta}=(2,6,0,2)$. Therefore,

$$
\mathbf{T}(g(x))=\left(\begin{array}{ll}
2 & 6 \\
0 & 2
\end{array}\right)
$$

(2): Note that $\operatorname{rank}(\mathbf{T})=\operatorname{rank}\left([\mathbf{T}]_{\beta}^{\gamma}\right)$. Thus

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \xrightarrow{\text { r.r.e.f. }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore $\operatorname{rank}(\mathbf{T})=3$ and hence $\operatorname{nullity}(\mathbf{T})=0$. Thus, \mathbf{T} is 1-1.
(3): \mathbf{T} is not onto since $\operatorname{rank}(\mathbf{T})=3<\operatorname{rank}\left(M_{2 \times 2}(\mathbb{R})\right)=4$.

Example 2.2.7

Let $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be a linear transformation satisfying:

$$
\mathbf{T}(1)=(1,1,1), \mathbf{T}(1+x)=(1,2,1), \text { and } \mathbf{T}\left(1+x+x^{2}\right)=(1,0,1)
$$

1. Find a matrix representation of \mathbf{T} relative to the standard ordered bases for $\mathbb{P}_{2}(\mathbb{R})$ and \mathbb{R}^{3}. Evaluate $\mathbf{T}(g(x))$, where $g(x)=x^{2}-3 x+1$.
2. Find bases for $\mathcal{R}(\mathbf{T})$ and $\mathcal{N}(\mathbf{T})$. Exercise!!

Solution:

(1): Consider $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\{(1,0,0),(0,1,0),(0,0,1)\}$. Then

$$
\begin{aligned}
\mathbf{T}(1) & =(1,1,1)=1 \cdot(1,0,0)+1 \cdot(0,1,0)+1 \cdot(0,0,1) \Rightarrow[\mathbf{T}(1)]_{\gamma}=(1,1,1) \\
\mathbf{T}(x) & =\mathbf{T}(1+x)-\mathbf{T}(1)=(0,1,0) \Rightarrow[\mathbf{T}(x)]_{\gamma}=(0,1,0) \\
\mathbf{T}\left(x^{2}\right) & =\mathbf{T}\left(1+x+x^{2}\right)-\mathbf{T}(1+x)=(0,-2,0) \Rightarrow\left[\mathbf{T}\left(x^{2}\right)\right]_{\gamma}=(0,-2,0)
\end{aligned}
$$

Thus

$$
A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & -2 \\
1 & 0 & 0
\end{array}\right]
$$

Note that, $[g(x)]_{\beta}=(1,-3,1)$ and hence $[\mathbf{T}(g(x))]_{\gamma}=A[g(x)]_{\beta}=(1,-4,1)$. Therefore, $\mathbf{T}(g(x))=(1,-4,1)$.
(2): Note that

$$
\begin{aligned}
\mathcal{R}(\mathbf{T}) & =\operatorname{span}\left\{\mathbf{T}(1), \mathbf{T}(x), \mathbf{T}\left(x^{2}\right)\right\} \\
& =\operatorname{span}\{(1,1,1),(0,1,0),(0,-2,0)\}=\operatorname{span}\{(1,1,1),(0,1,0)\}
\end{aligned}
$$

Therefore, $\{(1,1,1),(0,1,0)\}$ is a basis for $\mathcal{R}(\mathbf{T})$.

$$
\begin{aligned}
\mathcal{N}(\mathbf{T}) & =\left\{f(x)=a+b x+c x^{2} \in \mathbb{P}_{2}(\mathbb{R}): \mathbf{T}\left(a+b x+c x^{2}\right)=(0,0,0)\right\} \\
& =\left\{a+b x+c x^{2}: a \mathbf{T}(1)+b \mathbf{T}(x)+c \mathbf{T}\left(x^{2}\right)=(0,0,0)\right\} \\
& =\left\{a+b x+c x^{2}: a(1,1,1)+b(0,1,0)+c(0,-2,0)=(0,0,0)\right\} \\
& =\left\{a+b x+c x^{2}:(a, a+b-2 c, a)=(0,0,0)\right\} \\
& =\left\{a+b x+c x^{2}: a=0 \text { and } b=2 c\right\} \\
& =\left\{2 c x+c x^{2}: c \in \mathbb{R}\right\}=\operatorname{span}\left\{2 x+x^{2}\right\} .
\end{aligned}
$$

Thus, $\left\{2 x+x^{2}\right\}$ is a basis for $\mathcal{N}(\mathbf{T})$.
Note that we could use Remark 2.2.3 to find a basis for $\mathcal{N}(\mathbf{T})$ using the following technique:

$$
\left[\mathbf{T}\left(a+b x+c x^{2}\right)\right]_{\beta}=A\left[\mathbf{T}\left(a+b x+c x^{2}\right)\right]_{\beta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & -2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a \\
a+b-2 c \\
a
\end{array}\right]
$$

Therefore,

$$
\left[\begin{array}{c}
a \\
a+b-2 c \\
a
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

implies that $a=0$ and $b=2 c$. Hence, $f(x)=0+2 c x+c x^{2}$ and thus $\left\{2 x+x^{2}\right\}$ is a basis for $\mathcal{N}(\mathbf{T})$.

Exercise 2.2.1

Solve the following exercises from the book at pages 84-86:

- $2: a, b, c$, and d.
- $3,4,5$.
- 8.

Exercise 2.2.2

Let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear defined by $\mathbf{T}(x, y)=(2 x-3 y,-x, x+4 y)$. Find a matrix representation A for \mathbf{T}. Use A to evaluate $\mathbf{T}(u)$, where $u=(2,4)$.

Solution:

We use the method described in Remark 2.2.3 and consider $\beta=\{(1,0),(0,1)\}$ and $\gamma=$ $\{(1,0,0),(0,1,0),(0,0,1)\}$ as standard ordered bases for \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. Then
$\mathbf{T}(1,0)=(2,-1,1)=2 \cdot(1,0,0)+(-1) \cdot(0,1,0)+1 \cdot(0,0,1) \quad \Rightarrow[\mathbf{T}(1,0)]_{\gamma}=(2,-1,1)$ $\mathbf{T}(0,1)=(-3,0,4)=-3 \cdot(1,0,0)+0 \cdot(0,1,0)+4 \cdot(0,0,1) \quad \Rightarrow[\mathbf{T}(0,1)]_{\gamma}=(-3,0,4)$.

Therefore, $A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{cc}2 & -3 \\ -1 & 0 \\ 1 & 4\end{array}\right]$.
Simply, $[\mathbf{T}(u)]_{\gamma}=A[u]_{\beta}=(-8,-2,18)$. Hence, $\mathbf{T}(u)=(-8,-2,18)$.

Exercise 2.2.3

Let $\mathbf{T}: \mathbb{P}_{3}(\mathbb{R}) \rightarrow \mathbb{P}_{2}(\mathbb{R})$ be the linear defined by $\mathbf{T}(f(x))=f^{\prime}(x)$. Let β and γ be the standard ordered bases for $\mathbb{P}_{3}(\mathbb{R})$ and $\mathbb{P}_{2}(\mathbb{R})$, respectively. Find the matrix representation A for \mathbf{T} with respect to β and γ. Use A to evaluate $\mathbf{T}(f(x))$, where $f(x)=3 x^{2}+1$.

Solution:

Let $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ and $\gamma=\left\{1, x, x^{2}\right\}$. Thus

$$
\begin{aligned}
\mathbf{T}(1) & =0=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \Rightarrow[\mathbf{T}(1)]_{\gamma}=(0,0,0) \\
\mathbf{T}(x) & =1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \Rightarrow[\mathbf{T}(x)]_{\gamma}=(1,0,0) \\
\mathbf{T}\left(x^{2}\right) & =2 x=0 \cdot 1+2 \cdot x+0 \cdot x^{2} \Rightarrow\left[\mathbf{T}\left(x^{2}\right)\right]_{\gamma}=(0,2,0) \\
\mathbf{T}\left(x^{3}\right) & =3 x^{2}=0 \cdot 1+0 \cdot x+3 \cdot x^{2} \Rightarrow\left[\mathbf{T}\left(x^{3}\right)\right]_{\gamma}=(0,0,3)
\end{aligned}
$$

Therefore, $A=[\mathbf{T}]_{\beta}^{\gamma}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$.
Note that $[f(x)]_{\beta}=(1,0,3,0)$ and hence $[\mathbf{T}(f(x))]_{\gamma}=A[f(x)]_{\beta}=(0,6,0)$. Therefore, $\mathbf{T}(f(x))=6 x$.

Exercise 2.2.4

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 4 & 1 & 3\end{array}\right]$. Assume that $\mathbf{T}: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{1}(\mathbb{R})$ is the linear tranformation defined by A using the standard ordered bases β and γ for $\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{P}_{1}(\mathbb{R})$, respectively. Evaluate $\mathbf{T}(g(x))$, where $g(x)=2 x^{2}-3 x+1$.

Solution:

We solve in two methods: 1 . Note that $\left[\mathbf{T}\left(2 x^{2}-3 x+1\right)\right]_{\gamma}=2\left[\mathbf{T}\left(x^{2}\right)\right]_{\gamma}-3[\mathbf{T}(x)]_{\gamma}+[\mathbf{T}(1)]_{\gamma}=$ $2\left[\begin{array}{l}2 \\ 3\end{array}\right]-3\left[\begin{array}{c}-1 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 4\end{array}\right]=\left[\begin{array}{l}8 \\ 7\end{array}\right]$. Hence, $\mathbf{T}(g(x))=8+7 x$.
2. Another way: Note that $[g(x)]_{\beta}=(1,-3,2)$ and hence $[\mathbf{T}(g(x))]_{\gamma}=A[g(x)]_{\beta}=(8,7)$. Thus, $\mathbf{T}(g(x))=8+7 x$.

Section 2.5: The Change of Coordinate Matrix

Definition 2.5.1

Let β and γ be ordered bases for a finite-dimensional vector space \mathbb{V}, and let $Q=\left[\mathbf{I}_{\mathbb{V}}\right]_{\gamma}^{\beta}$, where $\mathbf{I}_{\mathbb{V}}: \mathbb{V} \rightarrow \mathbb{V}$ is the identity linear transformation. Then Q is called the change of coordinate matrix (it changes γ-coordinate into β-coordinate). Moreover, Q is invertible and Q^{-1} changes β-coordinate into γ-coordinate.

Theorem 2.5.1

Let \mathbf{T} be a linear operator on a finite-dimensional vector space \mathbb{V}. Let β and γ be two ordered bases for \mathbb{V}, and let Q be the change of coordinate matrix that changes γ-coordinates into β-coordinates. Then

1. For any $x \in \mathbb{V},[x]_{\beta}=Q[x]_{\gamma}$, and
2. $[\mathbf{T}]_{\gamma}=Q^{-1}[\mathbf{T}]_{\beta} Q$.

Example 2.5.1

Let $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,-1),(2,1)\}$ be two ordered bases for \mathbb{R}^{2}, and let $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathbf{T}(a, b)=(a+b, a-2 b)$. Find the change of coordinate matrix Q, that changes γ-coordinates into β-coordinates, and use it to find $[\mathbf{T}]_{\gamma}$. Find $[(5,1)]_{\beta}$ using Q.

Solution:

Note that

$$
\mathbf{I}_{\mathbb{R}^{2}}(1,-1)=(1,-1)=1 \cdot(1,0)+(-1) \cdot(0,1) \quad \& \quad \mathbf{I}_{\mathbb{R}^{2}}(2,1)=(2,1)=2 \cdot(1,0)+1 \cdot(0,1) .
$$

Thus, the matrix that changes γ-coordinates into β-coordinates is

$$
Q=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right) \Rightarrow Q^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right) .
$$

To find $[\mathbf{T}]_{\gamma}$, we use $[\mathbf{T}]_{\gamma}=Q^{-1}[\mathbf{T}]_{\beta} Q$ and

$$
\left.\begin{array}{l}
\mathbf{T}(1,0)=(1,1)=1 \cdot(1,0)+1 \cdot(0,1) \\
\mathbf{T}(0,1)=(1,-2)=1 \cdot(1,0)+(-2) \cdot(0,1)
\end{array}\right\} \Rightarrow[\mathbf{T}]_{\beta}=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right] .
$$

Thus, $[\mathbf{T}]_{\gamma}=Q^{-1}[\mathbf{T}]_{\beta} Q=\left[\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right]$.
\star Confirmation:

$$
\begin{aligned}
\mathbf{T}(1,-1) & =(0,3)=-2 \cdot(1,-1)+1 \cdot(2,1), \text { and } \\
\mathbf{T}(2,1) & =(3,0)=1 \cdot(1,-1)+1 \cdot(2,1)
\end{aligned}
$$

Finally, note that $[(5,1)]_{\beta}=Q[(5,1)]_{\gamma}$, where $[(5,1)]_{\gamma}=(1,2)$ since $(5,1)=1 \cdot(1,-1)+2$.
$(2,1)$. Therefore, $[(5,1)]_{\beta}=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)\binom{1}{2}=\binom{5}{1}$ which is true since $(5,1)=5 \cdot(1,0)+1$. $(0,1)$.

Example 2.5.2

Let $\beta=\{(1,1),(1,-1)\}$ and $\gamma=\{(2,4),(3,1)\}$ be bases for \mathbb{R}^{2}. (a) What is the matrix Q that changes γ-coordinates into β-coordinates, and use it to find $[(1,7)]_{\beta}$ and $[(1,7)]_{\gamma}$. (b) If $\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear operator on \mathbb{R}^{2} defined by $\mathbf{T}(a, b)=(3 a-b, a+3 b)$, find $[\mathbf{T}]_{\gamma}$.

Solution:

(a): We first consider:

$$
\begin{aligned}
& \mathbf{I}_{\mathbb{R}^{2}}(2,4)=(2,4)=c_{1}(1,1)+c_{2}(1,-1)=3(1,1)+(-1)(1,-1), \quad \text { and } \\
& \mathbf{I}_{\mathbb{R}^{2}}(3,1)=(3,1)=c_{1}(1,1)+c_{2}(1,-1)=2(1,1)+1(1,-1) .
\end{aligned}
$$

Thus, the matrix that changes γ-coordinates into β-coordinates is

$$
Q=\left(\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right) \Rightarrow Q^{-1}=\frac{1}{5}\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
$$

To compute $[(1,7)]_{\beta}$, consider $(1,7)=2(2,4)+(-1)(3,1)$; hence $[(1,7)]_{\gamma}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$. Therefore,

$$
[(1,7)]_{\beta}=Q[(1,7)]_{\gamma}=\left(\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3
\end{array}\right]
$$

which is true since $(1,7)=4(1,1)+(-3)(1,-1)$.
To compute $[(1,7)]_{\gamma}$, consider $(1,7)=4(1,1)+(-3)(1,-1)$; hence $[(1,7)]_{\beta}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$. Therefore,

$$
[(1,7)]_{\gamma}=Q^{-1}[(1,7)]_{\beta}=\frac{1}{5}\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)\left[\begin{array}{c}
4 \\
-3
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

which is true since $(1,7)=2(2,4)+(-1)(3,1)$.
(b): Note that

$$
\begin{aligned}
\mathbf{T}(1,1) & =(2,4)=3 \cdot(1,1)+(-1) \cdot(1,-1), \\
\mathbf{T}(1,-1) & =(4,-2)=1 \cdot(1,1)+3 \cdot(1,-1) .
\end{aligned}
$$

Thus $[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}3 & 1 \\ -1 & 3\end{array}\right)$ and hence

$$
[\mathbf{T}]_{\gamma}=Q^{-1}[\mathbf{T}]_{\beta} \quad Q=\cdots=\left(\begin{array}{cc}
4 & 1 \\
-2 & 2
\end{array}\right) .
$$

Which can be seen if we consider

$$
\begin{aligned}
& \mathbf{T}(2,4)=(2,14)=\left(4 \cdot(2,4)+-2 \cdot(3,1) \Rightarrow[\mathbf{T}(2,4)]_{\gamma}=(4,-2) . " 1^{s t} \text { column of }[\mathbf{T}]_{\gamma} "\right. \\
& \mathbf{T}(3,1)=(8,6)=(1) \cdot(2,4)+(2) \cdot(3,1) \Rightarrow[\mathbf{T}(3,1)]_{\gamma}=(1,2) . " 2^{n d} \text { column of }[\mathbf{T}]_{\gamma} "
\end{aligned}
$$

Example 2.5.3

Let \mathbf{T} be the linear operator on \mathbb{R}^{3} defined by

$$
\mathbf{T}(a, b, c)=(2 a+b, a+b+3 c,-b)
$$

and let $\beta=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $\gamma=\{(-1,0,0),(2,1,0),(1,1,1)\}$ be bases for \mathbb{R}^{3}. Find $[\mathbf{T}]_{\beta},[\mathbf{T}]_{\gamma}$, and the matrix Q that changes the γ-coordinates into β-coordinates.

Solution:

Clearly,

$$
\begin{gathered}
\mathbf{I}_{\mathbb{R}^{3}}(-1,0,0)=(-1,0,0)=-1(1,0,0)+0(0,1,0)+0(0,0,1) \\
\mathbf{I}_{\mathbb{R}^{3}}(2,1,0)=(2,1,0)=2(1,0,0)+1(0,1,0)+0(0,0,1) \\
\mathbf{I}_{\mathbb{R}^{3}}(1,1,1)=(1,1,1)=1(1,0,0)+1(0,1,0)+1(0,0,1) .
\end{gathered}
$$

Hence

$$
Q=\left(\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \Rightarrow Q^{-1}=\left(\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Computing $[\mathbf{T}]_{\beta}$:

$$
\begin{aligned}
& \mathbf{T}(1,0,0)=(2,1,0)=2(1,0,0)+1(0,1,0)+0(0,0,1) \\
& \mathbf{T}(0,1,0)=(1,1,-1)=1(1,0,0)+1(0,1,0)+(-1)(0,0,1) \\
& \mathbf{T}(0,0,1)=(0,3,0)=0(1,0,0)+3(0,1,0)+0(0,0,1) .
\end{aligned}
$$

Thus $[\mathbf{T}]_{\beta}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & 3 \\ 0 & -1 & 0\end{array}\right)$, and hence $[\mathbf{T}]_{\gamma}=Q^{-1}[\mathbf{T}]_{\beta} Q=\left(\begin{array}{ccc}0 & 2 & 8 \\ -1 & 4 & 6 \\ 0 & -1 & -1\end{array}\right)$.
Confirming:

$$
\begin{aligned}
\mathbf{T}(-1,0,0) & =(-2,-1,0)=0(-1,0,0)+(-1)(2,1,0)+0(1,1,1) \\
\mathbf{T}(2,1,0) & =(5,3,-1)=2(-1,0,0)+4(2,1,0)+(-1)(1,1,1) \\
\mathbf{T}(1,1,1) & =(3,5,-1)=8(-1,0,0)+6(2,1,0)+(-1)(1,1,1) .
\end{aligned}
$$

Exercise 2.5.1

Solve the following exercises from the book at pages 116-117:

- $2,3,4,5,6$.

Section 5.1: Eigenvalues and Eigenvectors

Definition 5.1.1

Let $A \in M_{m \times n}(\mathbb{F})$. We define the mapping $\mathbf{L}_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ by $\mathbf{L}_{A}(x)=A x$ for every column vector $x \in \mathbb{F}^{n}$. We call \mathbf{L}_{A}, the left multiplication transformation.

Example 5.1.1
Let $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 1 & 2\end{array}\right]$ and $\mathbf{L}_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. Find $\mathbf{L}_{A}(x)$ where $x=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.

Solution:

$$
\mathbf{L}_{A}(x)=A x=\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
9 \\
3
\end{array}\right] \in \mathbb{R}^{2}
$$

Remark 5.1.1

Let $A, B \in M_{m \times n}(\mathbb{F})$ and let $c \in \mathbb{F}$. Then

1. \mathbf{L}_{A} is a linear transformation.
2. $\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma}=A$, where β and γ are the standard ordered bases for \mathbb{F}^{n} and \mathbb{F}^{m}, respectively.
3. $\mathbf{L}_{A}=\mathbf{L}_{B}$ if and only if $A=B$.
4. $\mathbf{L}_{A+B}=\mathbf{L}_{A}+\mathbf{L}_{B}$ and $\mathbf{L}_{c A}=c \mathbf{L}_{A}$.

Proof of (2): Let $\beta=\left(E_{1}, \cdots, E_{n}\right)$ and $\gamma=\left(E_{1}, \cdots, E_{m}\right)$ be the standard ordered bases for \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. For any column vector $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$, we have

$$
x=x_{1} E_{1}+\cdots+x_{n} E_{n},
$$

and thus $[x]_{\beta}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=x$. Similarly, we have $[y]_{\gamma}=y$ for all $y \in \mathbb{R}^{m}$.
Now let $A \in M_{m \times n}(\mathbb{R})$, and let $x \in \mathbb{R}^{n}$. By definition, $\mathbf{L}_{A}(x)=A x$. Also by Remark 2.2.2, we have $\left[\mathbf{L}_{A}\right]_{\gamma}=\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma}[x]_{\beta}$. Note that since $\left[\mathbf{L}_{A}\right]_{\gamma} \in \mathbb{R}^{m}$ and $[x]_{\beta} \in \mathbb{R}^{n}$, we have

$$
\mathbf{L}_{A}(x)=\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma} x
$$

Thus, $\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma} x=\mathbf{L}_{A}(x)=A x$ for all $x \in \mathbb{R}^{n}$. Applying this to $E_{1}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)$, we see that the first column of $\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma}$ and A are the same. Similarly, we apply it for all E_{i} for $i=1, \cdots, n$, we get $\left[\mathbf{L}_{A}\right]_{\beta}^{\gamma}=A$ as desired.

Definition 5.1.2

A linear operator \mathbf{T} on a finite-dimensional vector space \mathbb{V} is called diagonalizable if there is an ordered basis β for \mathbb{V} such that $[\mathbf{T}]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if \mathbf{L}_{A} is diagonalizable.

Definition 5.1.3

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}. A nonzero vector $x \in \mathbb{V}$ is called eigenvector (or e-vector for short) of \mathbf{T} if there exists a scalar λ such that $\mathbf{T}(x)=\lambda x$. The scalar λ is then called eigenvalue (or e-value for short) corresponding to x.

Remark 5.1.2

Let $A \in M_{n \times n}(\mathbb{F})$.

- A nonzero vector $x \in \mathbb{F}^{n}$ is called e-vector of A if and only if x is an e-vector of \mathbf{L}_{A}.
- λ is an e-value of A if and only if λ is an e-value of \mathbf{L}_{A}.

Theorem 5.1.1

A linear operator \mathbf{T} on a finite-dimensional vector space \mathbb{V} is diagonalizable if and only if there exists an ordered basis β for \mathbb{V} consisting of e-vectors of \mathbf{T}. Furthermore, if \mathbf{T} is diagonalizable, $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is an ordered basis of e-vectors of \mathbf{T}, and $D=[\mathbf{T}]_{\beta}=\left(d_{i j}\right)$, then D is a
diagonal matrix and $d_{j j}$ is the e-values corresponding to x_{j} for $1 \leq j \leq n$.

Note that to diagonalize a matrix or a linear operator is to find a basis of e-vectors and the corresponding e-values.

Example 5.1.2
Consider $A=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right), x=\binom{1}{1}, y=\binom{1}{2}$. Then

$$
\mathbf{L}_{A}(x)=A x=\binom{2}{2}=2\binom{1}{1}=2 x \quad \text { and } \quad \mathbf{L}_{A}(y)=A y=\binom{3}{6}=3\binom{1}{2}=3 y
$$

That is 2 and 3 are e-values of \mathbf{L}_{A} corresponding to e-vectors x and y, respectively.
Note that $\beta=\{x, y\}$ is an ordered basis for \mathbb{R}^{2} consisting e-vectors of both A and \mathbf{L}_{A}, and therefore A and \mathbf{L}_{A} are both diagonalizable. Moreover,

$$
\left[\mathbf{L}_{A}\right]_{\beta}=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

where $\left[\mathbf{L}_{A}(x)\right]_{\beta}=(2,0)$, and $\left[\mathbf{L}_{A}(y)\right]_{\beta}=(0,3)$.

Theorem 5.1.2

Let $A \in M_{n \times n}(\mathbb{F})$. Then a scalar λ is an e-value of A if and only if $\left|A-\lambda I_{n}\right|=0$.

Proof:

A scalar λ is an e-value of A iff there exists a nonzero vector $x \in \mathbb{F}^{n}$ such that

$$
A x=\lambda x \Leftrightarrow A x-\lambda x=0 \Leftrightarrow\left(A-\lambda I_{n}\right) x=0 \Leftrightarrow A-\lambda I_{n} \text { is singular } \Leftrightarrow\left|A-\lambda I_{n}\right|=0
$$

Definition 5.1.4

- Let $A \in M_{n \times n}(\mathbb{F})$. The polynomial $f(t)=\left|A-t I_{n}\right|$ is called the characteristic polynomial of A.
- Let \mathbf{T} be a linear operator on an n-dimensional vector space \mathbb{V} with ordered basis β. We
define the characteristic polynomial $f(t)$ of \mathbf{T} to be

$$
f(t)=\left|A-t I_{n}\right|, \quad \text { where } A=[\mathbf{T}]_{\beta} .
$$

Example 5.1.3
Find the e-values of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.

Solution

We use the characteristic polynomial $f(\lambda)=\left|A-\lambda I_{2}\right|=0$.

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)=0 .
$$

Therefore, $\lambda=-1$ and 3 are the e-values of A.

Example 5.1.4

Let \mathbf{T} be a linear operator on $\mathbb{P}_{2}(\mathbb{R})$ defined by

$$
\mathbf{T}(f(x))=f(x)+(x+1) f^{\prime}(x)
$$

Find the e-values of \mathbf{T}.

Solution:

Let $A=[\mathbf{T}]_{\beta}$ where $\beta=\left\{1, x, x^{2}\right\}$ is the standard ordered basis for $\mathbb{P}_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
\mathbf{T}(1) & =1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
\mathbf{T}(x) & =x+(x+1)=2 x+1=1 \cdot 1+2 \cdot x+0 \cdot x^{2} \\
\mathbf{T}\left(x^{2}\right) & =x^{2}+(x+1) 2 x=3 x^{2}+2 x=0 \cdot 1+2 \cdot x+3 \cdot x^{2}
\end{aligned}
$$

Thus, $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$, and hence

$$
f(\lambda)=\left|A-\lambda I_{3}\right|=\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
0 & 2-\lambda & 2 \\
0 & 0 & 3-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)(3-\lambda)=0 .
$$

Therefore, λ is an e-value of A iff $\lambda=1,2$, or 3 .

Note that if A is an $n \times n$ matrix, then $f(t)=\left|A-t I_{n}\right|=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, is of degree n.

Theorem 5.1.3

Let $A \in M_{n \times n}(\mathbb{F})$ with characteristic polynomial $f(t)$. Then

1. $f(t)$ is a polynomial of degree n with leading coefficient $(-1)^{n}$.
2. A has at most n distinct e-values.
3. $f(0)=a_{0}=|A|$.

The following theorem describes a procedure for computing the e-vectors corresponding to a given e-value.

Theorem 5.1.4

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}, and let λ be an e-value of \mathbf{T}. A vector $x \in \mathbb{V}$ is an e-vector of \mathbf{T} corresponding to λ if and only if $x \neq 0$ and $x \in \mathcal{N}(\mathbf{T}-\lambda I)$.

Example 5.1.5

Let $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$. Find all e-vectors of A.

Solution:

We start finding the e-values using $f(\lambda)=\left|A-\lambda I_{2}\right|=0$. Thus

$$
\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)=0
$$

Thus $\lambda_{1}=-1$ and $\lambda_{2}=3$.
For $\underline{\lambda_{1}=-1}$: Let $B_{1}=A-\lambda_{1} I_{2}=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$. Then $x_{1}=\binom{a}{b} \in \mathbb{R}^{2}$ is an e-vector corresponding to $\lambda_{1}=-1$ iff $x_{1} \neq 0$ and $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)$. That is

$$
\mathbf{L}_{B_{1}}\left(x_{1}\right)=B_{1} x_{1}=0 \Rightarrow\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right)\binom{a}{b}=\binom{0}{0} .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{ll|l}
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a+\frac{1}{2} b=0 \Rightarrow b=-2 a
$$

That is, $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)=\left\{t\binom{1}{-2}: 0 \neq t \in \mathbb{R}\right\}$. Thus x_{1} is an e-vector of A corresponding to $\lambda_{1}=-1$ iff $x_{1}=t\binom{1}{-2}$ for some nonzero $t \in \mathbb{R}$.
For $\underline{\lambda_{2}=3}$: Let $B_{2}=A-\lambda_{2} I_{2}=\left(\begin{array}{cc}-2 & 1 \\ 4 & -2\end{array}\right)$. Then $x_{2}=\binom{a}{b} \in \mathbb{R}^{2}$ is an e-vector corresponding to $\lambda_{2}=3$ iff $x_{2} \neq 0$ and $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)$. That is

$$
\mathbf{L}_{B_{2}}\left(x_{2}\right)=B_{2} x_{2}=0 \Rightarrow\left(\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a-\frac{1}{2} b=0 \Rightarrow b=2 a .
$$

That is, $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)=\left\{t\binom{1}{2}: 0 \neq t \in \mathbb{R}\right\}$. Thus x_{2} is an e-vector of A corresponding to $\lambda_{2}=3$ iff $x_{2}=t\binom{1}{2}$ for some nonzero $t \in \mathbb{R}$.

Remark:

Note that $\gamma=\left\{\binom{1}{-2},\binom{1}{2}\right\}$ is an ordered basis for \mathbb{R}^{2} containing e-vectors of A. Thus \mathbf{L}_{A}, and hence A, is diagonalizable and if $Q=\left(\begin{array}{cc}1 & 1 \\ -2 & 2\end{array}\right)$, then $Q^{-1} A Q=\left(\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right)$.

Remark 5.1.3

Note that to find the e-vectors of a linear operator \mathbf{T} on an n-dimensional vector space \mathbb{V} :

1. Select an ordered basis for \mathbb{V}, say β.
2. Let $A=[\mathbf{T}]_{\beta}$. Then $x \in \mathbb{V}$ is an e-vector of \mathbf{T} corresponding to λ if and only if $[x]_{\beta}$, the coordinate vector of x relative to β, is an e-vector of A corresponding to λ.

Example 5.1.6

Let \mathbf{T} be the linear operator defined on $\mathbb{P}_{2}(\mathbb{R})$ by

$$
\mathbf{T}(f(x))=f(x)+(x+1) f^{\prime}(x) .
$$

Find the e-vectors of \mathbf{T} and an ordered basis γ for $\mathbb{P}_{2}(\mathbb{R})$ so that $[\mathbf{T}]_{\gamma}$ is diagonalizable.

Solution:

Let $\beta=\left\{1, x, x^{2}\right\}$ be an ordered basis for $\mathbb{P}_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
\mathbf{T}(1) & =1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
\mathbf{T}(x) & =x+(x+1)=2 x+1=1 \cdot 1+2 \cdot x+0 \cdot x^{2} \\
\mathbf{T}\left(x^{2}\right) & =x^{2}+(x+1) 2 x=3 x^{2}+2 x=0 \cdot 1+2 \cdot x+3 \cdot x^{2}
\end{aligned}
$$

Thus, $A=[\mathbf{T}]_{\beta}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$, and hence

$$
f(\lambda)=\left|A-\lambda I_{3}\right|=\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
0 & 2-\lambda & 2 \\
0 & 0 & 3-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)(3-\lambda)=0 .
$$

Therefore, $\lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=3$.
For $\underline{\lambda_{1}=1}$: Let $B_{1}=A-\lambda_{1} I_{3}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right)$. Then $x_{1}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is an e-vector corresponding to $\lambda_{1}=1$ iff $x_{1} \neq 0$ and $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)$. That is

$$
\mathbf{L}_{B_{1}}\left(x_{1}\right)=B_{1} x_{1}=0 \Rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow b=c=0 \text { and } a=t \in \mathbb{R} \backslash\{0\}
$$

That is, $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)=\left\{t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right): 0 \neq t \in \mathbb{R}\right\}$. Thus x_{1} is an e-vector of A corresponding to $\lambda_{1}=1$ iff $x_{1}=t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the
e-vectors of \mathbf{T} corresponding to $\lambda_{1}=1$ are of the form

$$
\left\{t\left(1 \cdot 1+0 \cdot x+0 \cdot x^{2}\right): t \in \mathbb{R} \backslash\{0\}\right\}=\{t: t \in \mathbb{R} \backslash\{0\}\}
$$

For $\underline{\lambda_{2}=2}$: Let $B_{2}=A-\lambda_{2} I_{3}=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1\end{array}\right)$. Then $x_{2}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is an e-vector corresponding to $\lambda_{2}=2$ iff $x_{2} \neq 0$ and $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)$. That is

$$
\mathbf{L}_{B_{2}}\left(x_{2}\right)=B_{2} x_{2}=0 \Rightarrow\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow a-b=0 \text { and } c=0 \Rightarrow a=b=t \in \mathbb{R} \backslash\{0\}
$$

That is, $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)=\left\{t\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right): 0 \neq t \in \mathbb{R}\right\}$. Thus x_{2} is an e-vector of A corresponding to $\lambda_{2}=2$ iff $x_{2}=t\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to $\lambda_{2}=2$ are of the form

$$
\left\{t\left(1 \cdot 1+1 \cdot x+0 \cdot x^{2}\right): t \in \mathbb{R} \backslash\{0\}\right\}=\{t(1+x): t \in \mathbb{R} \backslash\{0\}\}
$$

For $\underline{\lambda_{3}=3}$: Let $B_{3}=A-\lambda_{3} I_{3}=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0\end{array}\right)$. Then $x_{3}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is an e-vector corresponding to $\lambda_{3}=3$ iff $x_{3} \neq 0$ and $x_{3} \in \mathcal{N}\left(\mathbf{L}_{B_{3}}\right)$. That is

$$
\mathbf{L}_{B_{3}}\left(x_{3}\right)=B_{3} x_{3}=0 \Rightarrow\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{ccc|c}
-2 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow a=c \text { and } b=2 c \Rightarrow c=t \in \mathbb{R} \backslash\{0\}
$$

That is, $x_{3} \in \mathcal{N}\left(\mathbf{L}_{B_{3}}\right)=\left\{t\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right): 0 \neq t \in \mathbb{R}\right\}$. Thus x_{3} is an e-vector of A corresponding to $\lambda_{3}=3$ iff $x_{3}=t\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to $\lambda_{3}=3$ are of the form

$$
\left\{t\left(1 \cdot 1+2 \cdot x+1 \cdot x^{2}\right): t \in \mathbb{R} \backslash\{0\}\right\}=\left\{t\left(1+2 x+x^{2}\right): t \in \mathbb{R} \backslash\{0\}\right\}
$$

Therefore, setting $t=1$, we get $\gamma=\left\{1,1+x, 1+2 x+x^{2}\right\}$ which is an ordered basis for $\mathbb{P}_{2}(\mathbb{R})$ containing e-vectors of \mathbf{T} and hence \mathbf{T} is diagonalizable and

$$
[\mathbf{T}]_{\gamma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)=Q^{-1} A Q, \quad \text { where } Q=[\mathbf{I}]_{\gamma}^{\beta}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Note that the columns of Q are the vectors $\left[u_{i}\right]_{\beta}$ for $i=1,2,3$ and $u_{i} \in \gamma$. That is $Q=$

Example 5.1.7

Let \mathbf{T} be a linear operator defined on $M_{2 \times 2}(\mathbb{R})$ by $\mathbf{T}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$. Find the e-vectors of \mathbf{T} and an ordered basis γ for $M_{2 \times 2}(\mathbb{R})$ such that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.

Solution:

Let $\beta=\left\{E^{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E^{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E^{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E^{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. Then,

$$
\begin{aligned}
& \mathbf{T}\left(E^{11}\right)=E^{22}=0 \cdot E^{11}+0 \cdot E^{12}+0 \cdot E^{21}+1 \cdot E^{22} \\
& \mathbf{T}\left(E^{12}\right)=E^{12}=0 \cdot E^{11}+1 \cdot E^{12}+0 \cdot E^{21}+0 \cdot E^{22} \\
& \mathbf{T}\left(E^{21}\right)=E^{21}=0 \cdot E^{11}+0 \cdot E^{12}+1 \cdot E^{21}+0 \cdot E^{22} \\
& \mathbf{T}\left(E^{22}\right)=E^{11}=1 \cdot E^{11}+0 \cdot E^{12}+0 \cdot E^{21}+0 \cdot E^{22}
\end{aligned}
$$

Thus, $A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ and hence the e-values of A are

$$
f(\lambda)=\left|A-\lambda I_{4}\right|=\left|\begin{array}{cccc}
-\lambda & 0 & 0 & 1 \\
0 & 1-\lambda & 0 & 0 \\
0 & 0 & 1-\lambda & 0 \\
1 & 0 & 0 & -\lambda
\end{array}\right|=(1-\lambda)^{2}\left(\lambda^{2}-1\right)=0
$$

Thus, $\lambda_{1,2,3}=1$ and $\lambda_{4}=-1$.
For $\underline{\lambda=\lambda_{1,2,3}=1}$: Let $B=A-\lambda I_{4}=\left(\begin{array}{cccc}-1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1\end{array}\right)$. Then $x=\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$ is an e-vector corresponding to λ iff $x \neq 0$ and $x \in \mathcal{N}\left(\mathbf{L}_{B}\right)$. That is

$$
\mathbf{L}_{B}(x)=B x=0 \Rightarrow\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left(\begin{array}{cccc|c}
-1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \Rightarrow a-d=0 \Rightarrow a=d=s ; b=t ; c=r
$$

where $s, t, r \in \mathbb{R} \backslash\{0\}$. That is, x are of the form

$$
\left\{\left(\begin{array}{l}
s \\
t \\
r \\
s
\end{array}\right): s, t, r \in \mathbb{R}\right\}=\left\{s\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+r\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right): s, t, r \in \mathbb{R}\right\}
$$

Note that s, t, and r are in \mathbb{R} not all zeros. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to λ are of the form

$$
s\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), r\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

For $\underline{\lambda=\lambda_{4}=-1}$: Let $B=A-\lambda I_{4}=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$. Then $x=\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$ is an e-vector corresponding to λ iff $x \neq 0$ and $x \in \mathcal{N}\left(\mathbf{L}_{B}\right)$. That is

$$
\mathbf{L}_{B}(x)=B x=0 \Rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left(\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \Rightarrow a+d=0 ; b=c=0 \Rightarrow d=t ; a=-t,
$$

where $t \in \mathbb{R} \backslash\{0\}$. That is, x are of the form

$$
\left\{t\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right): t \in \mathbb{R} \backslash\{0\}\right\}
$$

Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to λ are of the form

$$
t\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \text { for some } t \in \mathbb{R} \backslash\{0\}
$$

Thus, $\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\right\}$ is an ordered basis for $M_{2 \times 2}(\mathbb{R})$ consisting of e-vectors of \mathbf{T}. Therefore \mathbf{T} is diagonalizable and

$$
[\mathbf{T}]_{\gamma}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=Q^{-1} A Q
$$

Where Q is the matrix whose columns are $\left[u_{i}\right]_{\beta}$ for $i=1,2,3,4$ and $u_{i} \in \gamma$.

Example 5.1.8

Let \mathbf{T} be the linear operator defined on \mathbb{R}^{2} by $\mathbf{T}(a, b)=(-2 a+3 b,-10 a+9 b)$. Find the e-values of \mathbf{T} and an ordered basis γ for \mathbb{R}^{2} such that $[\mathbf{T}]_{\gamma}$ is a diagonal matrix.

Solution:

Let $\beta=\{(1,0),(0,1)\}$. Then

$$
\begin{aligned}
& \mathbf{T}(1,0)=(-2,-10)=-2 \cdot(1,0)+(-10) \cdot(0,1) \\
& \mathbf{T}(0,1)=(3,9)=3 \cdot(1,0)+9 \cdot(0,1)
\end{aligned}
$$

Thus $A=\left(\begin{array}{cc}-2 & 3 \\ -10 & 9\end{array}\right)$ and the e-values of A are

$$
f(\lambda)=\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
-2-\lambda & 3 \\
-10 & 9-\lambda
\end{array}\right|=\cdots=(\lambda-3)(\lambda-4)=0 .
$$

Therefore, $\lambda_{1}=3$ and $\lambda_{2}=4$.
For $\underline{\lambda_{1}=3}$: Let $B_{1}=A-\lambda_{1} I_{2}=\left(\begin{array}{cc}-5 & 3 \\ -10 & 6\end{array}\right)$. Then $x_{1}=\binom{a}{b} \in \mathbb{R}^{2}$ is an e-vector corresponding to $\lambda_{1}=3$ iff $x_{1} \neq 0$ and $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)$. That is

$$
\mathbf{L}_{B_{1}}\left(x_{1}\right)=B_{1} x_{1}=0 \Rightarrow\left(\begin{array}{cc}
-5 & 3 \\
-10 & 6
\end{array}\right)\binom{a}{b}=\binom{0}{0} .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{cc|c}
-5 & 3 & 0 \\
-10 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -\frac{3}{5} & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a-\frac{3}{5} b=0 \Rightarrow a=\frac{3}{5} b .
$$

That is, $x_{1} \in \mathcal{N}\left(\mathbf{L}_{B_{1}}\right)=\left\{t\binom{3}{5}: 0 \neq t \in \mathbb{R}\right\}$. Thus x_{1} is an e-vector of A corresponding to $\lambda_{1}=3$ iff $x_{1}=t\binom{3}{5}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to $\lambda=3$ are of the form

$$
t\binom{3}{5}, \text { for some } t \in \mathbb{R} \backslash\{0\}
$$

For $\underline{\lambda_{2}=4}$: Let $B_{2}=A-\lambda_{2} I_{2}=\left(\begin{array}{cc}-6 & 3 \\ -10 & 5\end{array}\right)$. Then $x_{2}=\binom{a}{b} \in \mathbb{R}^{2}$ is an e-vector corresponding to $\lambda_{2}=4$ iff $x_{2} \neq 0$ and $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)$. That is

$$
\mathbf{L}_{B_{2}}\left(x_{2}\right)=B_{2} x_{2}=0 \Rightarrow\left(\begin{array}{cc}
-6 & 3 \\
-10 & 5
\end{array}\right)\binom{a}{b}=\binom{0}{0} .
$$

This is a homogenous system which can be solved using r.r.e.f. as follows:

$$
\left[\begin{array}{cc|c}
-6 & 3 & 0 \\
-10 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a-\frac{1}{2} b=0 \Rightarrow a=\frac{1}{2} b
$$

That is, $x_{2} \in \mathcal{N}\left(\mathbf{L}_{B_{2}}\right)=\left\{t\binom{1}{2}: 0 \neq t \in \mathbb{R}\right\}$. Thus x_{2} is an e-vector of A corresponding to $\lambda_{2}=4$ iff $x_{2}=t\binom{1}{3}$ for some nonzero $t \in \mathbb{R}$. Consequently, (using the ordered basis β) the e-vectors of \mathbf{T} corresponding to $\lambda=4$ are of the form

$$
t\binom{1}{2} \text {, for some } t \in \mathbb{R} \backslash\{0\}
$$

Thus, $\gamma=\{(3,5),(1,2)\}$ is an ordered basis for \mathbb{R}^{2} consisting of e-vectors of \mathbf{T}. Therefore \mathbf{T} is diagonalizable and

$$
[\mathbf{T}]_{\gamma}=\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)=Q^{-1} A Q
$$

Where Q is the matrix whose columns are the vectors of γ. That is, $Q=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$.

Exercise 5.1.1

Solve the following exercises from the book at pages 256-260:

- 2.
- $3: a, b$, and d.
- 4,5 .
- 11 : a and c.
- 12 : a.
- 14,15 .

Section 5.2: Diagonalizability

In this section, we introduce a simple test to determine whether an operator or a matrix can be diagonalized. Also, we present a method for finding an ordered basis of e-vectors.

Theorem 5.2.1

Let \mathbf{T} be a linear operator on a finite-dimensional vector space \mathbb{V}, and let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ be distinct e-values of \mathbf{T}. If $x_{1}, x_{2}, \cdots, x_{k}$ are e-vectors of \mathbf{T} such that λ_{i} correspond to x_{i} $(1 \leq i \leq k)$, then $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is linearly independent set in \mathbb{V}.

Theorem 5.2.2

Let \mathbf{T} be a linear operator on an n-dimensional vector space \mathbb{V}. If \mathbf{T} has n distinct e-values, then \mathbf{T} is diagonalizable.

Example 5.2.1
Is $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ diagonalizable? Explain.

Solution:

We first start to find the e-values of A (and hence of \mathbf{L}_{A}) using its characteristic polynomial:

$$
f(\lambda)=\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda=\lambda(\lambda-2)=0
$$

Therefore, $\lambda_{1}=0$ and $\lambda_{2}=2$. Since \mathbf{L}_{A} is a linear operator on \mathbb{R}^{2} and has two distinct e-values (0 and 2), then \mathbf{L}_{A} (and hence A) is diagonalizable.

Remark 5.2.1

The converse of Theorem 5.2.1 is not true in general. That is if \mathbf{T} is diagonalizable, then \mathbf{T} not necessary has distinct e-values.

Definition 5.2.1

We say that a polynomial $f(t) \in \mathbb{P}(\mathbb{F})$ splits over \mathbb{F} if there are scalars $c, a_{1}, a_{2}, \cdots, a_{n}$ (not necessary distinct) in \mathbb{F} such that

$$
f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \cdots\left(t-a_{n}\right)
$$

Example 5.2.2

Note that $f(t)=t^{2}-1$ splits over \mathbb{R}, but $g(t)=t^{2}+1$ does not.

Theorem 5.2.3

The characteristic polynomial of any diagonalizable linear operator splits.

Proof:

Let \mathbf{T} be a diagonalizable linear operator on the n-dimensional vector space \mathbb{V} with an ordered basis β such that $[\mathbf{T}]_{\beta}=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ is a diagonal matrix. The characteristic polynomial of \mathbf{T} is

$$
\begin{aligned}
f(t) & =\left|[\mathbf{T}]_{\beta}-t I_{n}\right|=|D-t I|=\left|\begin{array}{ccc}
\lambda_{1}-t & & 0 \\
& \ddots & \\
0 & & \lambda_{n}-t
\end{array}\right| \\
& =\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \cdots\left(\lambda_{n}-t\right)=(-1)^{n}\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right) .
\end{aligned}
$$

Definition 5.2.2

Let λ be an e-value of a linear operator or a matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$. We write $m(\lambda)$ to denote λ 's multiplicity.

Example 5.2.3

Consider the characteristic polynomial $f(t)=(t-2)^{4}(t-3)^{2}(t-1)$. Hence $\lambda=2,3,1$ are the e-values with multiplicities: $m(\lambda=2)=4, m(\lambda=3)=2$, and $m(\lambda=1)=1$.

Definition 5.2.3

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}, and let λ be an e-value of \mathbf{T}. Define

$$
E_{\lambda}=\{x \in \mathbb{V}: \mathbf{T}(x)=\lambda x\}=\mathcal{N}\left(\mathbf{T}-\lambda \mathbf{I}_{V}\right) .
$$

The set E_{λ} is called the eigenspace (or e-space for short) of \mathbf{T} corresponding to λ. We also define the eigen space of a square matrix A to be the eigen space of \mathbf{L}_{A}.

Remark 5.2.2

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}, and let λ be an e-value of \mathbf{T}. Then

1. E_{λ} is a subspace of \mathbb{V}.
2. E_{λ} consists of the zero vector and the e-vector of \mathbf{T} corresponding to λ.
3. $\operatorname{dim}\left(E_{\lambda}\right)$ is the maximum number of linearly independent e-vectors corresponding to λ.

Theorem 5.2.4

Let \mathbf{T} be a linear operator on a finite-dimensional vector space \mathbb{V}, and let λ be an e-value of \mathbf{T} having multiplicity m. Then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.

Theorem 5.2.5: Diagonalization Test

Let \mathbf{T} be a linear operator on an n-dimensional vector space \mathbb{V}. Then, \mathbf{T} is diagonalizable if and only if both of the following conditions hold.

1. The characteristic polynomial of \mathbf{T} splits, and
2. For each e-value λ of $\mathbf{T}, m(\lambda)=\operatorname{dim}\left(E_{\lambda}\right)=n-\operatorname{rank}\left(\mathbf{T}-\lambda \mathbf{I}_{V}\right)$.

Moreover, if \mathbf{T} is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$ for $i=1, \cdots, k$, then $\beta=\beta_{1} \cup \cdots \cup \beta_{k}$ (in corresponding order of e-values) is an ordered basis for \mathbb{V} consisting of e-vectors of \mathbf{T}.

Example 5.2.4

Let \mathbf{T} be a linear operator on $\mathbb{P}_{2}(\mathbb{R})$ defined by $\mathbf{T}(f(x))=f^{\prime}(x)$. Is \mathbf{T} diagonalizable? Explain.

Solution:

Choose the standard ordered basis $\beta=\left\{1, x, x^{2}\right\}$ for $\mathbb{P}_{2}(\mathbb{R})$. Then,

$$
\left.\begin{array}{l}
\mathbf{T}(1)=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
\mathbf{T}(x)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
\mathbf{T}\left(x^{2}\right)=2 x=0 \cdot 1+2 \cdot x+0 \cdot x^{2}
\end{array}\right\} \Rightarrow A=[\mathbf{T}]_{\beta}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) .
$$

The characteristic polynomial of \mathbf{T} is

$$
f(\lambda)=\left|A-\lambda I_{3}\right|=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 2 \\
0 & 0 & -\lambda
\end{array}\right|=-\lambda^{3}=0
$$

Therefore, \mathbf{T} has one e-value $\lambda=0$ with multiplicity $m(0)=3$. The e-space E_{λ} corresponding to $\lambda=0$ is $E_{\lambda}=\mathcal{N}\left(\mathbf{T}-\lambda I_{3}\right)=\mathcal{N}(\mathbf{T})$. That is,

$$
E_{\lambda}=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3}:\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}=\left\{t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} .
$$

Hence E_{λ} is the subspace of $\mathbb{P}_{2}(\mathbb{R})$ consisting of the constant polynomials. So, $\{1\}$ is a basis for E_{λ} and hence $\operatorname{dim}\left(E_{\lambda}\right)=1 \neq m(0)=3$.
Therefore, there is no ordered basis for $\mathbb{P}_{2}(\mathbb{R})$ consisting of e-vectors of \mathbf{T}. Therefore, \mathbf{T} is not diagonalizable.

Example 5.2.5

Let \mathbf{T} be a linear operator on \mathbb{R}^{3} defined by $\mathbf{T}(a, b, c)=(4 a+c, 2 a+3 b+2 c, a+4 c)$. Determine the e-space corresponding to each e-value of \mathbf{T}.

Solution:

Choose $\beta=\left\{E_{1}, E_{2}, E_{3}\right\}$ the standard ordered basis for \mathbb{R}^{3}. Then,

$$
\left.\begin{array}{l}
\mathbf{T}\left(E_{1}\right)=(4,2,1)=4 \cdot E_{1}+2 \cdot E_{2}+1 \cdot E_{3} \\
\mathbf{T}\left(E_{2}\right)=(0,3,0)=0 \cdot E_{1}+3 \cdot E_{2}+0 \cdot E_{3} \\
\mathbf{T}\left(E_{3}\right)=(1,2,4)=1 \cdot E_{1}+2 \cdot E_{2}+4 \cdot E_{3}
\end{array}\right\} \Rightarrow A=[\mathbf{T}]_{\beta}=\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)
$$

The characteristic polynomial of \mathbf{T} is

$$
f(\lambda)=\left|A-\lambda I_{3}\right|=\left|\begin{array}{ccc}
4-\lambda & 0 & 1 \\
2 & 3-\lambda & 2 \\
1 & 0 & 4-\lambda
\end{array}\right|=\cdots=(3-\lambda)(\lambda-3)(\lambda-5)=0
$$

Thus, \mathbf{T} has e-values: $\lambda_{1}=3$ with $m(3)=2$ and $\lambda_{2}=5$ with $m(5)=1$.
For $E_{\lambda_{1}}$: The e-space $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=3$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}-3 I_{3}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 0 & 2 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
2 & 0 & 2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow a=-c ; c=r, b=t \in \mathbb{R}
$$

Setting $r, t \in \mathbb{R}$, we get

$$
E_{\lambda_{1}}=\left\{r\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right): t, r \in \mathbb{R}\right\} .
$$

Therefore, $\gamma_{1}=\left\{\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis for $E_{\lambda_{1}}$. Thus, $\operatorname{dim}\left(E_{\lambda_{1}}\right)=2=m\left(\lambda_{1}\right)$.
For $E_{\lambda_{2}}$: The e-space $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=5$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-5 I_{3}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -2 & 2 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{ccc|c}
-1 & 0 & 1 & 0 \\
2 & -2 & 2 & 0 \\
1 & 0 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow a=c, b=2 c ; c=t \in \mathbb{R}
$$

Setting $r, t \in \mathbb{R}$, we get

$$
E_{\lambda_{2}}=\left\{t\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right): t \in \mathbb{R}\right\} .
$$

Therefore, $\gamma_{2}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$ is a basis for $E_{\lambda_{2}}$. Thus, $\operatorname{dim}\left(E_{\lambda_{2}}\right)=1=m\left(\lambda_{2}\right)$.
Afterall, $\gamma=\gamma_{1} \cup \gamma_{2}=\left\{\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$ is a basis for \mathbb{R}^{3} consisting e-vectors of \mathbf{T}.
Therefore, \mathbf{T} is diagonalizable and

$$
[\mathbf{T}]_{\gamma}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Example 5.2.6
Let $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$. Is A diagonalizable? Explain.

Solution:

The characteristic polynomial of A is

$$
f(t)=\left|A-t I_{3}\right|=\left|\begin{array}{ccc}
3-t & 1 & 0 \\
0 & 3-t & 0 \\
0 & 0 & 4-t
\end{array}\right|=(3-t)^{2}(4-t)=0 .
$$

Thus, $\lambda_{1}=3$ with $m(3)=2$ and $\lambda_{2}=4$ with $m(4)=1$. But we note that

$$
A-\lambda_{1} I_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

has rank 2 and hence $\operatorname{dim}\left(E_{\lambda_{1}}\right)=3-2=1$ which is different from the multiplicity of λ_{1}. Therefore, A is not diagonalizable.

Example 5.2.7

Let \mathbf{T} be the linear operator on $\mathbb{P}_{2}(\mathbb{R})$ defined by

$$
\mathbf{T}(f(x))=f(1)+f^{\prime}(0) \cdot x+\left(f^{\prime}(0)+f^{\prime \prime}(0)\right) \cdot x^{2}
$$

Is \mathbf{T} diagonalizable? Explain.

Solution:

Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard ordered basis for $\mathbb{P}_{2}(\mathbb{R})$. Then

$$
\left.\begin{array}{l}
\mathbf{T}(1)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
\mathbf{T}(x)=1+x+(1+0) x^{2}=1 \cdot 1+1 \cdot x+1 \cdot x^{2} \\
\mathbf{T}\left(x^{2}\right)=1+2 x^{2}=1 \cdot 1+0 \cdot x+2 \cdot x^{2}
\end{array}\right\} \Rightarrow A=[\mathbf{T}]_{\beta}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] .
$$

The characteristic polynomial of \mathbf{T} is

$$
f(t)=\left|A-t I_{3}\right|=\left|\begin{array}{ccc}
1-t & 1 & 1 \\
0 & 1-t & 0 \\
0 & 1 & 2-t
\end{array}\right|=(1-t)^{2}(2-t)=0 .
$$

Thus, $\lambda_{1}=1$ with $m(1)=2$ and $\lambda_{2}=2$ with $m(2)=1$.
For $\underline{E_{\lambda_{1}}}$: The e-space $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=1$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}-1 I_{3}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{lll|l}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow b=-c
$$

Setting $a=t$ and $c=r$ both in \mathbb{R}, we get

$$
E_{\lambda_{1}}=\left\{t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+r\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right): t, r \in \mathbb{R}\right\} .
$$

Therefore, $\gamma_{1}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$ is a basis for $E_{\lambda_{1}}$.

For $E_{\lambda_{2}}$: The e-space $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=2$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-2 I_{3}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow b=0 ; a=c
$$

Setting $c=t \in \mathbb{R}$, we get

$$
E_{\lambda_{1}}=\left\{t\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right): t \in \mathbb{R}\right\} .
$$

Therefore, $\gamma_{2}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for \mathbb{R}^{3} consisting of e-vectors of A.
Therefore, the vectors in γ are the coordinate vectors relative to β of the vectors in the set $\alpha=\left\{1,-x+x^{2}, 1+x^{2}\right\}$ which is an ordered basis for $\mathbb{P}_{2}(\mathbb{R})$ consisting e-vectors of \mathbf{T}. Thus,

$$
[\mathbf{T}]_{\alpha}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Example 5.2.8

Let $A=\left(\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right)$. Is A diagonalizable? Explain your answer and compute A^{n} for positive integer n.

Solution:

The characteristic polynomial of A is

$$
f(t)=\left|A-t I_{2}\right|=\left|\begin{array}{cc}
-t & -2 \\
1 & 3-t
\end{array}\right|=t^{2}-3 t+2=(t-1)(t-2)=0
$$

Thus, $\lambda_{1}=1$ with $m(1)=1$ and $\lambda_{2}=2$ with $m(2)=1$. Then the operator \mathbf{L}_{A} has two distinct e-values and hence A is diagonalizable.
For $\underline{E_{\lambda_{1}}}$: The e-space $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=1$ is $E_{\lambda_{1}}=\mathcal{N}\left(A-1 I_{2}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{cc|c}
-1 & -2 & 0 \\
1 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a=-2 b
$$

Setting $b=t \in \mathbb{R}$, we get

$$
E_{\lambda_{1}}=\left\{t\binom{-2}{1}: t \in \mathbb{R}\right\}
$$

Therefore, $\gamma_{1}=\left\{\binom{-2}{1}\right\}$ is a basis for $E_{\lambda_{1}}$.
For $E_{\lambda_{2}}$: The e-space $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=2$ is $E_{\lambda_{2}}=\mathcal{N}\left(A-2 I_{2}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
-2 & -2 \\
1 & 1
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\}
$$

This is can be solved as follows:

$$
\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow a=-b
$$

Setting $b=t \in \mathbb{R}$, we get

$$
E_{\lambda_{2}}=\left\{t\binom{-1}{1}: t \in \mathbb{R}\right\}
$$

Therefore, $\gamma_{2}=\left\{\binom{-1}{1}\right\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\left\{\binom{-2}{1},\binom{-1}{1}\right\}$ is a basis for \mathbb{R}^{2} consisting of e-vectors of A.
Note that $D:=\left[\mathbf{L}_{A}\right]_{\gamma}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=Q^{-1} A Q$ where $Q=\left(\begin{array}{cc}-2 & -1 \\ 1 & 1\end{array}\right)$ and $Q^{-1}=\left(\begin{array}{cc}-1 & -1 \\ 1 & 2\end{array}\right)$. Therefore, $A=Q D Q^{-1}$ and hence $A^{n}=Q D^{n} Q^{-1}$; that is

$$
A^{n}=\left(\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1^{n} & 0 \\
0 & 2^{n}
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right)=\cdots=\left(\begin{array}{cc}
2-2^{n} & 2-2^{n+1} \\
-1+2^{n} & -1+2^{n+1}
\end{array}\right)
$$

Exercise 5.2.1

Solve the following exercises from the book at pages 279-283:

- 2,3 .
- 7, 8 .

Section 5.4: Invariant Subspaces and The Cayley-Hamilton Theorem

Definition 5.4.1

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}. A subspace \mathbb{W} of \mathbb{V} is called \mathbf{T}-invariant subspace of \mathbb{V} if $\mathbf{T}(\mathbb{W}) \subseteq \mathbb{W}$; that is if $\mathbf{T}(x) \in \mathbb{W}$ for all $x \in \mathbb{W}$.

Remark 5.4.1

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}. Then the following subspaces of \mathbb{V} are T-invariant:

1. $\{0\}$.
2. \mathbb{V}.
3. $\mathcal{R}(\mathbf{T})$.
4. $\mathcal{N}(\mathbf{T})$.
5. E_{λ} for any e-value λ of \mathbf{T}.

Example 5.4.1

Let \mathbf{T} be the linear operator on \mathbb{R}^{3} defined by $\mathbf{T}(a, b, c)=(a+b, b+c, 0)$. Show that the subspaces of $\mathbb{R}^{3}, \mathbb{W}_{1}$ and \mathbb{W}_{2}, are \mathbf{T}-invariant, where

$$
\text { (1): } \mathbb{W}_{1}=\{(a, b, 0): a, b \in \mathbb{R}\}, \text { and (2) }: \mathbb{W}_{2}=\{(a, 0,0): a \in \mathbb{R}\} .
$$

Solution:

(1): Clearly, $\mathbf{T}(a, b, 0)=(a+b, b, 0) \in \mathbb{W}_{1}$ for all $(a, b, 0) \in \mathbb{W}_{1}$. Thus, \mathbb{W}_{1} is a \mathbf{T}-invariant subspace of \mathbb{R}^{3}.
(2): Clearly, $\mathbf{T}(a, 0,0)=(a, 0,0) \in \mathbb{W}_{2}$ for all $(a, 0,0) \in \mathbb{W}_{1}$. Thus, \mathbb{W}_{2} is a T-invariant subspace of \mathbb{R}^{3}.

Definition 5.4.2

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}, and let x be a nonzero vector in \mathbb{V}. The subspace

$$
\mathbb{W}=\operatorname{span}\left\{x, \mathbf{T}(x), \mathbf{T}^{2}(x), \cdots\right\}
$$

where $\mathbf{T}^{2}(x)=\mathbf{T}(\mathbf{T}(x)), \mathbf{T}^{3}(x)=\mathbf{T}(\mathbf{T}(\mathbf{T}(x)))$, and so on, is called a \mathbf{T}-cyclic subspace of \mathbb{V} generated by x.

Example 5.4.2

Let \mathbf{T} be the linear operator on \mathbb{R}^{3} defined by $\mathbf{T}(a, b, c)=(-b+c, a+c, 3 c)$. Determine the T-cyclic subspace of \mathbb{R}^{3} generated by $E_{1}=(1,0,0)$.

Solution:

We simply compute the set containing E_{1} and $\mathbf{T}^{i}\left(E_{1}\right)$ for $i=1,2, \cdots$.

$$
\begin{aligned}
\mathbf{T}\left(E_{1}\right) & =\mathbf{T}(1,0,0)=(0,1,0)=E_{2} \\
\mathbf{T}^{2}\left(E_{1}\right) & =\mathbf{T}\left(\mathbf{T}\left(E_{1}\right)\right)=\mathbf{T}\left(E_{2}\right)=(-1,0,0)=-E_{1}
\end{aligned}
$$

Therefore, $\mathbb{W}=\operatorname{span}\left\{E_{1}, \mathbf{T}\left(E_{1}\right), \mathbf{T}^{2}\left(E_{1}\right), \cdots\right\}=\operatorname{span}\left\{E_{1}, E_{2}\right\}=\{(s, t, 0): s, t \in \mathbb{R}\}$ is the \mathbf{T}-cyclic subspace of \mathbb{R}^{3} generated by E_{1}.

Remark 5.4.2

Let \mathbf{T} be a linear operator on a vector space \mathbb{V}, and let x be a nonzero vector in \mathbb{V}. The subspace \mathbb{W} generated by x is the smallest \mathbf{T}-invariant subsapce which contains x. That is, any \mathbf{T}-invariant subspace of \mathbb{V} containing x must contain \mathbb{W}.

Example 5.4.3

Let \mathbf{T} be the linear operator on $\mathbb{P}_{2}(\mathbb{R})$ defined by $\mathbf{T}(f(x))=f^{\prime}(x)$. Determine the \mathbf{T}-cyclic subspace of $\mathbb{P}_{2}(\mathbb{R})$ generated by x^{2}.

Solution:

Note that $\mathbf{T}\left(x^{2}\right)=2 x, \mathbf{T}^{2}\left(x^{2}\right)=\mathbf{T}(2 x)=2$, and $\mathbf{T}^{3}\left(x^{2}\right)=\mathbf{T}(2)=0$. Therefore, $\mathbb{W}=$ span $\left\{x^{2}, 2 x, 2\right\}=\mathbb{P}_{2}(\mathbb{R})$ is the \mathbf{T}-cyclic subspace of $\mathbb{P}_{2}(\mathbb{R})$ generated by x^{2}.

Example 5.4.4

Let \mathbf{T} be the linear operator on \mathbb{R}^{4} defined by $\mathbf{T}(a, b, c, d)=(a+b+2 c-d, b+d, 2 c-d, c+d)$, and let $\mathbb{W}=\{(t, s, 0,0): t, s \in \mathbb{R}\}$. Show that \mathbb{W} is a \mathbf{T}-invariant subspace of \mathbb{R}^{4}.

Solution:

Choose arbitrary $x=(t, s, 0,0) \in \mathbb{W}$. Then

$$
\mathbf{T}(x)=(t+s, s, 0,0) \in \mathbb{W}
$$

Thus, $\mathbf{T}(\mathbb{W}) \subseteq \mathbb{W}$ and hence \mathbb{W} is a \mathbf{T}-invariant subsapce of \mathbb{R}^{4}.

Theorem 5.4.1

Let \mathbf{T} be a linear operator on a finite-dimensional vector space \mathbb{V}, and let \mathbb{W} be a \mathbf{T}-cyclic subspace of \mathbb{V} generated by $x \in \mathbb{V}$. Let $\operatorname{dim}(\mathbb{W})=k$. Then $\left\{x, \mathbf{T}(x), \cdots, \mathbf{T}^{k-1}(x)\right\}$ is a basis for \mathbb{W}.

Example 5.4.5

Let \mathbf{T} be the linear operator on \mathbb{R}^{3} defined by $\mathbf{T}(a, b, c)=(-b+c, a+c, 3 c)$, and let \mathbb{W} be the \mathbf{T}-cyclic subspace of \mathbb{R}^{3} generated by E_{1}.

Solution:

Clearly, $E_{1}=(1,0,0), \mathbf{T}\left(E_{1}\right)=(0,1,0)=E_{2}$, and $\mathbf{T}^{2}\left(E_{1}\right)=\mathbf{T}\left(E_{2}\right)=(-1,0,0)=-E_{1}$. Therefore, $\mathbb{W}=\operatorname{span}\left\{E_{1}, E_{2}\right\}$ and hence $\operatorname{dim}(\mathbb{W})=2$. Thus, by Theorem 5.4.1, $\gamma=$ $\left\{E_{1}, E_{2}\right\}$ is an ordered basis for \mathbb{W}.

Theorem 5.4.2: The Cayley-Hamilton Theorem

Let \mathbf{T} be a linear operator on a finite-dimensional vector space \mathbb{V}, and let $f(t)$ be the characteristic polynomial of \mathbf{T}. Then $f(\mathbf{T})=\mathbf{T}_{0}$, the zero transformation. That is, \mathbf{T} "satisfies" its characteristic equation.

Theorem 5.4.3: The Cayley-Hamilton Theorem for Matrices
Let A be an $n \times n$ matrix, and let $f(t)$ be the characteristic polynomial of A. Then $f(A)=0$, the $n \times n$ zero matrix.

Example 5.4.6

Verify the Cayley-Hamilton theorem for the linear operator \mathbf{T} defined on \mathbb{R}^{2} by $\mathbf{T}(a, b)=$ $(a+2 b,-2 a+b)$.

Solution:

Let $\beta=\left\{E_{1}, E_{2}\right\}$ be an ordered basis for \mathbb{R}^{2}. Then

$$
\begin{aligned}
& \mathbf{T}\left(E_{1}\right)=(1,-2)=E_{1}+(-2) E_{2} \\
& \mathbf{T}\left(E_{2}\right)=(2,1)=2 E_{1}+E_{2}
\end{aligned}
$$

Thus, $A=[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$. The characteristic polynomial of \mathbf{T} is therefore

$$
f(t)=\left|A-t I_{2}\right|=\left|\begin{array}{cc}
1-t & 2 \\
-2 & 1-t
\end{array}\right|=(1-t)^{2}+4=t^{2}-2 t+5=0
$$

That is,

$$
\begin{aligned}
f(\mathbf{T}) & =\left(\mathbf{T}^{2}-2 \mathbf{T}+5 \mathbf{I}_{T}\right)\binom{a}{b} \\
& =\mathbf{T}^{2}\binom{a}{b}-2 \mathbf{T}\binom{a}{b}+5 \mathbf{I}_{T}\binom{a}{b} \\
& =\mathbf{T}\binom{a+2 b}{-2 a+b}-2\binom{a+2 b}{-2 a+b}+5\binom{a}{b} \\
& =\binom{(a+2 b)+2(-2 a+b)}{-2(a+2 b)+(-2 a+b)}+\binom{-2 a-4 b}{4 a-2 b}+\binom{5 a}{5 b} \\
& =\binom{-3 a+4 b}{-4 a-3 b}+\binom{-2 a-4 b}{4 a-2 b}+\binom{5 a}{5 b}=\binom{0}{0}=\mathbf{T}_{0}\binom{a}{b} .
\end{aligned}
$$

Note that

$$
f(A)=A^{2}-2 A+5 I=\left(\begin{array}{cc}
-3 & 4 \\
-4 & -3
\end{array}\right)+\left(\begin{array}{cc}
-2 & 4 \\
4 & -2
\end{array}\right)+\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0
$$

Example 5.4.7

Let \mathbf{T} be the linear operator defined on $\mathbb{P}_{1}(\mathbb{R})$ by $\mathbf{T}(f(x))=f(x)+f^{\prime}(x)$. Verify the CayleyHamilton Theorem for \mathbf{T}.

Solution:

Let $\beta=\{1, x\}$. Then,

$$
\begin{aligned}
& \mathbf{T}(1)=1+0=1 \cdot 1+0 \cdot x \\
& \mathbf{T}(x)=x+1=1 \cdot 1+1 \cdot x
\end{aligned}
$$

Thus, $[\mathbf{T}]_{\beta}=A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and the characteristic polynomial of \mathbf{T} is therefore,

$$
f(t)\left|A-t I_{2}\right|=\left|\begin{array}{cc}
1-t & 1 \\
0 & 1-t
\end{array}\right|=(1-t)^{2}=t^{2}-2 t+1
$$

Therefore,

$$
\begin{aligned}
f(\mathbf{T}) & =\left(\mathbf{T}^{2}-2 \mathbf{T}+\mathbf{I}_{T}\right)\binom{a}{b x}=\mathbf{T}^{2}\binom{a}{b x}-2 \mathbf{T}\binom{a}{b x}+\binom{a}{b x} \\
& =\mathbf{T}\binom{a}{b+b x}-2\binom{a}{b+b x}+\binom{a}{b x}=\binom{a}{(b+b x)+b}+\binom{-2 a}{-2 b-2 b x}+\binom{a}{b x} \\
& =\binom{a}{2 b+b x}+\binom{-2 a}{-2 b-2 b x}+\binom{a}{b x}=\binom{2 a-2 a}{(2 b-2 b)+(-2 b x+2 b x)} \\
& =\binom{0}{0}=\mathbf{T}_{0}\binom{a}{b x} .
\end{aligned}
$$

Note that,

$$
\begin{aligned}
f(A) & =\left(A^{2}-2 A+I_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)-2\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
-2 & -2 \\
0 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0
\end{aligned}
$$

Example 5.4.8

Use Cayley-Hamilton Theorem to find A^{-1} if $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1\end{array}\right)$.

Solution:

Note that $|A|=-2 \neq 0$ and hence A^{-1} exists. The characteristic polynomial of A is

$$
\begin{aligned}
f(t) & =\left|A-t I_{3}\right|=\left|\begin{array}{ccc}
1-t & 2 & 1 \\
0 & 2-t & 3 \\
0 & 0 & -1-t
\end{array}\right| \\
& =(1-t)(2-t)(-1-t)=-\left(2-3 t+t^{2}\right)(1+t) \\
& =-\left((2+2 t)-3 t-3 t^{2}+t^{2}+t^{3}\right)=-t^{3}+2 t^{2}+t-2 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(A) & =-A^{3}+2 A^{2}+A-2 I_{3}=0 \\
& \Rightarrow 2 I_{3}=-A^{3}+A^{2}+A \\
& \Rightarrow I_{3}=-\frac{1}{2} A^{3}+A^{2}+\frac{1}{2} A \\
& \Rightarrow I_{3}=\left(-\frac{1}{2} A^{2}+A+\frac{1}{2} I_{3}\right) A .
\end{aligned}
$$

Hence $A^{-1}=-\frac{1}{2} A^{2}+A+\frac{1}{2} I_{3}$.

Exercise 5.4.1

Solve the following exercises from the book at pages 321-327:

- 2,3 , and 6 .

Section 6.1: Inner Product and Norms

Remark 6.1.1

Let $z=a+i b \in \mathbb{C}$ for some $a, b \in \mathbb{R}$, then

1. $|z|=\sqrt{a^{2}+b^{2}}$ is called the absolute value for modulus of z.
2. $z \bar{z}=|z|^{2}$.
3. $z+\bar{z}=2 \operatorname{Re}(z)=2 a$.
4. $z-\bar{z}=2 \operatorname{Im}(z)=2 b$.
5. $\operatorname{Re}(z) \leq|z|$.
6. $\overline{\bar{z}}=z$.
7. $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$.

Definition 6.1.1

Let \mathbb{V} be a vector space over a field \mathbb{F}. An inner product on \mathbb{V} is a function that assigns, to every pair of vectors $x, y \in \mathbb{V}$, a scalar in \mathbb{F}, denoted by $\langle x, y\rangle$, such that for all $x, y, z \in \mathbb{V}$ and all $c \in \mathbb{F}$, the following conditions hold:

1. $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$.
2. $\langle c x, y\rangle=c\langle x, y\rangle$.
3. $\overline{\langle x, y\rangle}=\langle y, x\rangle$, where the bar denotes the complex conjugation.
4. $\langle x, x\rangle>0$ if $x \neq 0$.

Note that, Condition (3) reduces to $\langle x, y\rangle=\langle y, x\rangle$ if $\mathbb{F}=\mathbb{R}$.

Example 6.1.1

Let $\mathbb{V}=C([0,1])$, the vector space of real valued continuous function on $[0,1]$. Define

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Show that $\langle f, g\rangle$ is an inner product on \mathbb{V}.

Solution:

For every $f, g, h \in \mathbb{V}$ and every $c \in \mathbb{R}$, we have
1.

$$
\begin{aligned}
\langle f+g, h\rangle & =\int_{0}^{1}(f(t)+g(t)) h(t) d t=\int_{0}^{1}(f(t) h(t)+g(t) h(t)) d t \\
& =\int_{0}^{1} f(t) h(t) d t+\int_{0}^{1} g(t) h(t) d t=\langle f, h\rangle+\langle g, h\rangle
\end{aligned}
$$

2. $\langle c f, g\rangle=\int_{0}^{1} c f(t) g(t) d t=c \int_{0}^{1} f(t) g(t) d t=c\langle f, g\rangle$.
3. $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t=\int_{0}^{1} g(t) f(t) d t=\langle g, f\rangle$.
4. If $f \neq 0,\langle f, f\rangle=\int_{0}^{1} f(t) f(t) d t=\int_{0}^{1} f^{2}(t) d t>0$.

Thus, $\langle f, g\rangle$ is an inner product on $C([0,1)]$.

Example 6.1.2

For $x=\left(a_{1}, a_{2}, \cdots, a_{n}\right), y=\left(b_{1}, b_{2}, \cdots, b_{n}\right) \in \mathbb{F}^{n}$, define $\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \overline{b_{i}}$. Show that $\langle x, y\rangle$ is an inner product on \mathbb{F}^{n}.

Solution:

For any $x=\left(a_{1}, \cdots, a_{n}\right), y=\left(b_{1}, \cdots, b_{n}\right), z=\left(c_{1}, \cdots, c_{n}\right) \in \mathbb{F}^{n}$ and $k \in \mathbb{F}$, we have

1. $\langle x+y, z\rangle=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) \overline{c_{i}}=\sum_{i=1}^{n}\left(a_{i} \overline{c_{i}}+b_{i} \overline{c_{i}}\right)=\sum_{i=1}^{n} a_{i} \overline{c_{i}}+\sum_{i=1}^{n} b_{i} \overline{c_{i}}=\langle x, z\rangle+\langle y, z\rangle$.
2. $\langle k x, y\rangle=\sum_{i=1}^{n} k a_{i} \overline{b_{i}}=k \sum_{i=1}^{n} a_{i} \overline{b_{i}}=k\langle x, y\rangle$.
3. $\overline{\langle x, y\rangle}=\overline{\sum_{i=1}^{n} a_{i} \overline{b_{i}}}=\sum_{i=1}^{n} \overline{a_{i}} \overline{\overline{b_{i}}}=\sum_{i=1}^{n} \overline{a_{i}} b_{i}=\sum_{i=1}^{n} b_{i} \overline{a_{i}}=\langle y, x\rangle$.
4. If $x \neq 0,\langle x, x\rangle=\sum_{i=1}^{n} a_{i} \overline{a_{i}}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}>0$.

Remark 6.1.2

Note that, the inner product defined in Example 6.1.2, is called the standard inner product on \mathbb{F}^{n}. In case of $\mathbb{F}=\mathbb{R}$, we have $\langle x, y\rangle=\sum_{i=1}^{n} a_{i} b_{i}=x \cdot y$ which is the usual dot (or scalar) product of x and y in \mathbb{R}^{n}.

Definition 6.1.2

Let $A=\left(a_{i j}\right) \in M_{m \times n}(\mathbb{F})$. We define the conjugate transpose or adjoint of A to be the $n \times m$ matrix A^{*} such that $a_{i j}^{*}=\overline{a_{j i}}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Note that if $\mathbb{F}=\mathbb{R}$, then we simply write A^{t} instead of A^{*}.

Example 6.1.3

If $A=\left(\begin{array}{ll}i & 1+2 i \\ 2 & 3+4 i\end{array}\right)$, then $A^{*}=\left(\begin{array}{cc}-i & 2 \\ 1-2 i & 3-4 i\end{array}\right)$.

Example 6.1.4

Let $\mathbb{V}=M_{n \times n}(\mathbb{F})$, and define $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)$ for $A, B \in \mathbb{V}$. Show that $\langle A, B\rangle$ is an inner product on \mathbb{V}.

Solution:

For any $A, B, C \in \mathbb{V}$ and $c \in \mathbb{F}$, we have

1. $\langle A+B, C\rangle=\operatorname{tr}\left(C^{*}(A+B)\right)=\operatorname{tr}\left(C^{*} A+C^{*} B\right)=\operatorname{tr}\left(C^{*} A\right)+\operatorname{tr}\left(C^{*} B\right)$ $=\langle A, C\rangle+\langle B, C\rangle$.
2. $\langle c A, B\rangle=\operatorname{tr}\left(B^{*}(c A)\right)=\operatorname{ctr}\left(B^{*} A\right)=c\langle A, B\rangle$.
3. $\overline{\langle A, B\rangle}=\overline{\operatorname{tr}\left(B^{*} A\right)}=\operatorname{tr}\left(\overline{B^{*} A}\right)=\operatorname{tr}\left(A^{*} B\right)=\langle B, A\rangle$.
4. $\langle A, A\rangle=\operatorname{tr}\left(A^{*} A\right)=\sum_{i=1}^{n} b_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k}^{*} a_{k i}=\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{a_{k i}} a_{k i}=\sum_{i=1}^{n} \sum_{k=1}^{n}\left|a_{k i}\right|^{2}$. Note that if $A \neq 0$, then $a_{k i} \neq 0$ for some k and i. So, $\langle A, A\rangle>0$.

Here is a detailed proof of $\operatorname{tr}\left(\overline{B^{*} A}\right)=\operatorname{tr}\left(A^{*} B\right)$: Assuming the $C=\left(c_{i j}\right)=B^{*} A$, we have

$$
\begin{aligned}
\operatorname{tr}\left(\overline{B^{*} A}\right) & =\sum_{i}^{n} \overline{c_{i i}}=\sum_{i}^{n} \sum_{j}^{n} \overline{b_{i j}^{*} a_{j i}}=\sum_{i}^{n} \sum_{j}^{n} \overline{\overline{b_{j i}} a_{j i}} \\
& =\sum_{i}^{n} \sum_{j}^{n} b_{j i} \overline{a_{j i}}=\sum_{i}^{n} \sum_{j}^{n} a_{i j}^{*} b_{j i}=\operatorname{tr}\left(A^{*} B\right) .
\end{aligned}
$$

Note that, a vector space \mathbb{V} over a field \mathbb{F} together with specific inner product on \mathbb{V} is called an inner product space. If $\mathbb{F}=\mathbb{C}$, we call \mathbb{V} a complex inner product space, and if $\mathbb{F}=\mathbb{R}$, we call \mathbb{V} a real inner product space.

Theorem 6.1.1

Let \mathbb{V} be an inner product space. Then for $x, y, z \in \mathbb{V}$ and $c \in \mathbb{F}$, the following statements are true:

1. $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
2. $\langle x, c y\rangle=\bar{c}\langle x, y\rangle$.
3. $\langle x, 0\rangle=\langle 0, x\rangle=0$.
4. $\langle x, x\rangle=0$ iff $x=0$.
5. If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in \mathbb{V}$, then $y=z .\langle y-z, y-z\rangle=0 \Rightarrow y-z=0 \Rightarrow y=z$.

Definition 6.1.3

Let \mathbb{V} be an inner product space. For $x \in \mathbb{V}$, we define the norm or length of x by

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Note that if $\mathbb{V}=\mathbb{R}$, then $\|x\|=|x|$ and if $\mathbb{V}=\mathbb{R}^{n}$, then $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{x \cdot x}$.

Theorem 6.1.2

Let \mathbb{V} be an inner product space over a field \mathbb{F}. Then for all $x, y \in \mathbb{V}$ and $c \in \mathbb{F}$, the following statements are true:

1. $\|c x\|=|c|\|x\|$.
2. $\|x\| \geq 0$; and $\|x\|=0$ iff $x=0$.
3. (Cauchy-Schwarz Inequality) $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
4. (Triangle Inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Proof:

1. $\|c x\|=\sqrt{\langle c x, c x\rangle}=\sqrt{c \bar{c}\langle x, x\rangle}=\sqrt{|c|^{2}\langle x, x\rangle}=|c| \cdot\|x\|$.
2. $\|x\|=\sqrt{\langle x, x\rangle}$. If $x=0$, then $\langle x, x\rangle=\langle 0,0\rangle=0$. Otherwise, $\langle x, x\rangle>0$ and hence $\|x\| \geq 0$.
3. If $y=0$, then the Cauchy-Schwarz Inequality clearly hold. Assume now that $y \neq 0$.

For any $c \in \mathbb{F}$, we have

$$
\begin{aligned}
0 \leq\|x-c y\|^{2} & =\langle x-c y, x-c y\rangle=\langle x, x-c y\rangle-c\langle y, x-c y\rangle \\
& =\langle x, x\rangle-\bar{c}\langle x, y\rangle-c\langle y, x\rangle+c \bar{c}\langle y, y\rangle .
\end{aligned}
$$

Let $c=\frac{\langle x, y\rangle}{\langle y, y\rangle}$, then

$$
\begin{aligned}
& 0 \leq\langle x, x\rangle-\frac{\langle y, x\rangle}{\langle y, y\rangle}\langle x, y\rangle-\frac{\langle x, y\rangle}{\langle y, y\rangle}\langle y, x\rangle+\frac{\langle x, y\rangle}{\langle y, y\rangle} \cdot \frac{\langle y, x\rangle}{\langle y, y\rangle}\langle y, y\rangle \\
& 0 \leq\langle x, x\rangle-\frac{\langle y, x\rangle}{\langle y, y\rangle}\langle x, y\rangle-\frac{\langle x, y\rangle}{\langle y, y\rangle}\langle y, x\rangle+\frac{\langle x, y\rangle}{\langle y, y\rangle}\langle\overline{\langle y, x\rangle} \\
& 0 \leq\langle x, x\rangle-\frac{|\langle x, y\rangle|^{2}}{\langle y, y\rangle}, \text { where }\langle x, y\rangle\langle y, x\rangle=\langle x, y\rangle \overline{\langle x, y\rangle}=|\langle x, y\rangle|^{2} .
\end{aligned}
$$

Therefore, $|\langle x, y\rangle|^{2} \leq\|x\|^{2}\|y\|^{2}$ and hence $|\langle x, y\rangle| \leq\|x\|\|y\|$.
4. Consider $\|x+y\|^{2}=\langle x+y, x+y\rangle$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}+\|y\|^{2} \\
& =\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}, \quad \text { where } \operatorname{Re}\langle x, y\rangle \leq|\langle x, y\rangle| \\
& \leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2} .
\end{aligned}
$$

Therefore, $\|x+y\| \leq\|x\|+\|y\|$.

Definition 6.1.4

If $x \neq 0$ is any vector in an inner product space \mathbb{V}, then $u=\frac{1}{\|x\|} x$ is a unit vector; that is a vector with length 1 . This procedure is called normalizing.

Definition 6.1.5

Two vectors x and y in \mathbb{V} are called orthogonal (or perpendicular) if $\langle x, y\rangle=0$. Moreover, x and y are called orthonormal if they are orthogonal and $\|x\|=\|y\|=1$.

Example 6.1.5

Note that the set $S=\{(1,1,0),(1,-1,1),(-1,1,2)\}$ in \mathbb{F}^{3} is an orthogonal set of nonzero vectors, but it is not orthonormal. However, normalizing S, we get

$$
B=\left\{\frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{3}}(1,-1,1), \frac{1}{\sqrt{6}}(-1,1,2)\right\}
$$

which is orthonormal in \mathbb{F}^{3}.

Example 6.1.6

Let H be the vector space of complex valued functions defined on the interval $[0,2 \pi]$, with the inner product on H defined by

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t
$$

Show that $S=\left\{f_{n}(t)=e^{i n t}: n \in \mathbb{Z}\right.$ and $\left.t \in[0,2 \pi]\right\}$ is an orthonormal subset of H. Recall that $e^{i x}=\cos x+i \sin x, \overline{e^{i x}}=e^{-i x}$ for all $x \in \mathbb{R}$, and $\int e^{a x} d x=\frac{1}{a} e^{a x}$.

Solution:

For any $m \neq n$ in \mathbb{Z}, we have

$$
\begin{aligned}
\left\langle f_{m}(t), f_{n}(t)\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{m}(t) \overline{f_{n}(t)} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m t} \overline{e^{i n t}} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(m-n) t} d t=\left.\frac{1}{2 \pi i} \frac{1}{(m-n)} e^{i(m-n) t}\right|_{0} ^{2 \pi} \\
& =\frac{1}{2 \pi i(m-n)}\left[e^{i(m-n) 2 \pi}-e^{0}\right]=\frac{1}{2 \pi i(m-n)}[1-1]=0 .
\end{aligned}
$$

Also, $\left\langle f_{n}, f_{n}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-n) t} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} 1 d t=\frac{1}{2 \pi}(2 \pi-0)=\frac{2 \pi}{2 \pi}=1$. Therefore, S is orthonormal subset of H.

Example 6.1.7

Let $\mathbb{V}=\mathbb{C}^{3}$ with the standard inner product. Let $x=(2,1+i, i)$ and $y=(2-i, 2,1+2 i)$.

1. Compute $\langle x, y\rangle,\langle y, x\rangle,\|x\|,\|y\|$, and $\|x+y\|$.
2. Verify both Cauchy-Schwarz Inequality and triangle inequality.

Solution:

1.

$$
\begin{aligned}
\langle x, y\rangle & =\sum_{i=1}^{3} x_{i} \overline{y_{i}}=2(\overline{2-i})+(1+i)(\overline{2})+i(\overline{1+2 i}) \\
& =2(2+i)+2+2 i+i(1-2 i)=4+2 i+2+2 i+i+2 \\
& =8+5 i .
\end{aligned}
$$

Thus, $\langle y, x\rangle=\overline{\langle x, y\rangle}=\overline{8+5 i}=8-5 i$. Also

$$
\begin{aligned}
\|x\|=\sqrt{\langle x, x\rangle} & =\sqrt{2(\overline{2})+(1+i)(\overline{1+i})+i(\bar{i})} \\
& =\sqrt{4+(1+i)(1-i)+i(-i)}=\sqrt{4+1-i+i+1+1}=\sqrt{7}
\end{aligned}
$$

$$
\begin{aligned}
\|y\|=\sqrt{\langle y, y\rangle} & =\sqrt{(2-i)(\overline{2-i})+2(\overline{2})+(1+2 i)(\overline{1+2 i})} \\
& =\sqrt{(2-i)(2+i)+4+(1+2 i)(1-2 i)}=\sqrt{4+1+4+1+4}=\sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
\|x+y\| & =\|(4-i, 3+i, 1+3 i \| \\
& =\sqrt{(4-i)(4+i)+(3+i)(3-i)+(1+3 i)(1-3 i)} \\
& =\sqrt{16+1+9+1+1+9}=\sqrt{37} .
\end{aligned}
$$

2. Clearly, Cauchy-Schwarz Inequality is satisfied as

$$
|\langle x, y\rangle|=\sqrt{64+25}=\sqrt{89} \leq \sqrt{7} \sqrt{14}=\sqrt{98} .
$$

For triangle inequality, note that

$$
\|x+y\|=\sqrt{37} \leq\|x\|+\|y\|=\sqrt{7}+\sqrt{14} .
$$

Since

$$
\begin{aligned}
(\|x\|+\|y\|)^{2} & =(\sqrt{7}+\sqrt{14})^{2}=7+2 \sqrt{98}+14 \\
& =21+2 \sqrt{98} \geq 21+2 \sqrt{81}=21+2 \cdot 9=39 \\
& \geq 37=\|x+y\|^{2} .
\end{aligned}
$$

Exercise 6.1.1

Solve the following exercises from the book at pages 336-341:

- 2,3 .
- $8: a$ and c.
- 9.

Section 6.2: The Gram-Schmidt Orthogonalization Process

Definition 6.2.1

Let \mathbb{V} be an inner product space. A subset of \mathbb{V} is called an orthonormal basis for \mathbb{V} if it is an ordered basis that is orthonormal.

Example 6.2.1

- The standard ordered basis for \mathbb{F}^{n} is orthonormal basis for \mathbb{F}^{n}.
- $S=\left\{\frac{1}{\sqrt{5}}(1,2), \frac{1}{\sqrt{5}}(2,-1)\right\}$ is an orthonormal basis for \mathbb{R}^{2}.

Theorem 6.2.1

Let \mathbb{V} be an inner product space and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an orthogonal subset of \mathbb{V} consisting of nonzero vectors. If $y \in \operatorname{span} S$, then

$$
y=\sum_{i=1}^{k} \frac{\left\langle y, x_{i}\right\rangle}{\left\|x_{i}\right\|^{2}} x_{i} .
$$

Proof:

Write $y=\sum_{i=1}^{k} a_{i} x_{i}$, where $a_{1}, \cdots, a_{k} \in \mathbb{F}$. Then, for $1 \leq j \leq k$

$$
\begin{aligned}
\left\langle y, x_{j}\right\rangle & =\left\langle\sum_{i=1}^{k} a_{i} x_{i}, x_{j}\right\rangle=\sum_{i=1}^{k} a_{i}\left\langle x_{i}, x_{j}\right\rangle, \text { where }\left\langle x_{i}, x_{j}\right\rangle=0 \text { if } i \neq j \\
& =a_{j}\left\langle x_{j}, x_{j}\right\rangle=a_{j}\left\|x_{j}\right\|^{2} .
\end{aligned}
$$

So, $a_{j}=\frac{\left\langle y, x_{j}\right\rangle}{\left\|x_{j}\right\|^{2}}$. Therefore,

$$
y=\sum_{i=1}^{k} a_{i} x_{i}=\sum_{i=1}^{k} \frac{\left\langle y, x_{i}\right\rangle}{\left\|x_{i}\right\|^{2}} x_{i} .
$$

Corollary 6.2.1

Let \mathbb{V} be an inner product space and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an orthonormal subset of \mathbb{V}. If $y \in \operatorname{span} S$, then $y=\sum_{i=1}^{k}\left\langle y, x_{i}\right\rangle x_{i}$.

Corollary 6.2.2

Let \mathbb{V} be an inner product space and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an orthogonal subset of \mathbb{V} consisting of nonzero vectors. Then, S is linearly independent.

Proof:

Suppose that $a_{1} x_{1}+\cdots a_{k} x_{k}=\sum_{i=1}^{k} a_{i} x_{i}=0$. Then for all $1 \leq j \leq k$, we have

$$
\left\langle 0, x_{j}\right\rangle=\left\langle\sum_{i=1}^{k} a_{i} x_{i}, x_{j}\right\rangle=\sum_{i=1}^{k} a_{i}\left\langle x_{i}, x_{j}\right\rangle=a_{j}\left\langle x_{j}, x_{j}\right\rangle=a_{j}\left\|x_{j}\right\|^{2} .
$$

Thus, $a_{j}=\frac{\left\langle 0, x_{j}\right\rangle}{\left\|x_{j}\right\|^{2}}=0$ for all j. So, S is linearly independent.

Theorem 6.2.2: The Gram-Schmidt Process

Let \mathbb{V} be an inner product space and $S=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ be linearly independent subset of \mathbb{V}. Define $S^{\prime}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, where $x_{1}=y_{1}$ and

$$
x_{k}=y_{k}-\sum_{j=1}^{k-1} \frac{\left\langle y_{k}, x_{j}\right\rangle}{\left\|x_{j}\right\|^{2}} x_{j}, \quad \text { for } \quad 2 \leq j \leq n
$$

Then, S^{\prime} is an orthogonal set of nonzero vectors such that span $S^{\prime}=$ span S.

Theorem 6.2.3

Let \mathbb{V} be a nonzero finite-dimensional inner product space. Then \mathbb{V} has an orthonormal basis β. Furthermore, if $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $y \in \mathbb{V}$, then

$$
y=\sum_{i=1}^{n}\left\langle y, x_{i}\right\rangle x_{i} .
$$

That is $[y]_{\beta}=\left(\left\langle y, x_{1}\right\rangle,\left\langle y, x_{2}\right\rangle, \cdots,\left\langle y, x_{n}\right\rangle\right)$. These scalars are called Fourier coefficients.

Corollary 6.2.3

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} with an orthonorml basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, and let $A=[\mathbf{T}]_{\beta}=\left(a_{i j}\right)$. Then, for any i and j, $a_{i j}=\left\langle\mathbf{T}\left(x_{j}\right), x_{i}\right\rangle$.

Example 6.2.2

Let $S=\left\{\frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{3}}(1,-1,1), \frac{1}{\sqrt{6}}(-1,1,2)\right\}$ be an orthonormal basis for \mathbb{R}^{3}. Express $x=(2,1,3) \in \mathbb{R}^{3}$ as a linear combination of vectors of S.

Solution:

Consider $x=(2,1,3)=c_{1} \frac{1}{\sqrt{2}}(1,1,0)+c_{2} \frac{1}{\sqrt{3}}(1,-1,1)+c_{3} \frac{1}{\sqrt{6}}(-1,1,2)$. Then,

$$
\begin{aligned}
& c_{1}=\left\langle(2,1,3), \frac{1}{\sqrt{2}}(1,1,0)\right\rangle=\frac{1}{\sqrt{2}}(2+1+0)=\frac{3}{\sqrt{2}} . \\
& c_{2}=\left\langle(2,1,3), \frac{1}{\sqrt{3}}(1,-1,1)\right\rangle=\frac{1}{\sqrt{3}}(2-1+3)=\frac{4}{\sqrt{3}} . \\
& c_{3}=\left\langle(2,1,3), \frac{1}{\sqrt{6}}(-1,1,2)\right\rangle=\frac{1}{\sqrt{6}}(-2+1+6)=\frac{5}{\sqrt{6}} .
\end{aligned}
$$

Thus $x=(2,1,3)=\frac{3}{2}(1,1,0)+\frac{4}{3}(1,-1,1)+\frac{5}{6}(-1,1,2)$.

Example 6.2.3

Use the Gram-Schmidt process to find an orthonormal basis for span S, where

$$
S=\left\{y_{1}=(1,0,1,0), y_{2}=(1,1,1,1), y_{3}=(0,1,2,1)\right\}
$$

is a subset of \mathbb{R}^{4}.

Solution:

We first compute S^{\prime} containing orthogonal vectors x_{1}, x_{2}, x_{3} and then we normalize these vectors to obtain an orthonormal set $S^{\prime \prime}$.

- $x_{1}=y_{1}=(1,0,1,0)$.
- $x_{2}=y_{2}-\frac{\left\langle y_{2}, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1}$, where $\left\|x_{1}\right\|^{2}=(\sqrt{2})^{2}=2$, and $\left\langle y_{2}, x_{1}\right\rangle=1+0+1+0=2$. Then $x_{2}=y_{2}-\frac{2}{2} x_{1}=(0,1,0,1)$.
- $x_{3}=y_{3}-\left(\frac{\left\langle y, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1}+\frac{\left\langle y, x_{2}\right\rangle}{\left\|x_{2}\right\|^{2}} x_{2}\right)$, where $\left\|x_{2}\right\|^{2}=(\sqrt{2})^{2}=2=\left\|x_{1}\right\|^{2}$.

Moreover, $\left\langle y_{3}, x_{1}\right\rangle=0+0+2+0=2$ and $\left\langle y_{3}, x_{2}\right\rangle=0+1+0+1=2$. Therefore, $x_{3}=(0,1,2,1)-\frac{2}{2}(1,0,1,0)-\frac{2}{2}(0,1,0,1)=(-1,0,1,0)$.

Thus, by Theorem 6.2.2, $S^{\prime}=\{(1,0,1,0),(0,1,0,1),(-1,0,1,0)\}$ is orthogonal set in \mathbb{R}^{4}
such that span $S^{\prime}=\operatorname{span} S$. Therefore,

$$
S^{\prime \prime}=\left\{\frac{1}{\sqrt{2}}(1,0,1,0), \frac{1}{\sqrt{2}}(0,1,0,1), \frac{1}{\sqrt{2}}(-1,0,1,0)\right\}
$$

is orthonormal set in \mathbb{R}^{4}.

Example 6.2.4

Let $\mathbb{V}=\mathbb{P}(\mathbb{R})$ with an inner product defined by $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t$. Use the GramSchmidt process to replace the standard ordered basis $S=\left\{1, t, t^{2}\right\}$ by an orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$. Represent $h(x)=1+2 x+3 x^{2}$ as a linear combination of the vectors of the obtained orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$.

Solution:

Let $S=\left\{y_{1}=1, y_{2}=t, y_{3}=t^{2}\right\}$. Then $S^{\prime}=\left\{x_{1}, x_{2}, x_{3}\right\}$, where

- $x_{1}=y_{1}=1$.
- $x_{2}=y_{2}-\frac{\left\langle y_{2}, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1}=t-\frac{\langle t, 1\rangle}{\|1\|^{2}} 1=t-\langle t, 1\rangle$. Note that

$$
\|1\|^{2}=\langle 1,1\rangle=\int_{-1}^{1} 1 d t=\left.t\right|_{-1} ^{1}=2
$$

and

$$
\langle t, 1\rangle=\int_{-1}^{1} t \cdot 1 d t=\left.\frac{t^{2}}{2}\right|_{-1} ^{1}=\frac{1}{2}-\frac{1}{2}=0
$$

Therefore, $x_{2}=t-\frac{0}{2} 1=t$.

- $x_{3}=y_{3}-\left(\frac{\left\langle y_{3}, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1}+\frac{\left\langle y_{3}, x_{2}\right\rangle}{\left\|x_{2}\right\|^{2}} x_{2}\right)=t^{2}-\frac{\left\langle t^{2}, 1\right\rangle}{\|1\|^{2}} 1-\frac{\left\langle t^{2}, t\right\rangle}{\|t\|^{2}} t$.

Note that $\|1\|^{2}=2$ and $\|t\|^{2}=\int_{-1}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}$. Moreover,
$\left\langle t^{2}, 1\right\rangle=\int_{-1}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}$, and $\left\langle t^{2}, t\right\rangle=\int_{-1}^{1} t^{3} d t=\left.\frac{t^{4}}{4}\right|_{-1} ^{1}=0$. Therefore,
$x_{3}=t^{2}-\frac{2 / 3}{2} 1-\frac{0}{2 / 3} t=t^{2}-\frac{1}{3}$.

We now normalize S^{\prime} to obtain $S^{\prime \prime}=\left\{\frac{1}{\left\|x_{1}\right\|} x_{1}, \frac{1}{\left\|x_{2}\right\|} x_{2}, \frac{1}{\left\|x_{3}\right\|} x_{3}\right\}$ as follows:

$$
\begin{aligned}
& \left\|x_{1}\right\|^{2}=\|1\|^{2}=2 \Rightarrow\left\|x_{1}\right\|=\sqrt{2} . \\
& \left\|x_{2}\right\|^{2}=\|t\|^{2}=\langle t, t\rangle=\frac{2}{3} \Rightarrow\left\|x_{2}\right\|=\sqrt{\frac{2}{3}} . \\
& \begin{aligned}
\left\|x_{3}\right\|^{2} & =\left\|t^{2}-\frac{1}{3}\right\|^{2}=\left\langle t^{2}-\frac{1}{3}, t^{2}-\frac{1}{3}\right\rangle=\int_{-1}^{1}\left(t^{2}-\frac{1}{3}\right)^{2} d t \\
& =\int_{-1}^{1} t^{4}-\frac{2}{3} t^{2}+\frac{1}{9} d t=\left[\frac{t^{5}}{5}-\frac{2}{3} \frac{t^{3}}{3}+\frac{1}{9} t\right]_{-1}^{1}=\cdots=\frac{8}{45} \\
\Rightarrow & \left\|x_{3}\right\|=\sqrt{\frac{8}{45}}=\frac{2 \sqrt{2}}{3 \sqrt{5}} .
\end{aligned} .
\end{aligned}
$$

Thus, $S^{\prime \prime}=\left\{z_{1}=\frac{1}{\sqrt{2}} 1, z_{2}=\sqrt{\frac{3}{2}} t, z_{3}=\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(t^{2}-\frac{1}{3}\right)\right\}$ is orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$.
We now use Theorem 6.2.3 to represent $h(x)$ as a linear combination of the vectors of $S^{\prime \prime}$.
Note that

$$
\begin{aligned}
& \left\langle h(x), z_{1}\right\rangle=\int_{-1}^{1} \frac{1}{\sqrt{2}}\left(1+2 t+3 t^{2}\right) d t=2 \sqrt{2} \\
& \left\langle h(x), z_{2}\right\rangle=\int_{-1}^{1} \sqrt{\frac{3}{2}} t\left(1+2 t+3 t^{2}\right) d t=\frac{2 \sqrt{6}}{3} \\
& \left\langle h(x), z_{3}\right\rangle=\int_{-1}^{1} \sqrt{\frac{5}{8}}\left(3 t^{2}-1\right)\left(1+2 t+3 t^{2}\right) d t=\frac{2 \sqrt{10}}{5}
\end{aligned}
$$

Therefore, $h(x)=2 \sqrt{2} z_{1}+\frac{2 \sqrt{6}}{3} z_{2}+\frac{2 \sqrt{10}}{5} z_{3}$.

Example 6.2.5

Let $\mathbb{W}=\operatorname{span}\{(1,1,1),(1,0,2)\}$ be a subspace of \mathbb{R}^{3}. Find an orthonormal basis for \mathbb{W}.

Solution:

Consider $x_{1}=(1,1,1)$ and

$$
x_{2}=(1,0,2)-\frac{\langle(1,0,2),(1,1,1)\rangle}{\|(1,1,1)\|^{2}}(1,1,1)=(1,0,2)-\frac{3}{3}(1,1,1)=(0,-1,1) .
$$

Thus, $S^{\prime}=\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,-1,1)\right\}$ is an orthonormal basis for \mathbb{W}.

Example 6.2.6

Let $\mathbb{W}=\{(x, y, z): x+3 y-2 z=0\}$ be a subspace of the inner product space \mathbb{R}^{3}. Find an orthonormal basis for \mathbb{W}.

Solution:

Note that

$$
\mathbb{W}=\{(2 z-3 y, y, z)\}=\boldsymbol{\operatorname { s p a n }}\{(2 s-3 r, r, s): r, s \in \mathbb{R}\}=\boldsymbol{\operatorname { s p a n }}\{(2,0,1),(-3,1,0)\},
$$

where $S=\{(2,0,1),(-3,1,0)\}$ is an ordered basis for \mathbb{W}. We now construct orthogonal basis for \mathbb{W} and normalize it to an orthonormal basis. Let $x_{1}=(2,0,1)$ and

$$
\begin{aligned}
x_{2} & =(-3,1,0)-\frac{\langle(-3,1,0),(2,0,1)\rangle}{\|(2,0,1)\|^{2}}(2,0,1) \\
& =(-3,1,0)-\frac{-6}{5}(2,0,1)=\left(-\frac{3}{5}, 1, \frac{6}{5}\right) .
\end{aligned}
$$

Thus, $\left\|x_{2}\right\|=\sqrt{\frac{9}{25}+\frac{25}{25}+\frac{36}{25}}=\frac{\sqrt{70}}{5}$. Thus, $S^{\prime}=\left\{\frac{1}{\sqrt{5}}(2,0,1), \frac{1}{\sqrt{70}}(-3,5,6)\right\}$ is an orthonormal basis for \mathbb{W}.

Exercise 6.2.1

Solve the following exercises from the book at pages 352-357:

- $2: a, b, c, g$, and h.

Section 6.3: The Adjoint of a Linear Operator

Recall that A^{*} is the conjugate transpose of a matrix. In this section, for a linear operator \mathbf{T} on an inner product space \mathbb{V}, we define a related linear operator on \mathbb{V} called the adjoint of \mathbf{T}, denoted \mathbf{T}^{*}, whose matrix representation with respect to any orthonormal basis β for \mathbb{V} is $[\mathbf{T}]_{\beta}^{*}$.

Definition 6.3.1

Let \mathbb{V} be a finite-dimensional inner product space, and let \mathbf{T} be a linear operator on \mathbb{V}. The adjoint (sometimes called hermitian conjugate) of \mathbf{T} is the unique linear operator \mathbf{T}^{*} on \mathbb{V} such that

$$
\langle\mathbf{T}(x), y\rangle=\left\langle x, \mathbf{T}^{*}(y)\right\rangle, \quad \text { for all } x, y \in \mathbb{V}
$$

Remark 6.3.1

Note that

$$
\langle x, \mathbf{T}(y)\rangle=\overline{\langle\mathbf{T}(y), x\rangle}=\overline{\left\langle y, \mathbf{T}^{*}(x)\right\rangle}=\left\langle\mathbf{T}^{*}(x), y\right\rangle .
$$

Theorem 6.3.1

Let \mathbb{V} be a finite-dimensional inner product space, let β be an orthonormal basis for \mathbb{V}, and let \mathbf{T} and \mathbf{U} be linear operators on \mathbb{V}. Then:

1. T^{*} is unique linear operator on \mathbb{V}.
2. $\left[\mathbf{T}^{*}\right]_{\beta}=[\mathbf{T}]_{\beta}^{*}$.
3. $(\mathbf{T}+\mathbf{U})^{*}=\mathbf{T}^{*}+\mathbf{U}^{*}$, and $(\mathbf{T U})^{*}=\mathbf{U}^{*} \mathbf{T}^{*}$.
4. $(c \mathbf{T})^{*}=\bar{c} \mathbf{T}^{*}$.
5. $\left(\mathbf{T}^{*}\right)^{*}=\mathbf{T}$.
6. $\mathbf{I}_{V}{ }^{*}=\mathbf{I}_{V}$.

Example 6.3.1

Let \mathbf{T} be the linear operator on \mathbb{C}^{2} defined by $\mathbf{T}(a, b)=(2 a i+3 b, a-b)$. Evaluate \mathbf{T}^{*}.

Solution:

We can find \mathbf{T}^{*} directly by the definition:

$$
\begin{aligned}
\left\langle(a, b), \mathbf{T}^{*}(c, d)\right\rangle & =\langle\mathbf{T}(a, b),(c, d)\rangle=\langle(2 a i+3 b, a-b),(c, d)\rangle \\
& =(2 a i+3 b) \bar{c}+(a-b) \bar{d}=2 a \bar{c} i+3 b \bar{c}+a \bar{d}-b \bar{d} \\
& =a(2 i \bar{c}+\bar{d})+b(3 \bar{c}-\bar{d})=\langle(a, b),(-2 c i+d, 3 c-d)\rangle .
\end{aligned}
$$

Therefore, $\mathbf{T}^{*}(c, d)=(-2 c i+d, 3 c-d)$.
On the other hand, we can also find \mathbf{T}^{*} using the Theorem 6.3.1. Choose β as the standard orthonormal basis for \mathbb{C}^{2}. Clearly, $[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}2 i & 3 \\ 1 & -1\end{array}\right)$. Then, $\left[\mathbf{T}^{*}\right]_{\beta}=[\mathbf{T}]_{\beta}^{*}=\left(\begin{array}{cc}-2 i & 1 \\ 3 & -1\end{array}\right)$. Hence, $\mathbf{T}^{*}(a, b)=(-2 a i+b, 3 a-b)$.

Example 6.3.2

Let \mathbf{T} be the linear operator on \mathbb{R}^{2} defined by $\mathbf{T}(a, b)=(2 a+b, a-3 b)$. Evaluate \mathbf{T}^{*} at $x=(3,5)$.

Solution:

We can find $\mathbf{T}^{*}(3,5)$ directly by the definition:

$$
\begin{aligned}
\left\langle(a, b), \mathbf{T}^{*}(3,5)\right\rangle & =\langle\mathbf{T}(a, b),(3,5)\rangle=\langle(2 a+b, a-3 b),(3,5)\rangle \\
& =(6 a+3 b)+5 a-15 b=11 a-12 b \\
& =\langle(a, b),(11,-12)\rangle .
\end{aligned}
$$

Therefore, $\mathbf{T}^{*}(3,5)=(11,-12)$.
On the other hand, we can also find $\mathbf{T}^{*}(3,5)$ using the Remark 2.2.2. Choose β as an orthonormal basis for \mathbb{R}^{2}. Clearly, $[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right)$. Then, $\left[\mathbf{T}^{*}\right]_{\beta}=[\mathbf{T}]_{\beta}^{*}=\left(\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right)$, and $[(3,5)]_{\beta}=\binom{3}{5}$. Hence,

$$
\left[\mathbf{T}^{*}(3,5)\right]_{\beta}=[\mathbf{T}]_{\beta}^{*}[(3,5)]_{\beta}=\left(\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right)\binom{3}{5}=\binom{11}{-12}
$$

Therefore, $\mathbf{T}^{*}(3,5)=(11,-12)$.

Example 6.3.3

Let \mathbf{T} be the linear operator on $\mathbb{P}_{1}(\mathbb{R})$ defined by $\mathbf{T}(f)=f^{\prime}+3 f$ with $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Evaluate \mathbf{T}^{*} at $f(x)=4-2 x$. Get 1 bonus point when you evaluate $\mathbf{T}^{*}(h(x))$, where $h(x)=a+b x \in \mathbb{P}_{1}(\mathbb{R})$. Hand it over to me at my office.

Solution (1):

Using the definition: Let $g(x)=a+b x$ for $a, b \in \mathbb{R}$. Then, $\mathbf{T}(g)=b+3 a+a b x$.

$$
\begin{aligned}
\left\langle g, \mathbf{T}^{*}(f)\right\rangle & =\langle\mathbf{T}(g), f\rangle=\langle(3 a+b+3 b x),(4-2 x)\rangle \\
& =\int_{-1}^{1}(3 a+b+3 b x)(4-2 x)=\cdots=24 a+4 b .
\end{aligned}
$$

Assuming that $\mathbf{T}^{*}(f)=c+d x$, we get:

$$
\begin{aligned}
\left\langle g, \mathbf{T}^{*}(f)\right\rangle & =\langle(a+b x),(c+d x)\rangle \\
& =\int_{-1}^{1}(a+b x)(c+d x)=\cdots=2 a c+\frac{2}{3} b d .
\end{aligned}
$$

By equating the two results, we get $c=12$ and $d=6$ and hence $\mathbf{T}^{*}(f=4-2 x)=12+6 x$.

Solution (2):

We can find $\mathbf{T}^{*}(f)$ using the Remark 2.2.2. Choose $\beta=\left\{v_{1}=\frac{1}{\sqrt{2}}, v_{2}=\sqrt{\frac{3}{2}} x\right\}$ as an orthonormal basis for $\mathbb{P}_{1}(\mathbb{R})$ (Use Gram-Schmidt process to find such basis). Then,

$$
\begin{aligned}
& \mathbf{T}\left(v_{1}\right)=3 \frac{1}{\sqrt{2}}=3 v_{1}+0 v_{2} \quad \Rightarrow \quad\left[\mathbf{T}\left(v_{1}\right)\right]_{\beta}=(3,0) \\
& \mathbf{T}\left(v_{2}\right)=\sqrt{\frac{3}{2}}+3 \sqrt{\frac{3}{2}} x=\sqrt{3} v_{1}+3 v_{2} \quad \Rightarrow \quad\left[\mathbf{T}\left(v_{2}\right)\right]_{\beta}=(\sqrt{3}, 3)
\end{aligned}
$$

Hence $[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}3 & \sqrt{3} \\ 0 & 3\end{array}\right)$ and thus $[\mathbf{T}]_{\beta}^{*}=\left(\begin{array}{cc}3 & 0 \\ \sqrt{3} & 3\end{array}\right)$. Furthermore, observe that $[f(x)]_{\beta}=$ $\left(\left\langle 4-2 x, \frac{1}{\sqrt{2}}\right\rangle,\left\langle 4-2 x, \sqrt{\frac{3}{2}} x\right\rangle\right)=\left(4 \sqrt{2},-2 \sqrt{\frac{2}{3}}\right)$. Therefore,

$$
[\mathbf{T}(f(x))]_{\beta}^{*}=\left(\begin{array}{cc}
3 & 0 \\
\sqrt{3} & 3
\end{array}\right)\binom{4 \sqrt{2}}{-2 \sqrt{\frac{2}{3}}}=\binom{12 \sqrt{2}}{2 \sqrt{6}} .
$$

That is, $\mathbf{T}^{*}(4-2 x)=12 \sqrt{2} v_{1}+2 \sqrt{6} v_{2}=12+6 x$. In the general case when $h(x)=a+b x$, we use the matrix multiplication since using the definition is rather difficult. Observe that $[h(x)]_{\beta}=\left(a \sqrt{2}, b \sqrt{\frac{2}{3}}\right)$. Hence

$$
[\mathbf{T}(h(x))]_{\beta}^{*}=[\mathbf{T}]_{\beta}^{*}[h]_{\beta}=\left(\begin{array}{cc}
3 & 0 \\
\sqrt{3} & 3
\end{array}\right)\binom{a \sqrt{2}}{b \sqrt{\frac{2}{3}}}=\binom{3 a \sqrt{2}}{a \sqrt{6}+b \sqrt{6}} .
$$

That is, $\mathbf{T}^{*}(a+b x)=(3 a \sqrt{2}) v_{1}+\sqrt{6}(a+b) v_{2}=3 a+3(a+b) x$.

Example 6.3.4

Let \mathbb{V} be an inner product space, and let $y, z \in \mathbb{V}$. Define $\mathbf{T}: \mathbb{V} \rightarrow \mathbb{V}$ by $\mathbf{T}(x)=\langle x, y\rangle z$ for all $x \in \mathbb{V}$. Show that \mathbf{T} is linear, and evaluate $\mathbf{T}^{*}(x)$.

Solution:

We first show that \mathbf{T} is linear. For any $x_{1}, x_{2} \in \mathbb{V}$ and any $c \in \mathbb{F}$.

$$
\begin{aligned}
\mathbf{T}\left(c x_{1}+x_{2}\right) & =\left\langle c x_{1}+x_{2}, y\right\rangle z=\left\langle c x_{1}, y\right\rangle z+\left\langle x_{2}, y\right\rangle z \\
& =c\left\langle x_{1}, y\right\rangle z+\left\langle x_{2}, y\right\rangle z=c \mathbf{T}\left(x_{1}\right)+\mathbf{T}\left(x_{2}\right)
\end{aligned}
$$

Hence, \mathbf{T} is linear. Furthermore,

$$
\begin{aligned}
\left\langle u, \mathbf{T}^{*}(x)\right\rangle & =\langle\mathbf{T}(u), x\rangle=\langle\langle u, y\rangle z, x\rangle \\
& =\langle u, y\rangle\langle z, x\rangle=\langle u, \overline{\langle z, x\rangle} y\rangle=\langle u,\langle x, z\rangle y\rangle .
\end{aligned}
$$

Therefore, $\mathbf{T}^{*}(x)=\langle x, z\rangle y$.

Exercise 6.3.1

Solve the following exercises from the book at pages 352-357:

- $2: a, b, c, g$, and h.

Section 6.4: Self-Adjoint, Normal, and Unitary Operators

In this section, we present more properties of special linear operators. Furthermore, we consider the diagonalization problem for these operators.

Definition 6.4.1

Let \mathbb{V} be an inner product space, and let \mathbf{T} be a linear operator on \mathbb{V}. Then:

1. \mathbf{T} is called self-adjoint (Hermitian) if $\mathbf{T}=\mathbf{T}^{*}$.
2. An $n \times n$-real or complex matrix A is called self-adjoint (Hermitian) matrix if $A=$ A^{*}.
3. \mathbf{T} is called normal if $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}$.
4. An $n \times n$-real or complex matrix A is called normal matrix if $A A^{*}=A^{*} A$.

Remark 6.4.1

If \mathbf{T} is a linear operator on an inner product space \mathbb{V} and β is an orthonormal basis for \mathbb{V}, then:

1. \mathbf{T} is self-adjoint if and only if $[\mathbf{T}]_{\beta}$ is self-adjoint.
2. \mathbf{T} is normal if and only if $[\mathbf{T}]_{\beta}$ is normal.
3. If \mathbf{T} is self-adjoint, then \mathbf{T} is normal.

Theorem 6.4.1

Let \mathbb{V} be an inner product space, and let \mathbf{T} be a normal operator on \mathbb{V}. Then:

1. $\|\mathbf{T}(x)\|=\left\|\mathbf{T}^{*}(x)\right\|$ for all $x \in \mathbb{V}$.
2. If x is an eigenvector of \mathbf{T}, then x is an eigenvector of \mathbf{T}^{*}. In fact, if $\mathbf{T}(x)=\lambda x$, then $\mathbf{T}^{*}(x)=\bar{\lambda} x$.
3. If λ_{1} and λ_{2} are distinct eigenvalues of \mathbf{T} with corresponding eigenvectors x_{1} and x_{2}, respectively, then x_{1} and x_{2} are orthogonal.

Proof:

1. For any vector $x \in \mathbb{V}$, we have:

$$
\begin{aligned}
\|\mathbf{T}(x)\|^{2} & =\langle\mathbf{T}(x), \mathbf{T}(x)\rangle=\left\langle x, \mathbf{T}^{*} \mathbf{T}(x)\right\rangle=\left\langle x, \mathbf{T T}^{*}(x)\right\rangle \\
& =\left\langle\mathbf{T}^{*}(x), \mathbf{T}^{*}(x)\right\rangle=\left\|\mathbf{T}^{*}(x)\right\|^{2} .
\end{aligned}
$$

Therefore, $\|\mathbf{T}(x)\|=\left\|\mathbf{T}^{*}(x)\right\|$.
2. Observe that for any $c \in \mathbb{F},(\mathbf{T}-c I)^{*}=\mathbf{T}^{*}-\bar{c} I$ and that $(\mathbf{T}-c I)$ is normal as \mathbf{T} normal (prove it!). Now assume that for some $x \in \mathbb{V}, \mathbf{T}(x)=\lambda x$. Then $(\mathbf{T}-\lambda I)(x)=$ 0 , where $\mathbf{T}-\lambda I$ is normal.

Then, by (1), we have

$$
\begin{aligned}
0 & =\|(\mathbf{T}-\lambda I)(x)\|=\left\|(\mathbf{T}-\lambda I)^{*}(x)\right\| \\
& =\left\|\left(\mathbf{T}^{*}-\bar{\lambda} I\right)(x)\right\|=\left\|\mathbf{T}^{*}(x)-\bar{\lambda} x\right\|=\left\|\left(\mathbf{T}^{*}-\bar{\lambda} I\right)(x)\right\| .
\end{aligned}
$$

Hence, $\mathbf{T}^{*}(x)=\bar{\lambda} x$.
3. Let $\lambda_{1} \neq \lambda_{2}$ be two eigenvalues of \mathbf{T} with corresponding eigenvectors x_{1} and x_{2}. Then, by part (2), we have:

$$
\begin{aligned}
\left(\lambda_{1}-\lambda_{2}\right)\left\langle x_{1}, x_{2}\right\rangle & =\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle-\left\langle x_{1}, \overline{\lambda_{2}} x_{2}\right\rangle \\
& =\left\langle\mathbf{T}\left(x_{1}\right), x_{2}\right\rangle-\left\langle x_{1}, \mathbf{T}^{*}\left(x_{2}\right)\right\rangle=0 .
\end{aligned}
$$

But since $\lambda_{1}-\lambda_{2} \neq 0$, then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Theorem 6.4.2

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} over \mathbb{C}. Then \mathbf{T} is normal if and only if there exists an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}.

Theorem 6.4.3

Let \mathbf{T} be a self-adjoint linear operator on a finite-dimensional inner product space \mathbb{V}. Then every eigenvalues of \mathbf{T} is real.

Proof:

Assume that $\mathbf{T}(x)=\lambda x$ for $x \neq 0$. Then

$$
\lambda x=\mathbf{T}(x)=\mathbf{T}^{*}(x)=\bar{\lambda} x .
$$

Therefore, $\lambda=\bar{\lambda}$ and hence λ is real.

Theorem 6.4.4

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space over \mathbb{R}. Then, \mathbf{T} is self-adjoint if and only if there exists an orthonormal basis β for \mathbb{V} consisting of eigenvectors of \mathbf{T}.

Lemma 6.4.1

Let \mathbf{T} be a self-adjoint operator on a finite-dimensional inner product space \mathbb{V}. If $\langle x, \mathbf{T}(x)\rangle=$ 0 , for all $x \in \mathbb{V}$, then $\mathbf{T}=\mathbf{T}_{0}$.

Proof:

Choose an orthonormal basis β for \mathbb{V} consisting of eigenvectors of \mathbf{T}. If $x \in \beta$, then $\mathbf{T}(x)=\lambda x$ for some λ. Then

$$
0=\langle x, \mathbf{T}(x)\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle
$$

So, $\bar{\lambda}=0$. Hence $\mathbf{T}(x)=0$ for all $x \in \beta$, and thus $\mathbf{T}=\mathbf{T}_{0}$.

Definition 6.4.2

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V} over \mathbb{F}. If $\|\mathbf{T}(x)\|=$ $\|x\|$ for all $x \in \mathbb{V}$, we call \mathbf{T} a unitary operator if $\mathbb{F}=\mathbb{C}$ and an orthogonal operator if $\mathbb{F}=\mathbb{R}$. Moreover, a square matrix A is called an orthogonal matrix if $A A^{T}=A^{T} A=I$ and unitary matrix if $A A^{*}=A^{*} A=I$.

Remark 6.4.2

Note that, the condition $A A^{*}=I$ is equivalent to the statement that the rows of A form an orthonormal basis for \mathbb{F}^{n}. The same statement can be made on the columns of A and the condition $A^{*} A=I$.

Remark 6.4.3

A linear operator \mathbf{T} on a inner product space \mathbb{V} is unitary (orthogonal) if and only if $[\mathbf{T}]_{\beta}$ is unitary (orthogonal, respectively), for some orthonormal basis β for \mathbb{V}.

Theorem 6.4.5

Let \mathbf{T} be a linear operator on a finite-dimensional inner product space \mathbb{V}. Then the following statements are equivalent:

1. $\mathbf{T T}^{*}=\mathbf{T}^{*} \mathbf{T}=\mathbf{I}_{V}$.
2. $\langle\mathbf{T}(x), \mathbf{T}(y)\rangle=\langle x, y\rangle$ for all $x, y \in \mathbb{V}$.
3. If β is an orthonormal basis for \mathbb{V}, then $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V}.
4. $\|\mathbf{T}(x)\|=\|x\|$ for all $x \in \mathbb{V}$.

Proof:

We proof that each statement implies the following one as follows:

1. $1 \rightarrow 2$: Let $x, y \in \mathbb{V}$, then $\langle x, y\rangle=\left\langle\mathbf{T}^{*} \mathbf{T}(x), y\right\rangle=\langle\mathbf{T}(x), \mathbf{T}(y)\rangle$.
2. $2 \rightarrow 3$: Let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an orthonormal basis for \mathbb{V}. So $\mathbf{T}(\beta)=$ $\left\{\mathbf{T}\left(x_{1}\right), \mathbf{T}\left(x_{2}\right), \cdots, \mathbf{T}\left(x_{n}\right)\right\}$. It follows that $\left\langle\mathbf{T}\left(x_{i}\right), \mathbf{T}\left(x_{j}\right)\right\rangle=\left\langle x_{i}, x_{j}\right\rangle=\delta_{i j}$ where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise. Hence, $\mathbf{T}(\beta)$ is an orthonormal basis for \mathbb{V}.
3. $3 \rightarrow 4$: Let $x \in \mathbb{V}$ and let $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an orthonormal basis for \mathbb{V}. Then $x=\sum_{i=1}^{n} a_{i} x_{i}$ for some scalars a_{i} and hence

$$
\begin{aligned}
\|x\|^{2} & =\langle x, x\rangle=\left\langle\sum_{i=1}^{n} a_{i} x_{i}, \sum_{j=1}^{n} a_{j} x_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}}\left\langle x_{i}, x_{j}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}} \delta_{i j}=\sum_{i=1}^{n} a_{i} \overline{a_{i}}=\sum_{i=1}^{n}\left|a_{i}\right|^{2} .
\end{aligned}
$$

In a similar way, $\mathbf{T}(x)=\sum_{i=1}^{n} a_{i} \mathbf{T}\left(x_{i}\right)$, and using the fact that $\mathbf{T}(\beta)$ is also orthonormal, we obtain $\|\mathbf{T}(x)\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$. Therefore, $\|\mathbf{T}(x)\|=\|x\|$.
4. $4 \rightarrow 1$: For any $x \in \mathbb{V}$,

$$
\langle x, x\rangle=\|x\|^{2}=\|\mathbf{T}(x)\|^{2}=\langle\mathbf{T}(x), \mathbf{T}(x)\rangle=\left\langle x, \mathbf{T}^{*} \mathbf{T}(x)\right\rangle .
$$

Thus, $\mathbf{T}^{*} \mathbf{T}(x)=x$ and hence $\left(\mathbf{T}^{*} \mathbf{T}-\mathbf{I}_{V}\right)(x)=0$. Thus, $\left\langle x,\left(\mathbf{T}^{*} \mathbf{T}-\mathbf{I}_{V}\right)(x)\right\rangle=0$ for all $x \in \mathbb{V}$. Also, $\left(\mathbf{T}^{*} \mathbf{T}-\mathbf{I}_{V}\right)$ is clearly self-adjoint. By Lemma 6.4.1, we get $\left(\mathbf{T}^{*} \mathbf{T}-\mathbf{I}_{V}\right)=\mathbf{T}_{0}$ and therefore, $\mathbf{T}^{*} \mathbf{T}=\mathbf{I}_{V}$.

Definition 6.4.3

Two square matrices A and B are said to be unitarily equivalent (orthogonally equivalent) if and only if there exists a unitary (orthogonal, respectively) matrix P such that $A=P^{*} B P$.

Theorem 6.4.6

Let A be $n \times n$ matrix. Then:

1. If A is complex. Then, A is normal if and only if A is unitarily equivalent to a diagonal matrix.
2. If A is real. Then, A is symmetric if and only if A is orthogonally equivalent to a real diagonal matrix.

Example 6.4.1

Let \mathbf{T} be a linear operator on an inner product space \mathbb{V}. Let $\mathbf{U}_{1}=\mathbf{T}+\mathbf{T}^{*}$ and $\mathbf{U}_{2}=\mathbf{T T}^{*}$. Show that \mathbf{U}_{1} and \mathbf{U}_{2} are both self-adjoint.

Solution:

Clearly

$$
\begin{gathered}
\mathbf{U}_{1}^{*}=\left(\mathbf{T}+\mathbf{T}^{*}\right)^{*}=\mathbf{T}^{*}+\left(\mathbf{T}^{*}\right)^{*}=\mathbf{T}^{*}+\mathbf{T}=\mathbf{T}+\mathbf{T}^{*}=\mathbf{U}_{1} . \\
\mathbf{U}_{2}^{*}=\left(\mathbf{T T}^{*}\right)^{*}=\left(\mathbf{T}^{*}\right)^{*} \mathbf{T}^{*}=\mathbf{T} \mathbf{T}^{*}=\mathbf{U}_{2} .
\end{gathered}
$$

Example 6.4.2

Let \mathbf{T} be a linear operator on $\mathbb{V}=\mathbb{R}^{2}$ defined by $\mathbf{T}(a, b)=(2 a-2 b,-2 a+5 b)$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for \mathbb{V}, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta=\{(1,0),(0,1)\}$. Then, $A=[\mathbf{T}]_{\beta}=\left(\begin{array}{cc}2 & -2 \\ -2 & 5\end{array}\right)$. Therefore, A is self-adjoint and hence it is normal. That is, \mathbf{T} is self-adjoint and normal operator. We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}. Consider the
characteristic polynomial:

$$
f(\lambda)=\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
2-\lambda & -2 \\
-2 & 5-\lambda
\end{array}\right|=\cdots=(\lambda-1)(\lambda-6)=0 .
$$

Therefore, $\lambda_{1}=1$ and $\lambda_{2}=6$. For $\underline{E_{\lambda_{1}}}$: The eigenspace $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=1$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}-I_{2}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\} .
$$

Which implies that $a=2 b$. That is,

$$
E_{\lambda_{1}}=\{t(2,1): t \in \mathbb{R}\} .
$$

Therefore, $\gamma_{1}=\{(2,1)\}$ is a basis for $E_{\lambda_{1}}$.
For $E_{\lambda_{2}}$: The eigenspace $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=6$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-6 I_{2}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\} .
$$

Which implies that $a=-\frac{1}{2} b$. That is,

$$
E_{\lambda_{2}}=\{t(1,-2): t \in \mathbb{R}\} .
$$

Therefore, $\gamma_{2}=\{(1,-2)\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\{(2,1),(1,-2)\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of T. Normalizing the vectors of γ, we obtain γ^{*} which is orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}, where

$$
\gamma^{*}=\left\{\frac{1}{\sqrt{5}}(2,1), \frac{1}{\sqrt{5}}(1,-2)\right\} .
$$

We note that, we can confirm our solution by confirming that $Q^{-1} A Q=\operatorname{diag}(1,6)$, where $Q=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$.

Example 6.4.3

Let \mathbf{T} be a linear operator $\mathbb{V}=\mathbb{R}^{3}$ defined by $\mathbf{T}(a, b, c)=(-a+b, 5 b, 4 a-2 b+5 c)$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis
of eigenvectors of \mathbf{T} for \mathbb{V}, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta=\{(1,0,0),(0,1,0),(0,0,1)\}$. Then, $A=[\mathbf{T}]_{\beta}=$ $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 5 & 0 \\ 4 & -2 & 5\end{array}\right)$. Then $A^{*}=\left(\begin{array}{ccc}-1 & 0 & 4 \\ 1 & 5 & -2 \\ 0 & 0 & 5\end{array}\right)$. Therefore, A is not self-adjoint as $A^{*} \neq A$. Furthermore, $\left(A A^{*}\right)_{11}=2$ while $\left(A^{*} A\right)_{11}=17$. Hence A is not normal. Therefore it has no orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}.

Example 6.4.4

Let \mathbf{T} be a linear operator on $\mathbb{V}=\mathbb{C}^{2}$ defined by $\mathbf{T}(a, b)=(2 a+b i, a+2 b)$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for \mathbb{V}, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis $\beta=\{(1,0),(0,1)\}$. Then, $A=[\mathbf{T}]_{\beta}=\left(\begin{array}{ll}2 & i \\ 1 & 2\end{array}\right)$. Then $A^{*}=$ $\left(\begin{array}{cc}2 & 1 \\ -i & 2\end{array}\right)$. Therefore, A is not self-adjoint. However, $A A^{*}=A^{*} A=\left(\begin{array}{cc}5 & 2+2 i \\ 2-2 i & 5\end{array}\right)$. That is, \mathbf{T} is normal operator. We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of T. Consider the characteristic polynomial:

$$
f(\lambda)=\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
2-\lambda & i \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+(4-i)=(\lambda-(2+\sqrt{i}))(\lambda-(2-\sqrt{i}))=0 .
$$

Therefore, $\lambda_{1}=2+\sqrt{i}$ and $\lambda_{2}=2-\sqrt{i}$.
For $\underline{E_{\lambda_{1}}}$: The eigenspace $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=2+\sqrt{i}$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}-(2+\sqrt{i}) I_{2}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b) \in \mathbb{C}^{2}:\left(\begin{array}{cc}
-\sqrt{i} & i \\
1 & -\sqrt{i}
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\} .
$$

Which implies that $a=b \sqrt{i}$. That is,

$$
E_{\lambda_{1}}=\{t(\sqrt{i}, 1): t \in \mathbb{R}\} .
$$

Therefore, $\gamma_{1}=\{(\sqrt{i}, 1)\}$ is a basis for $E_{\lambda_{1}}$.

For $\underline{E_{\lambda_{2}}}$: The eigenspace $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=2-\sqrt{i}$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-(2-\sqrt{i}) I_{2}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b) \in \mathbb{C}^{2}:\left(\begin{array}{cc}
\sqrt{i} & i \\
1 & \sqrt{i}
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\}
$$

Which implies that $a=-b \sqrt{i}$. That is,

$$
E_{\lambda_{2}}=\{t(\sqrt{i},-1): t \in \mathbb{R}\}
$$

Therefore, $\gamma_{2}=\{(\sqrt{i},-1)\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\{(\sqrt{i}, 1),(\sqrt{i},-1)\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}. Normalizing the vectors of γ, we obtain γ^{*} which is orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}, where

$$
\gamma^{*}=\left\{\frac{1}{\sqrt{2}}(\sqrt{i}, 1), \frac{1}{\sqrt{2}}(\sqrt{i},-1)\right\}
$$

We note that, we can confirm our solution by confirming that $Q^{-1} A Q=\operatorname{diag}(2+\sqrt{i}, 2-\sqrt{i})$, where $Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\sqrt{i} & \sqrt{i} \\ 1 & -1\end{array}\right)$.

Example 6.4.5

Let \mathbf{T} be a linear operator on $\mathbb{V}=\mathbb{P}_{2}(\mathbb{R})$ defined by $\mathbf{T}(f)=f^{\prime}$, where $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for \mathbb{V}, and list the corresponding eigenvalues.

Solution:

We first consider the standard ordered basis for $\mathbb{P}_{2}(\mathbb{R})$ which $\beta=\left\{1, x, x^{2}\right\}$. Note that β is not orthonormal and hence we use the Gram-Schmidt process to construct orthogonal basis and then normalize it to obtain an orthonormal basis. Let $\beta=\left\{u_{1}=1, u_{2}=x, u_{3}=x^{2}\right\}$. Then, $\beta^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal basis for $\mathbb{P}_{2}(\mathbb{R})$, where $v_{1}=u_{1}=1$. And,

$$
v_{2}=u_{2}-\left(\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}\right)=x-\left(\frac{\langle x, 1\rangle}{\langle 1,1\rangle} \cdot 1\right)=x-\frac{1}{2}
$$

where $\langle x, 1\rangle=\frac{1}{2}$ and $\langle 1,1\rangle=1$. And,

$$
\begin{aligned}
v_{3} & =u_{3}-\left(\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}\right)=x^{2}-\left(\frac{\left\langle x^{2}, 1\right\rangle}{\|1\|^{2}} \cdot 1+\frac{\left\langle x^{2},\left(x-\frac{1}{2}\right)\right\rangle}{\left\|x-\frac{1}{2}\right\|^{2}}\left(x-\frac{1}{2}\right)\right) \\
& =x^{2}-\left(\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{6}\right)\left(x-\frac{1}{2}\right)=x^{2}-x+\frac{1}{6}
\end{aligned}
$$

where $\left\|x-\frac{1}{2}\right\|^{2}=\frac{1}{12},\left\langle x^{2}, 1\right\rangle=\frac{1}{3}$, and $\left\langle x^{2}, x-\frac{1}{2}\right\rangle=\frac{1}{12}$.
Thus, $\beta^{\prime}=\left\{1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}\right\}$ is orthogonal basis for $\mathbb{P}_{2}(\mathbb{R})$. We may observe that

$$
\|1\|=1, \quad\left\|x-\frac{1}{2}\right\|=\frac{1}{2 \sqrt{3}}, \quad \text { and } \quad\left\|x^{2}-x+\frac{1}{6}\right\|=\frac{1}{6 \sqrt{5}} .
$$

Therefore, $\gamma=\left\{1,2 \sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right\}$ is orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$. We now compute the representation of \mathbf{T} relative to γ. Note that, we can compute the Fourier coefficients as in Theorem 6.2.3:

$$
\begin{array}{ll}
\mathbf{T}(1)=0 & \Rightarrow[\mathbf{T}(1)]_{\gamma}=(0,0,0) \\
\mathbf{T}\left(2 \sqrt{3}\left(x-\frac{1}{2}\right)\right)=2 \sqrt{3} & \Rightarrow\left[\mathbf{T}\left(2 \sqrt{3}\left(x-\frac{1}{2}\right)\right)\right]_{\gamma}=\left(\frac{2}{\sqrt{3}}, 0,0\right) . \\
\mathbf{T}\left(6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right)=12 \sqrt{5} x-6 \sqrt{5} & \Rightarrow\left[\mathbf{T}\left(6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right)\right]_{\gamma}=(0,2 \sqrt{15}, 0) .
\end{array}
$$

That is $[\mathbf{T}]_{\gamma}=\left(\begin{array}{ccc}0 & 2 \sqrt{3} & 0 \\ 0 & 0 & 2 \sqrt{15} \\ 0 & 0 & 0\end{array}\right)$. Hence, \mathbf{T} is not self-adjoint and not normal, for instance $\left([\mathbf{T}]_{\gamma}[\mathbf{T}]_{\gamma}^{*}\right)_{11}=12$ while $\left([\mathbf{T}]_{\gamma}^{*}[\mathbf{T}]_{\gamma}\right)_{11}=0$. Therefore, there is no orthonormal basis for $\mathbb{P}_{2}(\mathbb{R})$ consisting of eigenvectors of \mathbf{T}.

Example 6.4.6

Let \mathbf{T} be a linear operator on $\mathbb{V}=M_{2 \times 2}(\mathbb{R})$ defined by $\mathbf{T}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)$. Determine whether \mathbf{T} is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of \mathbf{T} for \mathbb{V}, and list the corresponding eigenvalues.

Solution:

Choose the standard orthonormal basis $\beta=\left\{E^{11}, E^{12}, E^{21}, E^{22}\right\}$. Then,

$$
\begin{array}{ll}
\mathbf{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) &
\end{array} \begin{aligned}
& \left.\mathbf{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right]_{\beta}=(0,0,1,0) \\
& \mathbf{T}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Therefore, $A=[\mathbf{T}]_{\beta}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$. Then A and hence \mathbf{T} is self-adjoint and normal.
We now produce an orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}. Consider the characteristic polynomial:

$$
f(\lambda)=\left|A-\lambda I_{4}\right|=\left|\begin{array}{cccc}
-\lambda & 0 & 1 & 0 \\
0 & -\lambda & 0 & 1 \\
1 & 0 & -\lambda & 0 \\
0 & 1 & 0 & -\lambda
\end{array}\right|=\left(\lambda^{2}-1\right)^{2}=0
$$

Therefore, $\lambda_{1}=-1$ and $\lambda_{2}=1$.
For $\underline{E_{\lambda_{1}}}$: The eigenspace $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=-1$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}+I_{4}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b, c, d) \in \mathbb{R}^{4}:\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)\right\}
$$

Which implies that $a=-c$ and $b=-d$. That is,

$$
E_{\lambda_{1}}=\{t(1,0,-1,0), r(0,1,0,-1): t, r \in \mathbb{R}\} .
$$

Therefore, $\gamma_{1}=\{(1,0,-1,0),(0,1,0,-1)\}$ is a basis for $E_{\lambda_{1}}$.
For $E_{\lambda_{2}}$: The eigenspace $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=1$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-I_{4}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b, c, d) \in \mathbb{R}^{4}:\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)\right\} .
$$

Which implies that $a=c$ and $b=d$. That is,

$$
E_{\lambda_{2}}=\{t(1,0,1,0), r(0,1,0,1): t, r \in \mathbb{R}\}
$$

Therefore, $\gamma_{2}=\{(1,0,1,0),(0,1,0,1)\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\{(1,0,-1,0),(0,1,0,-1),(1,0,1,0),(0,1,0,1)\}$ is orthogonal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}. Normalizing the vectors of γ, we obtain γ^{*} which is orthonormal basis for \mathbb{V} consisting of eigenvectors of \mathbf{T}, where

$$
\gamma^{*}=\left\{\frac{1}{\sqrt{2}}(1,0,-1,0), \frac{1}{\sqrt{2}}(1,0,-1,0), \frac{1}{\sqrt{2}}(1,0,1,0), \frac{1}{\sqrt{2}}(1,0,1,0)\right\}
$$

Example 6.4.7

Let $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Show that A is orthogonally equivalent to a diagonal matrix, and find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^{*} A P=D$.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from orthonormal basis) so that $P^{*} A P=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.

$$
f(\lambda)=\left|A-\lambda I_{2}\right|=\left|\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-4=0 .
$$

Thus, $\lambda_{1}=-1$ and $\lambda_{2}=3$.
For $\underline{E}_{\lambda_{1}}$: The eigenspace $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=-1$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}+I_{2}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\} .
$$

Which implies that $a=-b$. That is,

$$
E_{\lambda_{1}}=\{t(1,-1): t \in \mathbb{R}\} .
$$

Therefore, $\gamma_{1}=\{(1,-1)\}$ is a basis for $E_{\lambda_{1}}$.
For $\underline{E_{\lambda_{2}}}$: The eigenspace $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=3$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-3 I_{2}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right\} .
$$

Which implies that $a=b$. That is,

$$
E_{\lambda_{2}}=\{t(1,1): t \in \mathbb{R}\}
$$

Therefore, $\gamma_{2}=\{(1,1)\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1} \cup \gamma_{2}=\{(1,-1),(1,1)\}$ is orthogonal basis consisting of eigenvectors of A. Normalizing the vectors of γ, we obtain γ^{*} which is orthonormal basis consisting of eigenvectors of A, where

$$
\gamma^{*}=\left\{\frac{1}{\sqrt{2}}(1,-1), \frac{1}{\sqrt{2}}(1,1)\right\}
$$

Finally, $P^{*} A P=D$, where $P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and $D=\operatorname{diag}(-1,3)$.

Example 6.4.8

Let $A=\left(\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right)$. Show that A is orthogonally equivalent to a diagonal matrix, and find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^{*} A P=D$.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from orthonormal basis) so that $P^{*} A P=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2} \cdot \lambda_{3}\right)$.

$$
f(\lambda)=\left|A-\lambda I_{3}\right|=\left|\begin{array}{ccc}
-\lambda & 2 & 2 \\
2 & -\lambda & 2 \\
2 & 2 & -\lambda
\end{array}\right|=\cdots=(\lambda+2)^{2}(4-\lambda)=0
$$

Thus, $\lambda_{1}=-2$ and $\lambda_{2}=4$.
For $\underline{E_{\lambda_{1}}}$: The eigenspace $E_{\lambda_{1}}$ corresponding to $\lambda_{1}=-2$ is $E_{\lambda_{1}}=\mathcal{N}\left(\mathbf{T}+2 I_{2}\right)$. Therefore

$$
E_{\lambda_{1}}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left(\begin{array}{ccc}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

Which implies that $a=-b-c$. That is,

$$
E_{\lambda_{1}}=\{t(1,-1,0), r(1,0,-1): t, r \in \mathbb{R}\} .
$$

Therefore, $\gamma_{1}=\left\{u_{1}=(1,-1,0), u_{2}=(1,0,-1)\right\}$ is a basis for $E_{\lambda_{1}}$. We note that γ_{1} is not orthogonal set, and hence we use Gram-Schmidt process to orthogonalize it. Let $v_{1}=u_{1}=$ ($1,-1,0$), and

$$
v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=(1,0,-1)-\frac{\langle(1,0,-1),(1,-1,0)\rangle}{\|(1,-1,0)\|^{2}}(1,-1,0)=\left(\frac{1}{2}, \frac{1}{2},-1\right)
$$

Hence, $\gamma_{1}^{*}=\left\{(1,-1,0),\left(\frac{1}{2}, \frac{1}{2},-1\right)\right\}$ is orthogonal basis for $E_{\lambda_{1}}$.
For $\underline{E_{\lambda_{2}}}$: The eigenspace $E_{\lambda_{2}}$ corresponding to $\lambda_{2}=4$ is $E_{\lambda_{2}}=\mathcal{N}\left(\mathbf{T}-4 I_{2}\right)$. Therefore

$$
E_{\lambda_{2}}=\left\{(a, b) \in \mathbb{R}^{2}:\left(\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

Which implies that $a=b=c$. That is,

$$
E_{\lambda_{2}}=\{t(1,1,1): t \in \mathbb{R}\}
$$

Therefore, $\gamma_{2}=\{(1,1,1)\}$ is a basis for $E_{\lambda_{2}}$.
Thus, $\gamma=\gamma_{1}^{*} \cup \gamma_{2}=\left\{(1,-1,0),\left(\frac{1}{2}, \frac{1}{2},-1\right),(1,1,1)\right\}$ is orthogonal basis consisting of eigenvectors of A. Normalizing the vectors of γ, we obtain γ^{*} which is orthonormal basis consisting of eigenvectors of A, where

$$
\gamma^{*}=\left\{\frac{1}{\sqrt{2}}(1,-1,0), \sqrt{\frac{2}{3}}\left(\frac{1}{2}, \frac{1}{2},-1\right), \frac{1}{\sqrt{3}}(1,1,1)\right\}
$$

Finally, $P^{*} A P=D$, where

$$
P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \quad, \text { and } \quad D=\operatorname{diag}(-2,-2,4)
$$

Exercise 6.4.1

Solve the following exercises from the book at pages 352-357:

- $2: a, b, c, g$, and h.

The Index

A
adjoint 101, 114
algebraic multiplicity 82
B
basis 26
ordered 49
orthonormal 107
standard 26
C
cancellation law 2
Cauchy-Schwarz Inequality 102
change of coordinate matrix 61
characteristic polynomial 69
complex
absolute value 3
conjugate 3
modulus 3
complex conjugate 3
complex number 3
conjugate transpose 101
coordinates 30
coordinates vector 49
cyclic subspace 92
D
diagonalizable 68
dimension 26
dot product 100
E
e-space 83
eigenspace 83
eigenvalue 68
eigenvector 68
F
field 1
characteristic 2
Fourier coefficients 108
G
generates 17
H
hermitian conjugate 114
Hermitian operator 119
I
image 39
imaginary part 3
inner product 99
inner product space 101
invariant subspace 91
K
kernel 38
L
left multiplication transformation 67
length 102
length of vector 102
linear 35
operator 35
adjoint 114
Hermitian 119
hermitian conjugate 114
normal 119
orthogonal 121
self-adjoint 119
unitary 121
transformation 35
linear combination 14
coefficient 14
linear operator 35
linear space 5
linear transformation 35
identity 36
nullity 41
one-to-one 42
onto 42
projection 36
rank 41
reflection 36
rotation 36
trivial 36
linearly dependent 21
linearly independent 21
M
matrix
trace 11
matrix representation 50
multiplicity 82
algebraic 82

N

n-tuple 5
norm 102
normal operator 119
normalizing 103
null space 38
nullity 41
nullity 41
O
one-to-one 42
onto 42
operator 35
adjoint 114
Hermitian 119
hermitian conjugate 114
normal 119
orthogonal 121
self-adjoint 119
unitary 121
ordered basis 49
orthogonal 103, 121
orthonormal 103
orthonormal basis 107
P
perpendicular 103
R
range 39
rank 41
real part 3
S
self-adjoint operator 119
span 15
spans 17
split 82
standard inner product 100
subspace 10
cyclic 92
invariant 91
T
trace 11
Triangle Inequality 102
trivial representation 21
U
unit vector 103
unitary operator 121
V
vector 5
component 5
coordinates 30
entry 5
length 102
unit 103
vector space 5
basis 26
dimension 26
subspace 10
Z
zero polynomial 12

