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1
Chapter

Vector Spaces

Section 1.2: Vector Spaces

An object of the form (x1, x2, · · · , xn), where x1, · · · , xn are elements of a field F, is called an n-tuple.

Such object is called a vector. Moreover, the set of all vectors with entries from F is denoted by Fn.

The elements x1. · · · , xn are called the entries or components.

Definition 1.2.1

A vector space (or linear space) V over a field F is a set of elements on which two operations

(called addition and scalar multiplication) are defined so that

(α) If x, y ∈ V, then x+ y ∈ V; that is, ”V is closed under +”.

VS1. x+ y = y + x for all x, y ∈ V.

VS2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V.

VS3. There exists an element 0 in V such that x+ 0 = x for each x ∈ V.

VS4. For each x ∈ V, there exists an element y ∈ V such that x+ y = 0.

(β) If x ∈ V and a ∈ F, then ax ∈ V; that is, ”V is closed under ·”.

VS5. For each x ∈ V, 1x = x.

VS6. For each pair of elements a, b ∈ F and each element x ∈ V, (ab)x = a(bx).

VS7. For each a ∈ F and x, y ∈ V, a(x+ y) = ax+ ay.

VS8. For each a, b ∈ F and x ∈ V, (a+ b)x = ax+ bx.

Remark 1.2.1

A vector space V along with operation + and · is denoted by (V,+, ·).

Theorem 1.2.1

For any positive integer n, (Rn,+, ·) is a vector space.
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2 Chapter 1. Vector Spaces

Example 1.2.1

Let Mm×n(F) = {all m× n matrices over a field F}. Then (Mm×n(F),+, · ) is a vector space

where for any A = (aij), B = (bij) ∈Mm×n(F) and for c ∈ F, we have

(A+B)ij = (aij + bij) and (cA)ij = c aij,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 1.2.2

Let S be a nonempty set and F be any field, and let F(S,F) denote the set of all functions

from S to F. Two functions f, g ∈ F(S,F) are called equal if f(x) = g(x) for each x ∈ S.

The set F(S,F) is a vector space with the operations of addition and scalar multiplication

defined for f, g ∈ F(S,F) and c ∈ F by

(f + g)(x) = f(x) + g(x) and (cf)(x) = c f(x),

for each x ∈ S.

Example 1.2.3

Let S = {(a, b) : a, b ∈ R}. For any (a, b), (x, y) ∈ S and c ∈ R, define

(a, b)⊕ (x, y) = (a+ x, b− y) and c� (a, b) = (ca, cb).

Is (S,⊕,� ) a vector space?

Solution:

No. Since (VS1), (VS2), and (VS8) are not satisfied (verify!). For instace, (1, 2)⊕ (1, 3) 6=

(1, 3)⊕ (1, 2).

Theorem 1.2.2

Let (V,+, · ) be a vector space. Then

(a) The zero vector in V is unique.

(b) The addition inverse for each element in V is unique.
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Definition 1.2.2

A subset W of a vector space V over a field F is called subspace of V if W is a vector space

over F with operations of addition and scalar multiplication defined on V.

Note that, if V is any vector space, then {0} and V are both subspaces of V.

Theorem 1.2.3

Let V be a vector space over a field F and W is a subset of V. Then, W is a subspace of V if

and only if:

1. 0 ∈W.

2. For any x, y ∈W, x+ y ∈W.

3. For any x ∈W and any a ∈ F, ax ∈W.

Example 1.2.4

Show that the set W of all symmetric matrices (that is matrices with property At = A) is a

subspace of Mn×n(F).

Solution:

We need to show the following three conditions.

1. Clearly, 0tn×n = 0n×n and hence 0n×n ∈W.

2. Let A,B ∈ W. Then At = A and Bt = B and hence (A + B)t = At + Bt = A + B.

Thus, A+B ∈W.

3. Let A ∈W and a ∈ F. Then At = A and hence (aA)t = aAt = aA. Thus, aA ∈W.

Therefore, W is a subspace of Mn×n(F).

Note that the set W of all non-singular matrices in Mn×n(F) is not a subspace of Mn×n(F). Can

you guess why!?
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Definition 1.2.3

The trace of an n× n matrix A, denoted tr(A), is the sum of the diagonal entries of A. That

is, for A = (aij),

tr(A) =
n∑
i=1

aii = a11 + a22 + · · ·+ ann.

Example 1.2.5

Show that tr(cA+ dB) = c tr(A) + d tr(B) for any n× n matrices A and B.

Solution:

If A = (aij) and B = (bij), then cA = (c aij) and dB = (d bij) for 1 ≤ i, j ≤ n. Thus

tr(cA+ dB) = (c a11 + d b11) + (c a22 + d b22) + · · ·+ (c ann + d bnn)

= c (a11 + a22 + · · ·+ ann) + d (b11 + b22 + · · ·+ bnn)

= c tr(A) + d tr(B).

Example 1.2.6

Show that the set W = {A ∈Mn×n(F) : tr(A) = 0 } is a subspace of Mn×n(F).

Solution:

We need to show the following three conditions.

1. tr(0n×n) = ∑n
i=1 0 = 0 and hence 0n×n ∈W.

2. Let A,B ∈W. Then tr(A) = tr(B) = 0 and hence

tr(A+B) = tr(A) + tr(B) = 0 + 0 = 0.

Thus A+B ∈W.

3. Let A ∈W and c ∈ F, then tr(cA) = c tr(A) = 0 and hence cA ∈W.

Therefore, W is a subspace of Mn×n(F).
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Example 1.2.7

Let W = { (x, y, z ) : z = x− y }. Show that W is a subspace of R3.

Solution:

1. Clearly 0 = (0, 0, 0) ∈W since 0 = 0− 0.

2. Let x = (a, b, c), y = (d, e, f) ∈ W. Then c = a − b and f = d − e, and hence

x+ y = (a+ d, b+ e, c+ f) which is in W since

c+ f = (a− b) + (d− e) = (a+ d)− (b+ e).

3. Let x = (a, b, c) ∈ W and k ∈ F. Then c = a − b and hence kc = ka − kb; that is

kx = (ka, kb, kc) ∈W.

Therefore, W is a subspace of R3.

Definition 1.2.4

Let P(F) denote the set of all polynomials with coefficients from a field F. For integer n ≥ 0,

let Pn(F) be the set of all polynomials of degree less than or equal n with coefficients from F.

Note that Pn(F) is a subspace of P(F).

For instance, f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Pn(F). Note that f(x) = 0 means that

an = an−1 = · · · = a1 = a0 = 0 and hence f is called the zero polynomial. For our convenience,

we define the degree of the zero polynomial as −1.
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Section 1.3: Bases and Dimensions

Definition 1.3.1

Let S = {x1, x2, · · · , xn } be a nonempty subset of vectors in a vector space V over a field F.

The span of S, denoted span S, is the set of all linear combinations of the vectors in S.

Theorem 1.3.1

Let S = {x1, x2, · · · , xn } be a subset of vectors in a vector space V. The span S is a subspace

of V.

Example 1.3.1

Let S = { 1 + x, 2− x2, 1 + x+ x2 } be a subset of P2(R). Is x2 a linear combination of S?

Explain.

Solution:

Considering the system x2 = c1(1 + x) + c2(2− x2) + c3(1 + x+ x2), we get

x2 = (c1 + 2c2 + c3) · 1 + (c1 + c3) · x+ (−c2 + c3) · x2.

Hence
c1 + 2c2 + c3 = 0

c1 + 0 + c3 = 0

0 − c2 + c3 = 1

We then find the r.r.e.f. of that system as follows:
1 2 1 0
1 0 1 0
0 −1 1 1

 r.r.e.f.−−−→


1 0 0 −1
0 1 0 0
0 0 1 1


Therefore, x2 = −1 · (1 +x) + 0 · (2−x2) + 1 · (1 +x+x2), and x2 is a linear combination of S.
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Example 1.3.2

Show that W = { (x, y, z) : z = x− y } is a subspace of R3.

Solution:

Note that W = { (x, y, x− y) : x, y ∈ R } = {x(1, 0, 1) + y(0, 1,−2) : x, y ∈ R }. That is,

W = span({ (1, 0, 1), (0, 1,−1) }). Therefore, W is a subspace of R3.

Definition 1.3.2

Let S = {x1, x2, · · · , xn } be a subset of a vector space V. If every vector in V is a linear com-

bination of S, we say that S spans (or generates) V or that V is spanned (or generated)

by S.

Definition 1.3.3

Let A ∈Mm×n(F). Then the null space of A is defined as

N (A) = {x ∈ Fn : Ax = 0 }.

The dimension of N (A) is called the nullity of A. This null space of A is a subspace of Fn.

Definition 1.3.4

A set β = { s1, s2, · · · , sn } of distinct nonzero vectors in a vector space V is called a basis

for V if and only if

1. β spans (generates) V; that is, any element x ∈ V can be represented as a linear

combination of elements of β: x = a1s1 + a2s2 + · · ·+ ansn, and

2. β is linearly independent set in V; that is, a1s1 + a2s2 + · · ·+ ansn = 0 implies that

a1 = a2 = · · · = an = 0.

Moreover, the dimension of V is the number of vectors in its finite basis β, denoted by

dim(V). In that case, we say that V is a finite-dimensional vector space.
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Remark 1.3.1

1. In Fn, the set { e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1) } is a basis

for Fn. This basis is called the standard basis for Fn. Therefore, dim(Fn) = n.

2. The set β = { 1, x, x2, · · · , xn } is the standard basis for the vector space Pn(F), and

therefore dim(Pn(F)) = n+ 1.

Remark 1.3.2

Every basis for a finite-dimensional vector space V contains the same number of vectors.

Theorem 1.3.2

Let V be an n-dimensional vector space and let β = {x1, x2, · · · , xn } be a subset (with n

vectors) of V. Then,

1. If β spans V, then β is a basis for V.

2. If β is linearly independent, then β is a basis for V.

Theorem 1.3.3

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional

subspace and dim(W) ≤ dim(V). Moreover, if dim(W) = dim(V), then W = V.

Example 1.3.3

Determine whether S = {x1 = ( 1, 0,−1 ), x2 = ( 2, 5, 1 ), x3 = ( 0,−4, 3 ) } is a basis for R3.

Solution:

Note that S contains 3 = dim(R3), and thus it is enough to show that S is linearly indepen-

dent (or S spans R3). In either cases, we can simply show that the associate matrix of the

system is not equal to zero. That is∣∣∣∣∣∣∣∣∣∣∣
1 2 0

0 5 −4

−1 1 3

∣∣∣∣∣∣∣∣∣∣∣
= (15 + 4)− (−8) = 27 6= 0.

Thus S is a basis for R3.
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Example 1.3.4

Let W = { (x, y, z) : 2x+ 3y − z = 0 }. Show that W is a subspace of R3 and find its dimen-

sion.

Solution:

Clearly, W = { (x, y, 2x+ 3y) : x, y ∈ R } = {x(1, 0, 2) + y(0, 1, 3) }. Therefore, W =

span({ (1, 0, 2), (0, 1, 3) }) which shows that W is a subspace of R3. Moreover, the set

{ (1, 0, 2), (0, 1, 3) } is linearly independent set and hence it is a basis for W. Therefore,

dim(W) = 2.

Example 1.3.5

Let W = { f(x) ∈ P2(R) : f(1) = 0 }.

1. Show that W is a subspace of P2(R).

2. What is dim(W)?

Solution:

Note that f(x) = a + bx + cx2 so that f(1) = a + b + c = 0. That is c = −a − b. Hence

f(x) = a + bx + (−a − b)x2 = a(1 − x2) + b(x − x2). Therefore, W = span S, where

S = { 1− x2, x− x2 }. Clearly, S is linearly independent (each element is not a composite of

the other). Hence S is a basis for W and dim(W) = 2.
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Exercise 1.3.1

Let W = { f(x) ∈ P3(R) : f(0) = f ′(0) and f(1) = f ′(1) }. Find a basis for W.

Exercise 1.3.2

Let W = { a+ bx+ cx2 ∈ P2(R) : a = b = c }. Show that W is a subspace of P2(R).

Exercise 1.3.3

Let W = { a+ bx ∈ P1(R) : b = a2 }. Is W a subspace of P1(R)? Explain your answer.

Exercise 1.3.4

Let x and y be distinct vectors of a vector space V. Show that if β = {x, y } is a basis for

V and a and b are nonzero scalars, then both γ1 = {x+ y, ax } and γ2 = { ax, by } are also

bases for V.
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Section 1.4: Coordinates of a Vector

Definition 1.4.1

Let V be a vector space with a basis β = {x1, x2, · · · , xn }. If x ∈ V, then x = c1x1 +

c2x2 + · · ·+ cnxn is uniquely represented with scalars c1, c2, · · · , cn. We call thses scalars the

coordinates of x in the basis β , denoted by

[x]β =


c1
...

cn

 .

Consider the vector space R2 with the usual vector addition and scalar multiplication. The set

β = { e1 = (1, 0), e2 = (0, 1) } is clearly a basis for R2.

The vector x = (1,−2) ∈ R2 has its coordinates in the basis β defined as

[x]β =
 1
−2

 .
The coordinate of x in another basis for R2, say γ, is in general different from the coordinate of x in

β. This can be seen in the following example.

Example 1.4.1

Let β = { e1 = (1, 0), e2 = (0, 1) } be the natural (standard) basis for R2, and let γ = { f1, f2 },

where f1 = (1, 1) and f2 = (1, 2).

1. Show that γ is another basis for R2.

2. Find [x]β and [x]γ for x = (a, b) ∈ R2.

Solution:

(1): Note that | β | = | γ | = 2 = dim(R2). So, we only need to show that γ is linearly

independent (or γ spans R2). Consider c1f1 + c2f2 = 0 which is a homogenous system with

Av = 0, where A =
1 1

1 2

 and v =
c1

c2

. Clearly then |A | = 1 6= 0 and hence γ is linearly

independent and it is a basis for R2.

(2): Note that [x]β =
a
b

 since x = ae1 + be2.



12 Chapter 1. Vector Spaces

Now consider

(a, b) = c1f1 + c2f2 = c1(1, 1) + c2(1, 2)

= (c1 + c2, c1 + 2c2).

Therefore, a = c1 + c2 and b = c1 + 2c2. Hence c1 = 2a − b and c2 = b − a. That is,

[x]γ =

2a− b

b− a

.

To check that this is the right coordinate representation of x in γ, simply assert that

x = A [x]γ .

Getting back to the vector x = (1,−2) ∈ R2, we have its coordinates in γ = { f1 = (1, 1), f2 = (1, 2) }

as

[x]γ =
 4
−3

 .
This can be seen as

x =
 1
−2

 = A [x]γ =
1 1

1 2

  4
−3

 .
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Exercise 1.4.1

Let β = { e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) } be the natural (standard) basis for R3,

and let γ = { f1, f2, f3 }, where f1 = (1, 1, 1), f2 = (0, 1, 1) and f3 = (0, 0, 1).

1. Show that γ is another basis for R3.

2. Find [x]γ for x = (2,−1, 4) ∈ R3.
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2
Chapter

Linear Transformations and Matrices

In this chapter we consider special functions defined on vector spaces that preserve the structure.

These special functions are called linear transformations.

The preserved structure of vector space V over a field F is its addition and scalar multiplication

operations, or, simply, its linear combinations.

Note that we assume that all vector spaces in this chapter are over a common field F.

Section 2.1: Linear Transformations, Null Space, and Ranges

Definition 2.1.1

Let V and W be two vector spaces. A linear transformation T : V → W is a function

such that:

1. T(x+ y) = T(x) + T(y) for any x, y ∈ V.

2. T(c x) = cT(x) for any c ∈ F and any x ∈ V.

Note that the addition operation in x + y refers to that defined in V, while the addition in

T(x) + T(y) refers to that defined in W. Moreover, if V = W, we say that T is a linear

operator on V. We sometime simply call T linear.

Remark 2.1.1

Let T : V → W be a function for vector spaces V and W. Then for any scalar c, and any

x, y ∈ V, we have

1. If T is linear, then T(0V) = 0W : For any x ∈ V, T(0) = T(0x) = 0T(x) = 0.

2. T is linear iff T(cx+ y) = cT(x) + T(y).

3. T(x− y) = T(x)−T(y).

4. T is linear iff T
(

n∑
i=1

cixi

)
=

n∑
i=1

ciT(xi), for scalars c1, · · · , cn and x1, · · · , xn ∈ V.

To see that a linear transformation T : V → V preserves linear combination, assume that

15
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v ∈ V such that v = 3s + 5t − 2u for some vectors s, t, u ∈ V. Then, T(v) = T(3s + 5t − 2u) =

3T(s) + 5T(t)− 2T(u).

In what follows, we usually use property (2) above to prove that a given transformation is linear.

Definition 2.1.2

Let V and W be two vector spaces. We define the trivial linear transformation T0 : V →W

defined by T0(x) = 0 for all x ∈ V. Also, we define the identity linear transformation

IV : V → V defined by T(x) = x for all x ∈ V.

Example 2.1.1

Define T : Mm×n(F)→Mn×m(F) by T(A) = At. Show that T is linear.

Solution (1):

We show that T is linear by showing that T satisfies the conditions of the definition of linear

transformation.

(1): For any A,B ∈Mm×n(F), T(A+B) = (A+B)t = At +Bt = T(A) + T(B).

(2): For any c ∈ F and any A ∈Mm×n(F), T(cA) = (cA)t = cAt = cT(A).

Therefore, T is linear.

Solution (2):

We use Remark 2.1.1 to show that T is linear. For all A,B ∈Mm×n(F) and c ∈ F, we have

T(cA+B) = (cA+B)t = (cA)t +Bt = cAt +Bt = cT(A) + T(B).

Therefore, T is linear.

Example 2.1.2

Show that T : R2 → R2, defined by T(x, y) = (2x+ y, x− y) is linear.

Solution:



2.1. Linear Transformations, Null Space, and Ranges 17

We use Remark 2.1.1 to show that T is linear. Let c ∈ R and (a, b), (x, y) ∈ R2. Then

T
(
c(a, b) + (x, y)

)
= T

(
(ca+ x, cb+ y)

)
=
(
2(ca+ x) + (cb+ y), (ca+ x)− (cb+ y)

)
=
(
(2ca+ cb) + (2x+ y), (ca− cb) + (x− y)

)
= (2ca+ cb, ca− cb) + (2x+ y, x− y) = c(2a+ b, a− b) + (2x+ y, x− y)

= cT(a, b) + T(x, y).

Therefore, T is linear.

Example 2.1.3

Define T : P2(R)→ P3(R) by T
(
f(x)

)
= xf(x) + x2. Is T a linear transformation? Explain.

Solution:

For any f(x), g(x) ∈ P2(R) and any c ∈ R, we have

T
(
cf(x) + g(x)

)
= x

(
cf(x) + g(x)

)
+ x2 = c(xf(x)) + xg(x) + x2,

but

cT
(
f(x)

)
+ T

(
g(x)

)
= c(xf(x) + x2) + xg(x) + x2 = c(xf(x)) + xg(x) + (c+1) x2.

Therefore, T is not linear.

Definition 2.1.3

Let V and W be two vector spaces (over F), and let T : V →W be a linear transformation.

The null space (or kernel) of T, denoted N (T), is the set of all vectors x ∈ V such that

T(x) = 0; that is

N (T) = {x ∈ V : T(x) = 0 } ⊆ V.

The range (or image) of T, denoted R(T), is the set of all images (under T) of vectors in

V. That is

R(T) = {T(x) : x ∈ V } ⊆W.
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Example 2.1.4

Find the null space and the range of: 1 IV : V → V. 2 T0 : V → V.

Solution:

1 : N (IV) = {x ∈ V : IV(x) = 0 } = {0}.

1 : R(IV) = { IV(x) : x ∈ V } = V.

2 : N (T0) = {x ∈ V : T0(x) = 0 } = V.

2 : R(T0) = {T0(x) : x ∈ V } = {0}.

Theorem 2.1.1

Let V and W be vector spaces and T : V →W be linear. Then N (T) andR(T) are subspaces

of V and W, respectively.

Proof:

We first show that N (T) is a subspace of V:

1. T(0V) = 0W and hence 0V ∈ N (T).

2. Let x, y ∈ N (T), then T(x) = T(y) = 0W and

T(x+ y) = T(x) + T(y) = 0W + 0W = 0W ⇒ x+ y ∈ N (T).

3. Let c ∈ F and x ∈ N (T), then T(cx) = cT(x) = c0W = 0W , and hence cx ∈ N (T).

Therefore, N (T) is a subspace of V.

Next we show that R(T) is a subspace of W.

1. T(0V) = 0W and hence 0W ∈ R(T).

2. Let x, y ∈ R(T), then there exist u, v ∈ V such that T(u) = x and T(v) = y and hence

T(u+ v) = T(u) + T(v) = x+ y ⇒ x+ y ∈ R(T).

3. Let c ∈ F and x ∈ R(T), then there exists u ∈ V such that T(u) = x, and as cu ∈ V,

we have T(cu) = cT(u) = cx ∈ R(T).

Therefore, R(T) is a subspace of W.
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Remark 2.1.2

The next theorem provides a method for finding a spanning set (and therefore a basis) for

the range of T, namely for R(T).

Theorem 2.1.2

Let T : V →W be a linear transformation. If β = {x1, x2, · · · , xn } is a basis for V, then

R(T) = span(T(β)) = span({T(x1),T(x2), · · · ,T(xn) }).

Definition 2.1.4

Let T : V → W be a linear transformation. If N (T) and R(T) are finite-dimensional, then

we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be

the dimensions of N (T) and R(T), respectively.

Theorem 2.1.3

Let V and W be vector spaces, and let T : V → W be a linear transformation. If V is

finite-demensional, then

nullity(T) + rank(T) = dim(V).

Definition 2.1.5

Let T : V → W be a linear transformation. Then T is said to be one-to-one (or simply

1− 1) if for all x, y ∈ V, if T(x) = T(y), then x = y.

Moreover, T is said to be onto W if R(T) = W. That is for all y ∈W, there is x ∈ V such

that T(x) = y.

Theorem 2.1.4

Let V and W be two vector spaces, and let T : V →W be a linear transformation. Then, T

is ono-to-one iff N (T) = {0}.
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Theorem 2.1.5

Let V and W be two vector spaces of equal finite dimension, and T : V →W be a linear

transformation. Then the following statements are equivalent:

1. T is 1-1

2. T is onto.

3. N (T) = {0}.

4. rank(T) = dim(V).

5. nullity(T) = 0.

Proof:

Note that nullity(T) + rank(T) = dim(V). Then,

T is 1-1 ⇔ N (T) = {0} ⇔ nullity(T) = 0

⇔ rank(T) = dim(V) ⇔ rank(T) = dim(R(T)) = dim(W)

⇔ R(T) = W ⇔ T is onto.

Example 2.1.5

Let T : R2 → R2 be linear transformation defined by

T(x, y) = (2x− 3y, y).

Show that T is 1-1 and onto. That is, show that T is a bijection.

Solution:

We simply show that N (T) = {(0, 0)}.

N (T) =
{

(x, y) ∈ R2 : T(x, y) = (0, 0)
}

=
{

(x, y) ∈ R2 : (2x− 3y, y) = (0, 0)
}

=
{

(x, y) ∈ R2 : 2x− 3y = 0 and y = 0
}

= { (0, 0) }.

Therefore, T is 1-1 and onto.
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Example 2.1.6

Let T : R3 → R2 be the linear transformation defined by T(x, y, z) = (x, y). Find

N (T),R(T), nullity(T) and rank(T).

Solution:

First,

N (T) =
{

(x, y, z) ∈ R3 : T(x, y, z) = (x, y) = (0, 0)
}

= { (0, 0, z) : z ∈ R }.

Thus { (0, 0, 1) } is a basis for N (T) and hence nullity(T) = 1.

Next,

R(T) =
{

T(x, y, z) = (x, y) ∈ R2
}

= {x(1, 0) + y(0, 1) : x, y ∈ R } = R2.

Thus, rank(T) = 2.

Example 2.1.7

Let T : P2(R)→ P3(R) be the linear transformation defined by T (f(x)) = f ′(x) +
∫ x

0 f(t) dt.

1 Is T one-to-one? 2 Is T onto? Explain.

Solution:

1 : We show that T is 1-1 iff N (T) = {0}. Consider the basis β = { 1, x, x2 } for P2(R).

Then,

R(T) = span(
{

T(1),T(x),T(x2)
}

) = span(
{
x, 1 + x2

2 , 2x+ x3

3

}
).

Since
{
x, 1 + x2

2 , 2x+ x3

3

}
is linearly independent set (It can be shown easily), it is a basis

for R(T). Thus, rank(T) = dim(R(T)) = 3 = dim(P2(R)). Therefore, nullity(T) = 0 and

hence N (T) = {0} and then T is 1-1.

2 : rank(T) = 3 < dim(P3(R)) and hence R(T) 6= P3(R). Therefore, T is not onto.

Example 2.1.8

For each of the following linear transformations, determine N (T) and R(T); find their bases;

is T 1-1 or onto? Explain.
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1. T : R3 → R2 given by T(x, y, z) = (x− y, 2z).

2. T : R2 → R3 given by T(x, y) = (x+ y, 0, 2x− y).

3. T : R3 → R2 given by T(x, y, z) = (x+ y, x− y).

4. T : R2 → R3 given by T(x, y) = (x+ y, x− y, x).

Solution:

(1):

N (T) = { (x, y, z) : T(x, y, z) = (0, 0) }

= { (x, y, z) : x− y = 0 and 2z = 0 }

= { (x, x, 0) : x ∈ R } = {x(1, 1, 0) }.

Then, nullity(T) = 1 since { (1, 1, 0 } is a basis for N (T), and T is not 1-1.

Note that rank(T) = 3 − nullity(T) = 2. Thus, rank(T) = 2 and hence R(T) = R2.

Therefore, { (1, 0), (0, 1) } is a basis for R(T) and T is onto. We note that we can compute

R(T) by considering

R(T) = span({T(1, 0, 0),T(0, 1, 0),T(0, 0, 1) }).

Parts (2), (3), and (4) are left as exercises.

Definition 2.1.6

A linear transformation is called an isomorphism of vector spaces if it is a bijection.

Theorem 2.1.6

Let V and W be two finite dimensional vector spaces on the same field. Then there exists an

isomorphism of vector spaces T : V →W if and only if dim(V) = dim(W).
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Exercise 2.1.1

Show that T : R4 → R2 defined by T(x, y, z, w) = (x, y) is linear.

Exercise 2.1.2

Show that T : R2 → R2 defined by T(x, y) = (x+ y, 3x) is linear.

Exercise 2.1.3

Let C(R) denote the set of all real valued continuous functions on R. Define T : C(R)→ R

by T
(
f(x)

)
=
∫ b

a
f(x) dx for all a, b ∈ R with a < b. Show that T is linear.

Exercise 2.1.4

Let T : R2 → R2 be the linear transformation defined by T(x, y) = (2x + y, x − y). Find

N (T),R(T), nullity(T) and rank(T).

Exercise 2.1.5

Let T : R2 → R2 be the linear transformation defined by T(x, y) = (x+ y, x− y). Show that

T is a bijection (one-to-one and onto). Find N (T),R(T), nullity(T) and rank(T).

Exercise 2.1.6

Let T : R3 → R2 be the linear transformation defined by T(x, y, z) = (x− y, 3z).

1. Find N (T) and R(T).

2. Find bases for N (T) and R(T).

3. Is T one-to-one or onto? Explain.
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Section 2.2: The Matrix Representation of Linear Transformation

In this section, we consider the representation of a linear transformation by a matrix. That is, we

develope a one-to-one correspondence between matrices and linear transformations that allows us to

utilize properties of one to study properties of the other.

Definition 2.2.1

Let V be a finite-dimensional vector space. An ordered basis for V is a finite sequence of

linearly independent vectors in V that generates V.

Remark 2.2.1

Note that β1 = { e1, e2, e3 } can be considered as ordered basis for R3, while β2 = { e2, e1, e3 }

is also an ordered basis for R3, but β1 6= β2 as ordered bases.

In particular, { e1, · · · , en } is the standard ordered basis for Rn. Also, { 1, x, x2, · · · , xn }

is the standard ordered basis for Pn(R).

Definition 2.2.2

Let β = {x1, · · · , xn } be an ordered basis for a finite-dimensional vector space V. For x ∈ V,

let c1, · · · , cn ∈ F be the unique scalars such that x = c1x1 + c2x2 + · · ·+ cnxn. We define the

coordinate vector of x relative to β, denoted [x]β, by

[x]β =


c1
...

cn

 .

Example 2.2.1

Consider the vector space P3(R) and the standard ordered basis β = { 1, x, x2, x3 }. Find the

coordinate vector of f(x) = −9x2 + 7x+ 3 relative to β.

Solution:

Clearly f(x) = −9x2 + 7x+ 3 = 3 + 7x− 9x2 = 3 · 1 + 7 · x+ (−9) · x2 + 0 · x3, and hence

[f(x)]β = (3, 7,−9, 0) = [3 7 − 9 0]t.
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Definition 2.2.3

Let V and W be two finite-dimensional vector spaces with ordered bases β = {x1, x2, · · · , xn }

and γ = { y1, y2, · · · , ym }, respectively, and let T : V → W be a linear transformation. For

each j, 1 ≤ j ≤ n, we have T(xj) ∈ W and there exist unique scalars cij ∈ F, 1 ≤ i ≤ m,

such that

T(xj) =
m∑
i=1

cij yi.

Then the m× n matrix A = (cij) is called the matrix representation of T in the ordered

bases β and γ and is written A = [T]γβ. If V = W and β = γ, then we write simply A = [T]β.

Note that the jth column of A = [T]γβ then is simply [T(xj)]γ. That is,

A =
[
[T(x1)]γ [T(x2)]γ · · · [T(xn)]γ

]
.

Remark 2.2.2

Following Definition 2.2.3, the following statements hold:

1. If U : V →W is a linear transformation such that [U]γβ = [T]γβ, then U = T.

2. If x ∈ V, then [T(x)]γ = A [x]β, where [x]β and [T(x)]γ are the coordinate vectors of x

and T(x), respectively, with respect to the respective bases β and γ.

3. If x ∈ V, then T (x) =
m∑
i=1

(
[T(x)]γ

)
i
yi =

m∑
i=1

ci yi.

Remark 2.2.3

? Finding [T]γβ:

Let T : V → W be linear transformation from n-dimensional vector space V into m-

dimensional vector space W, and let β = {x1, · · · , xn } and γ = { y1, · · · , ym } be bases

for V and W, respectively. Then we compute the matrix representation of T as follows:

1. Compute T(xj) for j = 1, 2, · · · , n.

2. Find the coordinate vector [T(xj)]γ for T(xj) with respect to γ. That is, express T(xj)

as a linear combination of vectors in γ.

3. Form the matrix representation A of T with respect to β and γ by choosing [T(xj)]γ as

the jth column of A.
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Example 2.2.2

Let T : R3 → R2 be a linear defined by T(x, y, z) = (x+y, y−z). Find a matrix representation

A for T. Use A to evaluate T(u), where u = (1, 2, 3).

Solution:

We use the method described in Remark 2.2.3 and consider β = { (1, 0, 0), (0, 1, 0), (0, 0, 1) }

and γ = { (1, 0), (0, 1) } as standard ordered bases for R3 and R2, respectively. Then

T(1, 0, 0) = (1, 0) = 1 · (1, 0) + 0 · (0, 1) ⇒ [T(1, 0, 0)]γ = (1, 0)

T(0, 1, 0) = (1, 1) = 1 · (1, 0) + 1 · (0, 1) ⇒ [T(0, 1, 0)]γ = (1, 1)

T(0, 0, 1) = (0,−1) = 0 · (1, 0) + (−1) · (0, 1) ⇒ [T(0, 0, 1)]γ = (0,−1).

Therefore, A = [T]γβ =
1 1 0

0 1 −1

.

Note that (1, 2, 3) = (1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1), and that T(Ei) = columni(A), for i =

1, 2, 3. Hence, we can compute T(1, 2, 3) as follows:

T(1, 2, 3) = T(E1) + 2T(E2) + 3T(E3) = (3,−1).

On the other hand, we simply can use Remark 2.2.2 as follows:

[T(1, 2, 3)]γ = A


1

2

3

 =
1 1 0

0 1 −1




1

2

3

 =

 3

−1

 .

Therefore, T(1, 2, 3) = (3,−1).

Definition 2.2.4

Let T,U : V → W be arbitrary functions where V and W are vector spaces over F, and let

a ∈ F. We define the usual addition of functions T + U : V →W by

(T + U)(x) = T(x) + U(x) for all x ∈ V,

and aT : V →W by

(aT)(x) = aT(x) for all x ∈ V.



2.2. The Matrix Representation of Linear Transformation 27

Theorem 2.2.1

Let V and W be two vector spaces over F, and let T,U : V →W be linear transformations.

Then

1. For all a ∈ F, (aT + U) is linear transformation.

2. The collection of all linear transformations from V to W is a vector space over F.

Definition 2.2.5

Let V and W be two vector spaces over F. We denote the vector space of all linear transfor-

mations from V into W by L (V,W). If V = W, we simply write L (V).

Theorem 2.2.2

Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively,

and let T,U : V →W be linear transformations. Then

1. [T + U]γβ = [T]γβ + [U]γβ, and

2. [aT]γβ = a [T]γβ for all scalars a.

Example 2.2.3

Let T : R2 → R3 and U : R2 → R3 be the linear transformations respectively defined by

T(x, y) = (x+ 3y, 0, 2x− 4y) and U(x, y) = (x− y, 2x, 3x+ 2y).

Let β and γ be the standard ordered bases of R2 and R3, respectively. Find the matrix

representation of T + U; that is, [T + U]γβ.

Solution:

Note that β and γ are the standard ordered bases for R2 and R3, respectively. Then,

T(1, 0) = (1, 0, 2) = 1 · e1 + 0 · e2 + 2e3 ⇒ [T(1, 0)]γ = (1, 0, 2)

T(0, 1) = (3, 0,−4) = 3 · e1 + 0e2 + (−4)e3 ⇒ [T(0, 1)]γ = (3, 0,−4).
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That is,

[T]γβ =


1 3
0 0
2 −4

 ,
and

U(1, 0) = (1, 2, 3) = 1 · e1 + 2 · e2 + 3e3 ⇒ [U(1, 0)]γ = (1, 2, 3)

U(0, 1) = (−1, 0, 2) = (−1) · e1 + 0e2 + 2e3 ⇒ [U(0, 1)]γ = (−1, 0, 2).

That is,

[U]γβ =


1 −1
2 0
3 2

 .
If we compute T + U using their definitions, we get

T + U = (2x+ 2y, 2x, 5x− 2y).

Thus,

[T + U]γβ =


2 2
2 0
5 −2

 ,
which is simply [T]γβ + [U]γβ.
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Exercise 2.2.1

Let T : R2 → R3 be a linear defined by T(x, y) = (2x − 3y,−x, x + 4y). Find a matrix

representation A for T. Use A to evaluate T(u), where u = (2, 4).

Exercise 2.2.2

Let T : P3(R) → P2(R) be the linear defined by T (f(x)) = f ′(x). Let β and γ be the

standard ordered bases for P3(R) and P2(R), respectively. Find the matrix representation A

for T with respect to β and γ. Use A to evaluate T(f(x)), where f(x) = 3x2 + 1.

Exercise 2.2.3

Let A =
1 −1 2

4 1 3

. Assume that T : P2(R) → P1(R) is the linear tranformation defined

by A using the standard ordered bases β and γ for P2(R) and P1(R), respectively. Evaluate

T (g(x)), where g(x) = 2x2 − 3x+ 1.

Exercise 2.2.4

Let T : P1(R) → P2(R) be a linear defined by T (f(x)) = x f(x). 1 : Find the matrix

representation A for T. 2 : If f(x) = 3x − 2 ∈ P1(R), compute [T (f(x))]γ, where γ is the

standard ordered basis in P2(R). 3 : Evaluate T(f(x)) using A.

Exercise 2.2.5

Let

α =


 1 0

0 0

 ,
 0 1

0 0

 ,
 0 0

1 0

 ,
 0 0

0 1


, β =

{
1, x, x2

}
, and γ = { 1 }.

1. Define T : P2(R)→M2×2(R) by T(f(x)) =

 f ′(0) 2f(1)

0 f ′′(3)

. Compute [T]αβ .

2. Define T : P2(R)→ R by T(f(x)) = f(2). Compute [T]γβ.
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Exercise 2.2.6

Let T : R2 → R3 be a linear defined by T(x, y) = (x + 3y, 0, 2x− 4y). Find [T (f(x))]γβ and

[T (f(x))]γ
′

β , where β, γ and γ′ are { e1, e2 }, { e1, e2, e3 } and { e3, e2, e1 }, respectively.

Exercise 2.2.7

Let β = {x4, x3, x2, x, 1 } be an ordered basis for P4(R) and let γ be the standard ordered

basis for R3. Define T : P4(R) → R3 by T (f(x)) = (f(1)− f(0), f ′(0), f ′′(1)), and let

U : P4(R)→ R3 be a linear transformation having the matrix representation

[U]γβ =


1 0 1 0 1
0 1 −1 1 2
1 −1 1 1 1

 .
1. Find U(x4 − x2 + 1).

2. Find the matrix representation of T + U; that is, [T + U]γβ.

3. Find the rank and the nullity of U. Exercise!!

Exercise 2.2.8

Let T : P2(R)→ R3 be a linear transformation satisfying:

T(1) = (1, 1, 1), T(1 + x) = (1, 2, 1), and T(1 + x+ x2) = (1, 0, 1).

1. Find a matrix representation of T relative to the standard ordered bases for P2(R) and

R3. Evaluate T (g(x)), where g(x) = x2 − 3x+ 1.

2. Find bases for R(T) and N (T).
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Section 2.3: Compositions and Isomorphisms of Linear Transformations

In this section, we consider invertible linear transformations. We furthermore consider isomorphism

linear tranformations.

Definition 2.3.1

A linear transformation is called an isomorphism of vector spaces if it is a bijection.

Example 2.3.1

Let T : R3 → R3 be the linear transformation defined by

T(x, y, z) = (x+ y + z, x+ y, x).

Find [T]β, where β is the standard ordered basis of R3, and show that T is an isomorphism.

Solution:

Clearly

T(1, 0, 0) = (1, 1, 1) ⇒ [T(1, 0, 0)]β = (1, 1, 1)

T(0, 1, 0) = (1, 1, 0) ⇒ [T(0, 1, 0)]β = (1, 1, 0)

T(0, 0, 1) = (1, 0, 0) ⇒ [T(0, 0, 1)]β = (1, 0, 0).

Therefore, A = [T]β =


1 1 1
1 1 0
1 0 0

. Note that A is nonsingular with |A | = −1 6= 0.

Now to prove that T is an isomorphism, we need to show that it is a bijection.

N (T) =
{

(x, y, z) ∈ R3 : T(x, y, z) = (0, 0, 0)
}

=
{

(x, y, z) ∈ R3 : (x+ y + z, x+ y, x) = (0, 0, 0)
}

= { (0, 0, 0) }.

That is T is a one-to-one and hence it is onto as well. Therefore, T is a bijection and thus it

is an isomorphism.

We now prove that the composite of linear transformations is linear. Note that, we write TU

instead of T ◦U.
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Theorem 2.3.1

Let V, W and Z be vector spaces over the same field F. Let T : V → W, U : W → Z be

linear. Then UT : V → Z is linear.

Proof:

Let x, y ∈ V and a ∈ F. Then

UT(ax+ y) = U(T(ax+ y)) = U(aT(x) + T(y))

= aU(T(x)) + U(T(y)) = a(UT)(x) + UT(y).

Theorem 2.3.2

Let V be a vector space. Let T,U1,U2 ∈ L (V). Then,

1. T(U1 + U2) = TU1 + TU2 and (U1 + U2)T = U1T + U2T.

2. T(U1U2) = (TU1)U2.

3. TIV = IVT = T.

4. a(U1U2) = (aU1)U2 = U1(aU2) for all scalars a.

Theorem 2.3.3

Let V, W and Z be finite-dimensional vector spaces with ordered bases α, β and γ, respec-

tively. Let T : V →W, U : W → Z be linear transformations. Then

[UT]γα = [U]γβ [T]βα .

Moreover, for each x ∈ V, we have

[T(x)]β = [T]βα [x]α .

We now illustrate Theorem 2.3.2 in the next example.

Example 2.3.2

Let T : R2 → R3 and U : R3 → R2 be the linear transformations respectively defined by

T(x, y) = (x+ y, x− y, x) and U(x, y, z) = (z, x− z).
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Find a matrix representation for UT, denoted by [UT ]γβ, where β and γ are the standard

bases of R2 and R3, respectively.

Moreover, use Theorem 2.3.3 to find [T(2, 3)]γ.

Solution:

Note that UT : R2 → R2 and

UT(x, y) = U(x+ y, x− y, x) = (x, (x+ y)− x) = (x, y).

That is, [UT]β = [IR2 ]β = I2.

On the other hand, we can compute

[U]βγ =
0 0 1

1 0 −1

 and [T]γβ =


1 1
1 −1
1 0

 ,
to get

[UT]β = [U]βγ [T]γβ = I2.

Moreover,

[T(2, 3)]γ = [T]γβ [(2, 3)]γ = (5,−1, 2).

Definition 2.3.2

A matrix A ∈ Mn×n(R) is called invertible if there exists B ∈ Mn×n(R) such that AB =

BA = In.

In this case, we say that B is the inverse of A and we write B = A−1.

Definition 2.3.3

Let V and W be vector spaces, and let T : V →W be linear. A function U : W → V is said

to be an inverse of T if TU = IW and UT = IV .

In that case, we say that T is invertible and its unique inverse U is denoted by T−1.
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Remark 2.3.1

For any functions T and U, the following facts hold.

1. ( TU )−1 = U−1T−1.

2. ( T−1 )−1 = T; in particular, T−1 is invertible.

3. A function f is invertible if and only if it is a bijection. In particular, if T : V → W

is linear, then T is invertible if and only if T is a bijection (that is, if and only if

rank(T) = dim(V)).

Theorem 2.3.4

Let β and γ be two ordered bases for the two vector spaces V and W of the same dimension,

respectively. Let T : V →W be a linear transformation. Then

1. T is invertible (a bijection) if and only if [T]γβ is invertible.

2. If T is invertible, then T−1 : W → V is linear.

3. If T is invertible, then [T−1]βγ =
(

[T]γβ
)−1

.

Example 2.3.3

Let T : R2 → R2 be the linear transformation defined by

T(x, y) = (x+ 2y, y).

Show that T is invertible, find [T−1]β, where β is the standard ordered basis of R2 and use it

to find T−1(x, y) for any (x, y) ∈ R2.

Moreover, find [T(x, y)]β and [T−1(x, y)]β.

Solution:

Clearly,

T(e1) = T(1, 0) = (1, 0) = e1 and T(e2) = T(0, 1) = (2, 1) = 2e1 + e2.

That is,

[T]β =
1 2

0 1

 ,
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which is invertible as
∣∣∣ [T]β

∣∣∣ = 1 6= 0. Moreover,

[
T−1

]
β

=
(

[T]β
)−1

=
1 −2

0 1

 ,
and hence

T−1(e1) = T−1(1, 0) = (1, 0) = e1 and T−1(e2) = T−1(0, 1) = (−2, 1) = −2e1 + e2.

Thus, for any (x, y) ∈ R2, we have

T−1(x, y) = T−1(x(1, 0) + y(0, 1))

= xT−1(1, 0) + yT−1(0, 1)

= x(1, 0) + y(−2, 1) = (x− 2y, y).

Finally,

[T(x, y)]β = [T]ββ [(x, y)]β =
1 2

0 1

x
y

 =
x+ 2y

y

 ,
and [

T−1(x, y)
]
β

=
[
T−1

]β
β

[(x, y)]β =
1 −2

0 1

x
y

 =
x− 2y

y

 .

Example 2.3.4

Let T : P1(R)→ R2 be the linear transformation defined by

T(a+ bx) = (a, a+ b).

Show that T is invertible and determine T−1.

Solution:

Consider β and γ as the standard ordered bases for R2 and P1(R), respectively. Clearly,

T(1) = (1, 1) and T(x) = (0, 1) which implies

[T]βγ =
1 0

1 1

 .
Note that [T]βγ is invertible since

∣∣∣ [T]βγ
∣∣∣ = 1 6= 0. Thus,

[
T−1

]γ
β

=
(

[T]βγ
)−1

=
 1 0
−1 1

 .
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That is [
T−1(a, b)

]
γ

=
[
T−1

]γ
β

[(a, b)]β =
 1 0
−1 1

a
b

 =
 a

−a+ b

 .
Therefore,

T−1(a, b) = a · 1 + (−a+ b) · x = a+ (b− a)x.

Definition 2.3.4

Let A ∈ Mm×n(F). We define the mapping LA : Fn → Fm by LA(x) = Ax for every column

vector x ∈ Fn. We call LA, the left multiplication transformation.

Example 2.3.5

Let A =
2 −1 3

0 1 2

 and LA : R3 → R2. Find LA(x) where x =


1
−1
2

.

Solution:

LA(x) = Ax =
2 −1 3

0 1 2




1
−1
2

 =
9

3

 ∈ R2.

Remark 2.3.2

Let A,B ∈Mm×n(F) and let c ∈ F. Then

1. LA is a linear transformation.

2. [LA]γβ = A, where β and γ are the standard ordered bases for Fn and Fm, respectively.

3. LA = LB if and only if A = B.

4. LA+B = LA + LB and LcA = cLA.

5. If C ∈Mn×p(F), then LAC = LALC .

6. If A ∈ Mm×n(F), then A is invertible if and only if LA is invertible. Furthermore,

( LA )−1 = LA−1 .
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Exercise 2.3.1

Let T : R2 → R3 and U : R3 → R2 be the linear transformations respectively defined by

T(x, y) = (x+ y, x− y, x) and U(x, y, z) = (x+ y − z, x− z).

Find a matrix representation for UT.

Exercise 2.3.2

Let g(x) = 3 + x. Let T : P2(R)→ P2(R) and U : P2(R)→ R3 be the linear transformations

respectively defined by

T(f(x)) = f ′(x) g(x) + 2f(x) and U(a+ bx+ cx2) = (a+ b, c, a− b).

Let β = { 1, x, x2 } and γ = { (1, 0, 0), (0, 1, 0), (0, 0, 1) } be the standard bases for P2(R) and

R3, respectively.

1. Compute [U]γβ, [T]β, and [UT]γβ directly. Then use Theorem 2.3.3 to verify your result.

2. Let h(x) = 3− 2x+ x2. Compute [h(x)]β and [U(h(x))]γ. Then use [U]γβ from part (1)

and Theorem 2.3.3 to verify your result.

Exercise 2.3.3

Let T be the linear transformation defined in the corresponding part of Exercise 2.2.5 of

Section 2.2. Use Theorem 2.3.3 to compute the following vectors:

1. [T(f(x))]α, where f(x) = 4− 6x+ 3x2.

2. [T(f(x))]γ, where f(x) = 6− x+ 2x2.

Exercise 2.3.4

Let T : R2 → R2 be the linear transformation defined by

T(x, y) = (2x+ y, 5x+ 3y).

Show that T is invertible and determine T−1.
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Exercise 2.3.5

Let T : R3 → R3 be the linear transformation defined by

T(a, b, c) = (3a− 2c, b, 3a+ 4b).

Show that T is invertible and determine T−1.
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Section 2.5: The Change of Coordinate Matrix

Definition 2.5.1

Let β and γ be ordered bases for a finite-dimensional vector space V, and let Q = [IV]βγ ,

where IV : V → V is the identity linear transformation. Then Q is called the change of

coordinate matrix (it changes γ-coordinate into β-coordinate). Moreover, Q is invertible

and Q−1 changes β-coordinate into γ-coordinate.

Theorem 2.5.1

Let T be a linear operator on a finite-dimensional vector space V. Let β and γ be two ordered

bases for V, and let Q be the change of coordinate matrix that changes γ-coordinates into

β-coordinates. Then

1. For any x ∈ V, [x]β = Q [x]γ, and

2. [T]γ = Q−1 [T]β Q.

Example 2.5.1

Let β = { (1, 0), (0, 1) } and γ = { (1,−1), (2, 1) } be two ordered bases for R2, and let

T : R2 → R2 be defined by T(a, b) = (a+ b, a− 2b). Find the change of coordinate matrix Q,

that changes γ-coordinates into β-coordinates, and use it to find [T]γ. Find [(5, 1)]β using Q.

Solution:

Note that

IR2(1,−1) = (1,−1) = 1 · (1, 0) + (−1) · (0, 1) & IR2(2, 1) = (2, 1) = 2 · (1, 0) + 1 · (0, 1).

Thus, the matrix that changes γ-coordinates into β-coordinates is

Q =
 1 2
−1 1

 ⇒ Q−1 = 1
3

1 −2
1 1

 .
To find [T]γ, we use [T]γ = Q−1 [T]β Q and

T(1, 0) = (1, 1) = 1 · (1, 0) + 1 · (0, 1)

T(0, 1) = (1,−2) = 1 · (1, 0) + (−2) · (0, 1)

 ⇒ [T]β =
1 1

1 −2

 .
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Thus, [T]γ = Q−1 [T]β Q =
−2 1

1 1

.

? Confirmation:

T(1,−1) = (0, 3) = −2 · (1,−1) + 1 · (2, 1), and

T(2, 1) = (3, 0) = 1 · (1,−1) + 1 · (2, 1).

Finally, note that [(5, 1)]β = Q [(5, 1)]γ, where [(5, 1)]γ = (1, 2) since (5, 1) = 1 · (1,−1) + 2 ·

(2, 1). Therefore, [(5, 1)]β =
 1 2
−1 1

1
2

 =
5

1

 which is true since (5, 1) = 5 · (1, 0) + 1 ·

(0, 1).

Example 2.5.2

Let β = { (1, 1), (1,−1) } and γ = { (2, 4), (3, 1) } be bases for R2. a What is the matrix Q

that changes γ-coordinates into β-coordinates, and use it to find [(1, 7)]β and [(1, 7)]γ. b If

T : R2 → R2 is the linear operator on R2 defined by T(a, b) = (3a− b, a+ 3b), find [T]γ.

Solution:

a : We first consider:

IR2(2, 4) = (2, 4) = c1(1, 1) + c2(1,−1) = 3(1, 1) + (−1)(1,−1), and

IR2(3, 1) = (3, 1) = c1(1, 1) + c2(1,−1) = 2(1, 1) + 1(1,−1).

Thus, the matrix that changes γ-coordinates into β-coordinates is

Q =
 3 2
−1 1

 ⇒ Q−1 = 1
5

1 −2
1 3

 .
To compute [(1, 7)]β, consider (1, 7) = 2(2, 4) + (−1)(3, 1); hence [(1, 7)]γ =

 2
−1

. Therefore,

[(1, 7)]β = Q [(1, 7)]γ =
 3 2
−1 1

 2
−1

 =
 4
−3

 ,
which is true since (1, 7) = 4(1, 1) + (−3)(1,−1).

To compute [(1, 7)]γ, consider (1, 7) = 4(1, 1)+(−3)(1,−1); hence [(1, 7)]β =
 4
−3

. Therefore,

[(1, 7)]γ = Q−1 [(1, 7)]β = 1
5

1 −2
1 3

 4
−3

 =
 2
−1

 ,
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which is true since (1, 7) = 2(2, 4) + (−1)(3, 1).

b : Note that

T(1, 1) = (2, 4) = 3 · (1, 1) + (−1) · (1,−1),

T(1,−1) = (4,−2) = 1 · (1, 1) + 3 · (1,−1).

Thus [T]β =
 3 1
−1 3

 and hence

[T]γ = Q−1 [T]β Q = · · · =
 4 1
−2 2

 .
Which can be seen if we consider

T(2, 4) = (2, 14) = 4 · (2, 4) + -2 · (3, 1) ⇒ [T(2, 4)]γ = (4,−2). ”1st column of [T]γ ”

T(3, 1) = (8, 6) = 1 · (2, 4) + 2 · (3, 1) ⇒ [T(3, 1)]γ = (1, 2). ”2nd column of [T]γ ”

Example 2.5.3

Let T be the linear operator on R3 defined by

T(a, b, c) = (2a+ b, a+ b+ 3c,−b),

and let β = { (1, 0, 0), (0, 1, 0), (0, 0, 1) } and γ = { (−1, 0, 0), (2, 1, 0), (1, 1, 1) } be bases for

R3. Find [T]β, [T]γ, and the matrix Q that changes the γ-coordinates into β-coordinates.

Solution:

Clearly,

IR3(−1, 0, 0) = (−1, 0, 0) = −1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)

IR3(2, 1, 0) = (2, 1, 0) = 2(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

IR3(1, 1, 1) = (1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1).

Hence

Q =


−1 2 1
0 1 1
0 0 1

 ⇒ Q−1 =


−1 2 −1
0 1 −1
0 0 1

 .
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Computing [T]β:

T(1, 0, 0) = (2, 1, 0) = 2(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

T(0, 1, 0) = (1, 1,−1) = 1(1, 0, 0) + 1(0, 1, 0) + (−1)(0, 0, 1)

T(0, 0, 1) = (0, 3, 0) = 0(1, 0, 0) + 3(0, 1, 0) + 0(0, 0, 1).

Thus [T]β =


2 1 0
1 1 3
0 −1 0

, and hence [T]γ = Q−1 [T]β Q =


0 2 8
−1 4 6
0 −1 −1

.

Confirming:

T(−1, 0, 0) = (−2,−1, 0) = 0(−1, 0, 0) + (−1)(2, 1, 0) + 0(1, 1, 1)

T(2, 1, 0) = (5, 3,−1) = 2(−1, 0, 0) + 4(2, 1, 0) + (−1)(1, 1, 1)

T(1, 1, 1) = (3, 5,−1) = 8(−1, 0, 0) + 6(2, 1, 0) + (−1)(1, 1, 1).

Definition 2.5.2

Let A and B be matrices in Mn×n(F). We say that B is similar to A if there exits a

non-singular matrix P such that B = P−1AP . In that case, we write B ≡ A.

Remark 2.5.1

Note that if T is a linear operator on a finite-dimensional vector space V, and if β and γ are

any ordered bases for V, then [T]γ is similar to [T]β.

Theorem 2.5.2

Let A,B,C ∈Mn×n(F). Then

1. A ≡ A.

2. If B ≡ A, then A ≡ B.

3. If A ≡ B and B ≡ C, then A ≡ C.

4. If A ≡ B, then |A | = |B |.
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Exercise 2.5.1

Let β = { (−4, 3), (2,−1) } and γ = { (2, 1), (−4, 1) } be two ordered bases for R2. Find the

change of coordinate matrix Q, that changes γ-coordinates into β-coordinates.

Exercise 2.5.2

Let β = { (1, 0), (0, 1) } and γ = { (1, 1), (1, 2) } be two ordered bases for R2, and let T : R2 →

R2 be defined by T(a, b) = (2a + b, a − 3b). Find the change of coordinate matrix Q, that

changes γ-coordinates into β-coordinates, and use it to find [T]γ. Find [(5, 1)]γ using Q.



44 Chapter 2. Linear Transformations and Matrices



3
Chapter

Elementary Matrices and Determinants

Section 3.1: Elementary Matrices

Definition 3.1.1

Let A be an m× n matrix. Any one of the following three operations on the rows (columns)

of A is called an elementary row (column) operation:

1. interchanging any two rows (columns) of A,

2. multiplying any row (column) of A by a nonzero scalar,

3. adding any scalar multiple of a row (column) of A to another row (column).

Any of these three operations is called elementary operation. These operations are called of

type 1, type 2, or type 3 depending on whether they are obtained by 1, 2, or 3.

Definition 3.1.2 Elementary Matrix

An n× n elementary matrix is a matrix obtained by performing an elementary operation

on In. The elementary matrix is said to be of type 1, 2, or 3 according to whether the

elementary operation performed on In is a type 1, 2, or 3 oeration, respectively.

Now we give an important result that uses elementary matrices. Elementary matrices of the three

types are explained afterward.

Theorem 3.1.1 Elementary Matrices

Every invertible matrix is a product of elementary matrices.

45
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• Elementary Matrices (Type 1)

Consider the following product of a 3 × 3 matrix A with an elementary matrix (of type 1) T1,2

obtained by changing the first and second rows (columns) of I3:

T1,2 A =


0 1 0

1 0 0

0 0 1




a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


a21 a22 a23

a11 a12 a13

a31 a32 a33

 .

Note that r1 ↔ r2. Moreover the following product produces c1 ↔ c2

AT1,2 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




0 1 0

1 0 0

0 0 1

 =


a12 a11 a13

a22 a21 a23

a32 a31 a33

 .

That is, if

Ti,j =



1
. . .

0 1
. . .

1 0
. . .

1


,

then

• Ti,j A is the matrix obtained from A by interchanging rows i and j.

• ATi,j is the matrix obtained from A by interchanging columns i and j.

Note that T 2
i,j = Ti,j Ti,j = I which implies that the Ti,j is invertible and its inverse is Ti,j. That is,

T−1
i,j = Ti,j.

Moreover, det(Ti,j ) = −1 = −det( In ). Hence

det(Ti,j A ) = det(ATi,j ) = −det(A ).
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• Elementary Matrices (Type 2)

Now we consider elementary matrices of type 2, denoted by Di(m), obtained by multiplying row i

(column i) of In by a nonzero scalar m. That is,

Di(m) =



1
. . .

1
m

1
. . .

1


.

It follows that

• Di(m)A is the matrix obtained from A by multiplying row i by m.

• ADi(m) is the matrix obtained from A by multiplying column i by m.

Note that det(Di(m) ) = m 6= 0 and hence Di(m) is invertible. Moreover,

D−1
i (m) = Di

( 1
m

)
since Di(m)Di

( 1
m

)
= In.

Also,

det(Di(m)A ) = det(ADi(m) ) = mdet(A ).
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• Elementary Matrices (Type 3)

Here we consider elementary matrices of type 3, denoted by Li,j(m), obtained by adding row j

(column i) multiplied by a scalar m to row i (column j) of In. That is,

Li,j(m) =



1
. . .

1
. . .

m 1
. . .

1


.

It follows that

• Li,j(m)A is the matrix obtained from A by adding m times row j to row i.

• ALi,j(m) is the matrix obtained from A by adding m times column i to column j.

Note that det(Li,j(m) ) = 1 6= 0 and hence Li,j(m) is invertible. Moreover,

L−1
i,j (m) = Li,j(−m ) since Li,j(m)Li,j(−m ) = In.

Also,

det(Li,j(m)A ) = det(ALi,j(m) ) = det(A ).
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Exercise 3.1.1

Let

E1 =


1 0 0
0 1 0
−4 0 1

 , E2 =


0 1 0
1 0 0
0 0 1

 , and E1 =


1 0 0
0 1 0
0 0 5

 .

For A =


a b c

d e f

g h i

, compute EiA for i = 1, 2, 3, and conclude the effect of Ei on A in the

product for i = 1, 2, 3.
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Section 3.2: Determinants

We first start with the following facts about determinants of elementary matrices.

1. If E is an elementary matrix of type 1, then det(E ) = −1.

2. If E is an elementary matrix of type 2 (by multiplying a row (a column) by a nonzero scalar

m), then det(E ) = m.

3. If E is an elementary matrix of type 3, then det(E ) = 1.

The rest of this section recalls some important facts about properties of determinants.

Theorem 3.2.1

Let A,B ∈Mn×n(F). Then

1. det(AB ) = det(A ) · det(B ).

2. A is invertible if and only if det(A ) 6= 0. Furthermore, if A is invertible, then

det
(
A−1

)
= 1

det(A ) .

3. det(At ) = det(A ).

4. If A has rank less than n, then det(A ) = 0.

5. If A has a row (or a column) consisting entirely of zeros, then det(A ) = 0.

6. If A has two identical rows (or columns), then det(A ) = 0.

7. det( cA ) = cn det(A ).

Theorem 3.2.2 Cofactors

Let A ∈Mn×n(F), where n > 2. Then

det(A ) =
n∑
j=1

(−1)i+jAij · det
(
Ãij

)
,

(if the determinant is evaluated by the entries of row i of A) or

det(A ) =
n∑
i=1

(−1)i+jAij · det
(
Ãij

)
,

(if the determinant is evaluated by the entries of column j of A), where Aij is the cofactor of

the row i and column j; and Ãij is the (n− 1)× (n− 1) matrix obtained from A by deleting

row i and column j.
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A matrix A ∈Mn×n(F) of the form

A =



1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

... ... ...

xn−1
1 xn−1

2 · · · xn−1
n


,

is called Vandermonde matrix and has its determinant

det(A ) =
n∏

1≤i<j≤n
(xj − xi)

Example 3.2.1

Compute det(A ), where A =



2 3 4 5

3 4 5 2

4 5 2 3

5 2 3 4


.

Solution:

∣∣∣∣A∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 5

3 4 5 2

4 5 2 3

5 2 3 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c1+c2→c1;c1+c3→c1−−−−−−−−−−−−→

c1+c4→c1
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

14 3 4 5

14 4 5 2

14 5 2 3

14 2 3 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 5

1 4 5 2

1 5 2 3

1 2 3 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−r1+r2→r2;−r1+r3→r3−−−−−−−−−−−−−−→
−r1+r4→r4

14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 4 5

0 1 1 −3

0 2 −2 −1

0 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 14

∣∣∣∣∣∣∣∣∣∣∣
1 1 −3

2 −2 −1

−1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣

r1+r3→r3−−−−−−→

∣∣∣∣∣∣∣∣∣∣∣
1 1 −3

2 −2 −1

0 0 -4

∣∣∣∣∣∣∣∣∣∣∣
= (14)(−4)

∣∣∣∣∣∣∣
1 1

2 −2

∣∣∣∣∣∣∣ = (14)(−4)(−4) = 224.
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Exercise 3.2.1

Verify that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 2 −1

−3 4 1 −1

2 −5 −3 8

−2 6 −4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 154.

Exercise 3.2.2

Verify that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 1 3

1 0 −2 2

3 −1 0 1

−1 1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −3.
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Diagonalization

Section 5.1: Eigenvalues and Eigenvectors

Definition 5.1.1

Let A ∈ Mm×n(F). We define the mapping LA : Fn → Fm by LA(x) = Ax for every column

vector x ∈ Fn. We call LA, the left multiplication transformation .

Example 5.1.1

Let A =
2 −1 3

0 1 2

 and LA : R3 → R2. Find LA(x) where x =


1
−1
2

.

Solution:

LA(x) = Ax =
2 −1 3

0 1 2




1
−1
2

 =
9

3

 ∈ R2.

Remark 5.1.1

Let A,B ∈Mm×n(F) and let c ∈ F. Then

1. LA is a linear transformation.

2. [LA]γβ = A, where β and γ are the standard ordered bases for Fn and Fm, respectively.

3. LA = LB if and only if A = B.

4. LA+B = LA + LB and LcA = cLA.

Definition 5.1.2

A linear operator T on a finite-dimensional vector space V is called diagonalizable if there

is an ordered basis β for V such that [T]β is a diagonal matrix. A square matrix A is called

diagonalizable if LA is diagonalizable.
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Definition 5.1.3

Let T be a linear operator on a vector space V. A nonzero vector x ∈ V is called eigenvector

(or e-vector for short) of T if there exists a scalar λ such that T(x) = λ x. The scalar λ is

then called eigenvalue (or e-value for short) corresponding to x.

Remark 5.1.2

Let A ∈Mn×n(F).

• A nonzero vector x ∈ Fn is called e-vector of A if and only if x is an e-vector of LA.

• λ is an e-value of A if and only if λ is an e-value of LA.

Theorem 5.1.1

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there

exists an ordered basis β for V consisting of e-vectors of T. Furthermore, if T is diagonalizable,

β = {x1, x2, · · · , xn } is an ordered basis of e-vectors of T, and D = [T]β = (dij), then D is a

diagonal matrix and djj is the e-values corresponding to xj for 1 ≤ j ≤ n.

Note that to diagonalize a matrix or a linear operator is to find a basis of e-vectors and the

corresponding e-values.

Example 5.1.2

Consider A =
 1 1
−2 4

, x =
1

1

, y =
1

2

. Then

LA(x) = Ax =
2

2

 = 2
1

1

 = 2x and LA(y) = Ay =
3

6

 = 3
1

2

 = 3y.

That is 2 and 3 are e-values of LA corresponding to e-vectors x and y, respectively.

Note that β = {x, y } is an ordered basis for R2 consisting e-vectors of both A and LA, and

therefore A and LA are both diagonalizable. Moreover,

[LA]β =
2 0

0 3

 ,
where [LA(x)]β = (2, 0), and [LA(y)]β = (0, 3).
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Theorem 5.1.2

Let A ∈Mn×n(F). Then a scalar λ is an e-value of A if and only if |A− λIn | = 0.

Proof:

A scalar λ is an e-value of A iff there exists a nonzero vector x ∈ Fn such that

Ax = λx⇔ Ax− λx = 0⇔ (A− λIn)x = 0⇔ A− λIn is singular⇔ |A− λIn | = 0.

Definition 5.1.4

• Let A ∈Mn×n(F). The polynomial f(t) = |A− tIn | is called the characteristic polyno-

mial of A.

• Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We

define the characteristic polynomial f(t) of T to be

f(t) = |A− tIn | , where A = [T]β .

Example 5.1.3

Find the e-values of A =
1 1

4 1

.

Solution

We use the characteristic polynomial f(λ) = |A− λI2 | = 0.∣∣∣∣∣∣1− λ 1
4 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0.

Therefore, λ = −1 and 3 are the e-values of A.

Example 5.1.4

Let T be a linear operator on P2(R) defined by

T (f(x)) = f(x) + (x+ 1)f ′(x).

Find the e-values of T.

Solution:
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Let A = [T]β where β = { 1, x, x2 } is the standard ordered basis for P2(R). Then

T(1) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x) = x+ (x+ 1) = 2x+ 1 = 1 · 1 + 2 · x+ 0 · x2

T(x2) = x2 + (x+ 1)2x = 3x2 + 2x = 0 · 1 + 2 · x+ 3 · x2.

Thus, A =


1 1 0
0 2 2
0 0 3

, and hence

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
1− λ 1 0

0 2− λ 2
0 0 3− λ

∣∣∣∣∣∣∣∣∣ = (1− λ)(2− λ)(3− λ) = 0.

Therefore, λ is an e-value of A iff λ = 1, 2, or 3.

Note that if A is an n× n matrix, then f(t) = |A− tIn | = (−1)ntn + an−1t
n−1 + · · ·+ a1t + a0,

is of degree n.

Theorem 5.1.3

Let A ∈Mn×n(F) with characteristic polynomial f(t). Then

1. f(t) is a polynomial of degree n with leading coefficient (−1)n.

2. A has at most n distinct e-values.

3. f(0) = a0 = |A |.

The following theorem describes a procedure for computing the e-vectors corresponding to a given

e-value.

Theorem 5.1.4

Let T be a linear operator on a vector space V, and let λ be an e-value of T. A vector x ∈ V

is an e-vector of T corresponding to λ if and only if x 6= 0 and x ∈ N (T− λI).
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Example 5.1.5

Let A =
1 1

4 1

. Find all e-vectors of A.

Solution:

We start finding the e-values using f(λ) = |A− λI2 | = 0. Thus

|A− λI2 | =

∣∣∣∣∣∣1− λ 1
4 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0.

Thus λ1 = −1 and λ2 = 3.

For λ1 = −1: Let B1 = A − λ1I2 =
2 1

4 2

. Then x1 =
a
b

 ∈ R2 is an e-vector corre-

sponding to λ1 = −1 iff x1 6= 0 and x1 ∈ N (LB1). That is

LB1(x1) = B1x1 = 0 ⇒
2 1

4 2

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:2 1 0

4 2 0

 ∼
1 1

2 0
0 0 0

 ⇒ a+ 1
2b = 0 ⇒ b = −2a.

That is, x1 ∈ N (LB1) =

 t
 1
−2

 : 0 6= t ∈ R

. Thus x1 is an e-vector of A corresponding

to λ1 = −1 iff x1 = t

 1
−2

 for some nonzero t ∈ R.

For λ2 = 3: Let B2 = A − λ2I2 =
−2 1

4 −2

. Then x2 =
a
b

 ∈ R2 is an e-vector

corresponding to λ2 = 3 iff x2 6= 0 and x2 ∈ N (LB2). That is

LB2(x2) = B2x2 = 0 ⇒
−2 1

4 −2

a
b

 =
0

0

 .
This is a homogenous system which can be solved using r.r.e.f. as follows:−2 1 0

4 −2 0

 ∼
1 −1

2 0
0 0 0

 ⇒ a− 1
2b = 0 ⇒ b = 2a.

That is, x2 ∈ N (LB2) =

 t
1

2

 : 0 6= t ∈ R

. Thus x2 is an e-vector of A corresponding to

λ2 = 3 iff x2 = t

1
2

 for some nonzero t ∈ R.
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Remark:

Note that γ =


 1
−2

 ,
1

2

 is an ordered basis for R2 containing e-vectors of A. Thus

LA, and hence A, is diagonalizable and if Q =
 1 1
−2 2

, then Q−1AQ =
−1 0

0 3

.

Remark 5.1.3

Note that to find the e-vectors of a linear operator T on an n-dimensional vector space V:

1. Select an ordered basis for V, say β.

2. Let A = [T]β. Then x ∈ V is an e-vector of T corresponding to λ if and only if [x]β,

the coordinate vector of x relative to β, is an e-vector of A corresponding to λ.
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Exercise 5.1.1

Let T be the linear operator defined on P2(R) by

T (f(x)) = f(x) + (x+ 1)f ′(x).

Find the e-vectors of T and an ordered basis γ for P2(R) so that [T]γ is diagonalizable.

Exercise 5.1.2

Let T be the linear operator defined on R2 by T(a, b) = (−2a + 3b,−10a + 9b). Find the

e-values of T and an ordered basis γ for R2 such that [T]γ is a diagonal matrix.
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Section 5.2: Diagonalizability

In this section, we introduce a simple test to determine whether an operator or a matrix can be

diagonalized. Also, we present a method for finding an ordered basis of e-vectors.

Theorem 5.2.1

Let T be a linear operator on a finite-dimensional vector space V, and let λ1, λ2, · · · , λk be

distinct e-values of T. If x1, x2, · · · , xk are e-vectors of T such that λi correspond to xi

(1 ≤ i ≤ k), then {x1, x2, · · · , xk } is linearly independent set in V.

Theorem 5.2.2

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct e-values,

then T is diagonalizable.

Example 5.2.1

Is A =
1 1

1 1

 diagonalizable? Explain.

Solution:

We first start to find the e-values of A (and hence of LA) using its characteristic polynomial:

f(λ) = |A− λI2 | =

∣∣∣∣∣∣1− λ 1
1 1− λ

∣∣∣∣∣∣ = (1− λ)2 − 1 = λ2 − 2λ = λ(λ− 2) = 0.

Therefore, λ1 = 0 and λ2 = 2. Since LA is a linear operator on R2 and has two distinct

e-values (0 and 2), then LA (and hence A) is diagonalizable.

Remark 5.2.1

The converse of Theorem 5.2.1 is not true in general. That is if T is diagonalizable, then T

not necessary has distinct e-values.
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Definition 5.2.1

We say that a polynomial f(t) ∈ P(F) splits over F if there are scalars c, a1, a2, · · · , an (not

necessary distinct) in F such that

f(t) = c (t− a1)(t− a2) · · · (t− an).

Example 5.2.2

Note that f(t) = t2 − 1 splits over R, but g(t) = t2 + 1 does not.

Theorem 5.2.3

The characteristic polynomial of any diagonalizable linear operator splits.

Proof:

Let T be a diagonalizable linear operator on the n-dimensional vector space V with an ordered

basis β such that [T]β = D = diag(λ1, λ2, · · · , λn) is a diagonal matrix. The characteristic

polynomial of T is

f(t) =
∣∣∣ [T]β − tIn

∣∣∣ = |D − tI | =

∣∣∣∣∣∣∣∣∣∣∣
λ1 − t 0

. . .

0 λn − t

∣∣∣∣∣∣∣∣∣∣∣
= (λ1 − t)(λ2 − t) · · · (λn − t) = (−1)n(t− λ1) · · · (t− λn).

Definition 5.2.2

Let λ be an e-value of a linear operator or a matrix with characteristic polynomial f(t). The

(algebraic) multiplicity of λ is the largest positive integer k for which (t − λ)k is a factor

of f(t). We write m(λ) to denote λ’s multiplicity.

Example 5.2.3

Consider the characteristic polynomial f(t) = (t − 2)4(t − 3)2(t − 1). Hence λ = 2, 3, 1 are

the e-values with multiplicities: m(λ = 2) = 4, m(λ = 3) = 2, and m(λ = 1) = 1.
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Definition 5.2.3

Let T be a linear operator on a vector space V, and let λ be an e-value of T. Define

Eλ = {x ∈ V : T (x) = λx } = N (T− λIV ).

The set Eλ is called the eigenspace (or e-space for short) of T corresponding to λ. We also

define the eigen space of a square matrix A to be the eigen space of LA.

Remark 5.2.2

Let T be a linear operator on a vector space V, and let λ be an e-value of T. Then

1. Eλ is a subspace of V.

2. Eλ consists of the zero vector and the e-vector of T corresponding to λ.

3. dim(Eλ) is the maximum number of linearly independent e-vectors corresponding to λ.

Theorem 5.2.4

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an e-value of

T having multiplicity m. Then 1 ≤ dim(Eλ) ≤ m.

Theorem 5.2.5 Diagonalization Test

Let T be a linear operator on an n-dimensional vector space V. Then, T is diagonalizable if

and only if both of the following conditions hold.

1. The characteristic polynomial of T splits, and

2. For each e-value λ of T, m(λ) = dim(Eλ) = n− rank(T− λIV ).

Moreover, if T is diagonalizable and βi is an ordered basis for Eλi
for i = 1, · · · , k, then

β = β1 ∪ · · · ∪ βk (in corresponding order of e-values) is an ordered basis for V consisting of

e-vectors of T.
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Example 5.2.4

Let T be a linear operator on P2(R) defined by T (f(x)) = f ′(x). Is T diagonalizable?

Explain.

Solution:

Choose the standard ordered basis β = { 1, x, x2 } for P2(R). Then,

T(1) = 0 = 0 · 1 + 0 · x+ 0 · x2

T(x) = 1 = 1 · 1 + 0 · x+ 0 · x2

T(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2


⇒ A = [T]β =


0 1 0
0 0 2
0 0 0

 .

The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
−λ 1 0
0 −λ 2
0 0 −λ

∣∣∣∣∣∣∣∣∣ = −λ3 = 0.

Therefore, T has one e-value λ = 0 with multiplicity m(0) = 3. The e-space Eλ corresponding

to λ = 0 is Eλ = N (T− λI3) = N (T). That is,

Eλ =



a

b

c

 ∈ R3 :


0 1 0
0 0 2
0 0 0



a

b

c

 =


0
0
0


 =

 t


1
0
0


.

Hence Eλ is the subspace of P2(R) consisting of the constant polynomials. So, {1} is a basis

for Eλ and hence dim(Eλ) = 1 6= m(0) = 3.

Therefore, there is no ordered basis for P2(R) consisting of e-vectors of T. Therefore, T is

not diagonalizable.

Example 5.2.5

Let T be a linear operator on R3 defined by T(a, b, c) = (4a+c, 2a+3b+2c, a+4c). Determine

the e-space corresponding to each e-value of T.

Solution:
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Choose β = {E1, E2, E3 } the standard ordered basis for R3. Then,

T(E1) = (4, 2, 1) = 4 · E1 + 2 · E2 + 1 · E3

T(E2) = (0, 3, 0) = 0 · E1 + 3 · E2 + 0 · E3

T(E3) = (1, 2, 4) = 1 · E1 + 2 · E2 + 4 · E3


⇒ A = [T]β =


4 0 1
2 3 2
1 0 4

 .

The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
4− λ 0 1

2 3− λ 2
1 0 4− λ

∣∣∣∣∣∣∣∣∣ = · · · = (3− λ)(λ− 3)(λ− 5) = 0

Thus, T has e-values: λ1 = 3 with m(3) = 2 and λ2 = 5 with m(5) = 1.

For Eλ1 : The e-space Eλ1 corresponding to λ1 = 3 is Eλ1 = N (T− 3I3). Therefore

Eλ1 =

 (a, b, c) ∈ R3 :


1 0 1
2 0 2
1 0 1



a

b

c

 =


0
0
0




This is can be solved as follows:
1 0 1 0
2 0 2 0
1 0 1 0

 ∼


1 0 1 0
0 0 0 0
0 0 0 0

 ⇒ a = −c; c = r, b = t ∈ R.

Setting r, t ∈ R, we get

Eλ1 =

 r

−1
0
1

+ t


0
1
0

 : t, r ∈ R

.

Therefore, γ1 =



−1
0
1

 ,


0
1
0


 is a basis for Eλ1 . Thus, dim(Eλ1) = 2 = m(λ1).

For Eλ2 : The e-space Eλ2 corresponding to λ2 = 5 is Eλ2 = N (T− 5I3). Therefore

Eλ2 =

 (a, b, c) ∈ R3 :


−1 0 1
2 −2 2
1 0 −1



a

b

c

 =


0
0
0




This is can be solved as follows:
−1 0 1 0
2 −2 2 0
1 0 −1 0

 ∼


1 0 −1 0
0 1 −2 0
0 0 0 0

 ⇒ a = c, b = 2c; c = t ∈ R.
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Setting r, t ∈ R, we get

Eλ2 =

 t


1
2
1

 : t ∈ R

.

Therefore, γ2 =




1
2
1


 is a basis for Eλ2 . Thus, dim(Eλ2) = 1 = m(λ2).

Afterall, γ = γ1 ∪ γ2 =



−1
0
1

 ,


0
1
0

 ,


1
2
1


 is a basis for R3 consisting e-vectors of T.

Therefore, T is diagonalizable and

[T]γ =


3 0 0
0 3 0
0 0 5

 .

Example 5.2.6

Let A =
0 −2

1 3

. Is A diagonalizable? Explain your answer and compute An for positive

integer n.

Solution:

The characteristic polynomial of A is

f(t) = |A− tI2 | =

∣∣∣∣∣∣−t −2
1 3− t

∣∣∣∣∣∣ = t2 − 3t+ 2 = (t− 1)(t− 2) = 0.

Thus, λ1 = 1 with m(1) = 1 and λ2 = 2 with m(2) = 1. Then the operator LA has two

distinct e-values and hence A is diagonalizable.

For Eλ1 : The e-space Eλ1 corresponding to λ1 = 1 is Eλ1 = N (A− 1I2). Therefore

Eλ1 =

 (a, b) ∈ R2 :
−1 −2

1 2

a
b

 =
0

0


This is can be solved as follows:−1 −2 0

1 2 0

 ∼
1 2 0

0 0 0

 ⇒ a = −2b.
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Setting b = t ∈ R, we get

Eλ1 =

 t
−2

1

 : t ∈ R

.
Therefore, γ1 =


−2

1

 is a basis for Eλ1 .

For Eλ2 : The e-space Eλ2 corresponding to λ2 = 2 is Eλ2 = N (A− 2I2). Therefore

Eλ2 =

 (a, b) ∈ R2 :
−2 −2

1 1

a
b

 =
0

0


This is can be solved as follows:−2 −2 0

1 1 0

 ∼
1 1 0

0 0 0

 ⇒ a = −b.

Setting b = t ∈ R, we get

Eλ2 =

 t
−1

1

 : t ∈ R

.
Therefore, γ2 =


−1

1

 is a basis for Eλ2 .

Thus, γ = γ1 ∪ γ2 =


−2

1

 ,
−1

1

 is a basis for R2 consisting of e-vectors of A.

Note that D := [LA]γ =
1 0

0 2

 = Q−1 AQ where Q =
−2 −1

1 1

 and Q−1 =−1 −1
1 2

. Therefore, A = QDQ−1 and hence An = QDnQ−1; that is

An =
−2 −1

1 1

 1n 0
0 2n

 −1 −1
1 2

 = · · · =
 2− 2n 2− 2n+1

−1 + 2n −1 + 2n+1

 .

Direct Sum

Let T be a linear operator on a finite-dimensional vector space V. We can decompose V into simpler

subspaces which offers more insight on the behavior of T.

In the case that T is diagonalizable operator, the simpler subspaces are the eigenspaces of the

operator. However, This approach is of a great interest when the operator is not diagonalizable. This
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will be discussed in more details in Chapter 7.

Definition 5.2.4 Sum of Subspaces

Let W1,W2, · · · ,Wk be subspaces of a vector space V. We define the sum of these subspaces

to be the set

{ v1 + v2 + · · ·+ vk : vi ∈Wi for 1 ≤ i ≤ k },

which we denote by W1 + W2 + · · ·+ Wk or
k∑
i=1

Wi.

Example 5.2.7

Let W1 denote the xy-plane and W2 denote the yz-plane. Both W1 and W2 are subspaces of

R3. Show that R3 = W1 + W2.

Solution:

Let ( a, b, c ) ∈ R3. Then, clearly

( a, b, c ) = ( a, 0, 0 ) + ( 0, b, c ),

where ( a, 0, 0 ) ∈W1 and ( 0, b, c ) ∈W2. Therefore,

R3 = W1 + W2.

It is clear that the representation of ( a, b, c ) in Example 5.2.7 is not unique. For example,

( a, b, c ) = ( a, b, 0 ) + ( 0, 0, c ) is another representation.

Definition 5.2.5 Direct Sum of Subspaces

Let W1,W2, · · · ,Wk be subspaces of a vector space V. We define the direct sum of these

subspaces W1,W2, · · · ,Wk and write W1 ⊕W2 ⊕ · · · ⊕Wk, if

V =
k∑
i=1

Wi,

and

Wj ∩
k∑
i 6=j

Wi = { 0 },

for each j (1 ≤ j ≤ k).
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In Example 5.2.7, one can see that R3 6= W1 ⊕W2 since W1 ∩W = { ( 0, x, 0 ) : x ∈ R } 6= { 0 }.

Example 5.2.8

Let

W1 = { ( a, b, 0, 0 ) : a, b ∈ R }

W2 = { ( 0, 0, c, 0 ) : c ∈ R }

W3 = { ( 0, 0, 0, d ) : d ∈ R }

be three subspaces of R4. Show that R4 is a direct sum of W1, W2 and W3.

Solution:

Let ( a, b, c, d ) ∈ R4. Then, clearly

( a, b, c, d ) = ( a, b, 0, 0 ) + ( 0, 0, c, 0 ) + ( 0, 0, 0, d ),

where ( a, b, 0, 0 ) ∈W1, ( 0, 0, c, 0 ) ∈W2 and ( 0, 0, 0, d ) ∈W3. Therefore,

R4 = W1 + W2 + W3.

We also need to show that

W1 ∩ (W2 + W3 ) = W2 ∩ (W1 + W3 ) = W3 ∩ (W1 + W3 ) = { 0 }.

Clearly these equalities are clear. Therefore,

R4 = W1 ⊕W2 ⊕W3.

Theorem 5.2.6

Let W1,W2, · · · ,Wk be subspaces of a finite-dimensional vector space V. The following

conditions are equivalent.

1. V = W1 ⊕W2 ⊕ · · · ⊕Wk.

2. V =
k∑
i=1

Wi and, for any vectors v1, v2, · · · , vk such that vi ∈Wi (1 ≤ i ≤ k), if v1 +v2 +

· · ·+ vk = 0, then vi = 0 for all i.

3. Each vector v ∈ V can be uniquely written as v = v1 + v2 + · · ·+ vk, where vi ∈Wi.

4. If γi is an ordered basis for Wi (1 ≤ i ≤ k), then γ1 ∪ γ2 ∪ · · · ∪ γk is an ordered basis
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for V.

5. For each i = 1, 2, · · · , k, there exists an ordered basis γi for Wi such that γ1∪γ2∪· · ·∪γk
is an ordered basis for V.

Theorem 5.2.7

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if V

is the direct sum of the eigenspaces of T.
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Exercise 5.2.1

Let A =


3 1 0
0 3 0
0 0 4

. Is A diagonalizable? Explain.

Exercise 5.2.2

Let T be the linear operator on P2(R) defined by

T (f(x)) = f(1) + f ′(0) · x+ (f ′(0) + f ′′(0)) · x2.

Is T diagonalizable? Explain.



5.4. Invariant Subspaces and The Cayley-Hamilton Theorem 71

Section 5.4: Invariant Subspaces and The Cayley-Hamilton Theorem

Definition 5.4.1

Let T be a linear operator on a vector space V. A subspace W of V is called T-invariant

subspace of V if T (W) ⊆W; that is if T(x) ∈W for all x ∈W.

Remark 5.4.1

Let T be a linear operator on a vector space V. Then the following subspaces of V are

T-invariant:

1. { 0 }.

2. V.

3. R(T).

4. N (T).

5. Eλ for any e-value λ of T.

Example 5.4.1

Let T be the linear operator on R3 defined by T(a, b, c) = (a + b, b + c, 0). Show that the

subspaces of R3, W1 and W2, are T-invariant, where

1 : W1 = { (a, b, 0) : a, b ∈ R }, and 2 : W2 = { (a, 0, 0) : a ∈ R }.

Solution:

1 : Clearly, T(a, b, 0) = (a + b, b, 0) ∈ W1 for all (a, b, 0) ∈ W1. Thus, W1 is a T-invariant

subspace of R3.

2 : Clearly, T(a, 0, 0) = (a, 0, 0) ∈ W2 for all (a, 0, 0) ∈ W2. Thus, W2 is a T-invariant

subspace of R3.

Definition 5.4.2

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The

subspace

W = span(
{
x,T(x),T2(x), · · ·

}
),
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where T2(x) = T(T(x)), T3(x) = T(T(T(x))), and so on, is called a T-cyclic subspace of

V generated by x.

Example 5.4.2

Let T be the linear operator on R3 defined by T(a, b, c) = (−b+ c, a+ c, 3c). Determine the

T-cyclic subspace of R3 generated by e1 = (1, 0, 0).

Solution:

We simply compute the set containing e1 and Ti(e1) for i = 1, 2, · · · .

T(e1) = T(1, 0, 0) = (0, 1, 0) = e2,

T2(e1) = T (T (e1)) = T (e2) = (−1, 0, 0) = −e1.

Therefore, W = span({ e1,T (e1) ,T2(e1), · · · }) = span({ e1, e2 }) = { (s, t, 0) : s, t ∈ R } is

the T-cyclic subspace of R3 generated by e1.

Remark 5.4.2

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The

subspace W generated by x is the smallest T-invariant subsapce which contains x. That is,

any T-invariant subspace of V containing x must contain W.

Example 5.4.3

Let T be the linear operator on P2(R) defined by T (f(x)) = f ′(x). Determine the T-cyclic

subspace of P2(R) generated by x2.

Solution:

Note that T(x2) = 2x, T2(x2) = T(2x) = 2, and T3(x2) = T(2) = 0. Therefore, W =

span({x2, 2x, 2 }) = P2(R) is the T-cyclic subspace of P2(R) generated by x2.
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Example 5.4.4

Let T be the linear operator on R4 defined by T(a, b, c, d) = (a+b+2c−d, b+d, 2c−d, c+d),

and let W = { (t, s, 0, 0) : t, s ∈ R }. Show that W is a T-invariant subspace of R4.

Solution:

Choose arbitrary x = (t, s, 0, 0) ∈W. Then

T(x) = (t+ s, s, 0, 0) ∈W.

Thus, T(W) ⊆W and hence W is a T-invariant subsapce of R4.

Theorem 5.4.1

Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-cyclic

subspace of V generated by x ∈ V. Let dim(W) = k. Then
{
x,T(x), · · · ,Tk−1(x)

}
is a

basis for W.

Example 5.4.5

Let T be the linear operator on R3 defined by T(a, b, c) = (−b + c, a + c, 3c), and let W be

the T-cyclic subspace of R3 generated by e1. Find a basis for W.

Solution:

Clearly, e1 = (1, 0, 0), T(e1) = (0, 1, 0) = e2, and T2(e1) = T(e2) = (−1, 0, 0) = −e1.

Therefore, W = span({ e1, e2 }) and hence dim(W) = 2. Thus, by Theorem 5.4.1, γ =

{ e1, e2 } is an ordered basis for W.

Theorem 5.4.2 The Cayley-Hamilton Theorem

Let T be a linear operator on a finite-dimensional vector space V, and let f(t) be the char-

acteristic polynomial of T. Then f(T) = T0, the zero transformation. That is, T ”satisfies”

its characteristic equation.
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Theorem 5.4.3 The Cayley-Hamilton Theorem for Matrices

Let A be an n×n matrix, and let f(t) be the characteristic polynomial of A. Then f(A) = 0,

the n× n zero matrix.

Example 5.4.6

Verify the Cayley-Hamilton theorem for the linear operator T defined on R2 by T(a, b) =

(a+ 2b,−2a+ b).

Solution:

Let β = { e1, e2 } be an ordered basis for R2. Then

T(e1) = (1,−2) = e1 + (−2)e2

T(e2) = (2, 1) = 2e1 + e2.

Thus, A = [T]β =
 1 2
−2 1

. The characteristic polynomial of T is therefore

f(t) = |A− tI2 | =

∣∣∣∣∣∣1− t 2
−2 1− t

∣∣∣∣∣∣ = (1− t)2 + 4 = t2 − 2t+ 5 = 0.

That is,

f(T) = (T2 − 2T + 5I)
a
b


= T2

a
b

− 2T

a
b

+ 5I

a
b


= T

 a+ 2b
−2a+ b

− 2
 a+ 2b
−2a+ b

+ 5
a
b


=
 (a+ 2b) + 2(−2a+ b)
−2(a+ 2b) + (−2a+ b)

+
−2a− 4b

4a− 2b

+
5a

5b


=
−3a+ 4b
−4a− 3b

+
−2a− 4b

4a− 2b

+
5a

5b

 =
0

0

 = T0

a
b

 .
Note that

f(A) = A2 − 2A+ 5I =
−3 4
−4 −3

+
−2 −4

4 −2

+
5 0

0 5

 =
0 0

0 0

 = 0.
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Now we try to decompose a finite-dimensional vector space V into a direct sum of as many

T-invariant subspaces as possible. For that we start to collect a few facts about direct sums of

T-invariant subspaces. These facts will be considered in Section 5.4.

Theorem 5.4.4

Let T be a linear operator on a finite-dimensional vector space V, and suppose that V =

W1⊕W2⊕· · ·⊕Wk, where Wi is a T-invariant subspace of V for each i (1 ≤ i ≤ k). Suppose

that fi(t) is the characteristic polynomial of TWi
(1 ≤ i ≤ k). Then f1(t) · f2(t) · · · · · fk(t) is

the characteristic polynomial of T.

Let T be a diagonalizable linear operator on a finite-dimensional vector space V with distinct

eigenvalues λ1, λ2, · · · , λk. Theorem 5.2.7 shows that V is a direct sum of the eigenspaces of T.

Since each eigenspace is T-invariant, Theorem 5.4.4 shows that for each eigenvalue λi, the restric-

tion of T to Eλi
has characteristic polynomial (λi − t )mi , where mi is the dimension of Eλi

. That

is, the characteristic polynomial f(t) of T is

f(t) = (λ1 − t )m1(λ2 − t )m2 · · · (λk − t )mk .

It follows that the multiplicity of each eigenvalue is equal to the dimension of the corresponding

eigenspace.

Definition 5.4.3

Let B1 ∈ Mm×m(F) and B2 ∈ Mn×n(F). We define the direct sum of B1 and B2, denoted

B1 ⊕B2, as the (m+ n)× (m+ n) matrix A such that

A =



(B1)ij for 1 ≤ i, j ≤ m

(B2)(i−m),(j−m) for m+ 1 ≤ i, j ≤ m+ n

0 otherwise.

If B1, B2, · · · , Bk are square matrices with entries from F, then we define the direct sum of

B1, B2, · · · , Bk recursively by

B1 ⊕B2 ⊕ · · · ⊕Bk = (B1 ⊕B2 ⊕ · · · ⊕Bk−1 )⊕Bk.
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If A = B1 ⊕B2 ⊕ · · · ⊕Bk, then we often write

A =



B1 O · · · O

O B2 · · · O
... ... . . . ...

O O · · · Bk


.

Theorem 5.4.5

Let T be a linear operator on a finite-dimensional vector space V, and let W1,W2, · · · ,Wk

be T-invariant subspaces of V such that V = W1 ⊕W2 ⊕ · · · ⊕Wk. For each i, let βi be an

ordered basis for Wi, and let β = β1 ∪ β2 ∪ · · · ∪ βk. Let A = [T]β and Bi =
[
TWi

]
βi

for

i = 1, 2, · · · , k. Then, A = B1 ⊕B2 ⊕ · · · ⊕Bk.

Example 5.4.7

Let T be the linear operator on R4 defined by

T( a, b, c, d ) = ( 2a− b, a+ b, c− d, c+ d ),

and let W1 = { ( s, t, 0, 0 ) : s, t ∈ R } and W2 = { ( 0, 0, s, t ) : s, t ∈ R }.

Note that W1 and W2 are each T-invariant and that R4 = W1 ⊕W2. Let β1 = { e1, e2 } and

β2 = { e3, e4 } and hence β = β1 ∪ β2 = { e1, e2, e3, e4 }.

Then β1, β2 and β are bases for W1, W2 and R4, respectively.

Let A = [T]β, B1 =
[
TW1

]
β1

, and B2 =
[
TW2

]
β2

. Then,

B1 =

2 −1

1 1

 , B2 =

1 −1

1 1

 ,
and

A =

B1 O

O B2

 =



2 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1


.

Let f(t), f1(t), and f2(t) denote the characteristic polynomials of T, TW1
, and TW2

, respec-

tively. Then,

f(t) = det(A− tI ) = det(B1 − tI ) · det(B2 − tI ) = f1(t) · f2(t).
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Example 5.4.8

Find the direct sum of the following matrices.

B1 =

1 2

1 1

 , B2 =
(

3
)
, and B3 =


1 2 1

1 2 3

1 1 1

 .

Solution:

Clearly,

B1 ⊕B2 ⊕B3 =



1 2 0 0 0 0
1 1 0 0 0 0
0 0 3 0 0 0
0 0 0 1 2 1
0 0 0 1 2 3
0 0 0 1 1 1


.
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Exercise 5.4.1

Let T be the linear operator defined on P1(R) by T (f(x)) = f(x) + f ′(x). Verify the Cayley-

Hamilton Theorem for T.

Exercise 5.4.2

Use Cayley-Hamilton Theorem to find A−1 if A =


1 2 1
0 2 3
0 0 −1

.
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Chapter

Bilinear Forms

Section 6.1: Bilinear Forms

Definition 6.1.1

Let V be a vector space over a field F. A function H : V ×V → F is called a bilinear form

on V if H is linear in each variable when the other variable is held fix; that is, H is a bilinear

form on V if

1. H(x+ y, z) = H(x, z) +H(y, z) and H(ax, y) = aH(x, y) for all x, y, z ∈ V and a ∈ F.

2. H(x, y + z) = H(x, y) +H(x, z) and H(x, ay) = aH(x, y) for all x, y, z ∈ V and a ∈ F.

The set of all bilinear forms is denoted by B(V ).

Remark 6.1.1

The Definition 6.1.1 can be restated as: H is a bilinear form on V if

1. H(x+ ay, z) = H(x, z) + aH(y, z) for all x, y, z ∈ V and a ∈ F.

2. H(x, y + az) = H(x, y) + aH(x, z) for all x, y, z ∈ V and a ∈ F.

An obvious example of a bilinear form is the following: H : R×R → R defined by H(x, y) = xy.

Note the difference here: H(x, y) = x+ y is linear and H(x, y) = xy is bilinear.

An inner product on a real vector space is a bilinear form, but an inner product on a complex

vector space is not, since it is conjugate-linear in the second component rather than (actually) linear.

Theorem 6.1.1 Bilinear Forms on Rn

Every bilinear form on Rn has the form

H(x, y) = xtAy

for some n× n matrix A.

79
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Example 6.1.1

Define a mapping H : R2 × R2 → R by

H

a1

a2

 ,
b1

b2

 = 2a1b1 + 3a1b2 + 4a2b1 − a2b2,

for
a1

a2

 ,
b1

b2

 ∈ R2. Show that H is a bilinear form on R2.

Solution:

Note that if A =
2 3

4 −1

, x =
a1

a2

, and y =
b1

b2

, then H(x, y) = xtAy.

Then H is a bilinear form on R2 by the distributive property of matrix multiplication over

matrix addition. That is,

H(x+ y, z) = (xt + yt)Az = xtAz + ytAz = H(x, z) +H(y, z),

and

H(ax, y) = axtAy = aH(x, y).

The same thing applies for H(x, y + z) and H(x, ay). Therefore, H is a bilinear form on R2.

Remark 6.1.2

For any bilinear form H on a vector space V over a field F, the following properties hold.

1. If, for any x ∈ V, the functions Lx, Rx : V → F are defined by

Lx(y) = H(x, y) and Rx(y) = H(y, x) for all y ∈ V,

then Lx and Rx are linear.

2. H(0, x) = H(x, 0) = 0 for all x ∈ setV .

3. For all x, y, z, w ∈ V,

H(x+ y, z + w) = H(x, z) +H(x,w) +H(y, z) +H(y, w).

4. If J : V × V → F is defined by J(x, y) = H(y, x), then J is a bilinear form.
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Matrix Representation of Bilinear Forms

Definition 6.1.2

Let V be a finite-dimensional vector space over a field F with a basis β = { β1, β2, · · · , βn }

and let H be a bilinear form on V.

The associated matrix of H with respect to β is the matrix [H]β ∈ Mn×n(F) whose

(i, j)-entry is the value H(βi, βj).

Example 6.1.2

Define a mapping H : R2 × R2 → R by

H( ( a, b ), ( c, d ) ) = 2ac+ 4ad− bc,

for ( a, b ), ( c, d ) ∈ R2. Find [H]β for the standard basis β = { ( 1, 0 ), ( 0, 1 ) }.

Solution:

We simply calculate the values H(βi, βj) for i, j ∈ { 1, 2 }, where β1 = (1, 0) and β2 = (0, 1).

Clearly, H(β1, β1) = 2, H(β1, β2) = 4, H(β2, β1) = −1, and H(β2, β2) = 0. That is,

[H]β =
 2 4
−1 0

 .

Theorem 6.1.2

Let V be a finite-dimensional vector space over a field F with two bases β and γ, and let H

be a bilinear form on V. Then, if Q = [I]βγ is the change of basis matrix from γ to β, then

[H]γ = Qt [H]β Q.

Example 6.1.3

Define a mapping H : R2 × R2 → R by

H( ( a, b ), ( c, d ) ) = 2ac+ 4ad− bc,

for ( a, b ), ( c, d ) ∈ R2. Find the change of basis matrix Q from γ to β and use it to find [H]γ,
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where β = { ( 1, 0 ), ( 0, 1 ) } and γ = { ( 1, 0 ), ( 1, 1 ) }.

Solution:

We first compute Q = [I]βγ whose columns are the vectors of γ in the β coordinates. That is,

Q =
[
[(1, 0)]β [(1, 1)]β

]
=
1 1

0 1

 .
Then, we calculate [H]β:

[H]β =
 2 4
−1 0

 .
Therefore,

[H]γ = Qt [H]β Q =
2 6

1 5

 .
This can be verified by a direct computation as well.
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Exercise 6.1.1

Define a mapping H : R2 × R2 → R by

H( (a, b), (c, d) ) = ac+ ad− bd,

for (a, b), (c, d) ∈ R2. Show that H is a bilinear form on R2.

Exercise 6.1.2

Define a mapping H : R2 × R2 → R by

H( ( a, b ), ( c, d ) ) = 2ac+ 4ad− bc,

for ( a, b ), ( c, d ) ∈ R2. Find [H]β for the basis β = { ( 2, 1 ), (−1, 4 ) }.

Exercise 6.1.3

Define a mapping H : P2(R)× P2(R)→ R by

H( p, q ) =
∫ 1

0
p(x)q(x) dx,

for p, q ∈ P2(R). Find [H]β for the standard basis β = { 1, x, x2 }.

Exercise 6.1.4

Define a mapping H : R2 × R2 → R by H(x, y) = xtAy for x, y ∈ R2 and A =
1 1

0 −1

.

Find the change of basis matrix Q from γ to β and use it to find [H]γ, where β =

{ ( 1, 0 ), ( 0, 1 ) } and γ = { ( 1,−1 ), ( 1, 2 ) }. Moreover, use Q to find [(1, 7)]β.
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7
Chapter

Canonical Forms

Recall that a diagonalizable linear operator has a diagonal matrix representation. That is, there is

an ordered basis consisting of eigenvectors of the operator.

However, not every operator is diagonalizable, even if its characteristic polynomial splits.

In this chapter, we consider alternative matrix representation for nondiagonalizable operators.

These representations are called canonical forms.

We mainly consider two common canonical forms. The first one is called Jordan canonical form

which requires that the characteristic polynomial splits. That is, every polynomial with coefficients

from the underlying field is algebraically closed.

The other canonical form is the rational canonical form which does not require such a factor-

ization.

Section 7.1: Jordan Canonical Form I

Recall the following example.

Example 7.1.1

Let T be a linear operator on R3 defined by T(a, b, c) = (4a + c, 2a + 3b + 2c, a + 4c). Is T

diagonalizable? Explain.

Solution:

Using the standard ordered basis for R3, β = { e1, e2, e3 }, we get

A = [T]β =


4 0 1
2 3 2
1 0 4

 .
The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
4− λ 0 1

2 3− λ 2
1 0 4− λ

∣∣∣∣∣∣∣∣∣ = · · · = (3− λ)(λ− 3)(λ− 5) = 0

Thus, T has e-values: λ1 = 3 with m(3) = 2 and λ2 = 5 with m(5) = 1.

85
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Eλ1 =

 r

−1
0
1

+ t


0
1
0

 : t, r ∈ R

; dim(Eλ1) = 2 = m(λ1).

Eλ2 =

 t


1
2
1

 : t ∈ R

.; dim(Eλ2) = 1 = m(λ2).

Afterall, γ = γ1 ∪ γ2 =



−1
0
1

 ,


0
1
0

 ,


1
2
1


 is a basis for R3 consisting e-vectors of T.

Therefore, T is diagonalizable and

[T]γ =


3 0 0
0 3 0
0 0 5

 .

On the other hand,

Example 7.1.2

Let T be a linear operator on R3 defined by T(a, b, c) = (3a + b− 2c,−a + 5c,−a− b + 4c).

Is T diagonalizable? Explain.

Solution:

Using the standard ordered basis for R3, β = { e1, e2, e3 }, we get

A = [T]β =


3 1 −2
−1 0 5
−1 −1 4

 .
The characteristic polynomial of T is

f(λ) = |A− λI3 | =

∣∣∣∣∣∣∣∣∣
3− λ 1 −2
−1 −λ 5
−1 −1 4− λ

∣∣∣∣∣∣∣∣∣ = · · · = −(λ− 3)(λ− 2)2 = 0

Thus, T has e-values: λ1 = 3 with m(3) = 1 and λ2 = 2 with m(5) = 2.

Eλ1 =

 t

−1
2
1

 : t ∈ R

; dim(Eλ1) = 1 = m(λ1).
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Eλ2 =

 t

−1
3
1

 : t ∈ R

.; dim(Eλ2) = 1 6= m(λ2) = 2.

Therefore, T is NOT diagonalizable.

In what follows, we try to work things out to make the matrix A to be ”almost” a diagonal

matrix.

The plan is to extend the definition of eigenspace to generalized eigenspace by considering

generalized eigenvectors of the operator T. From these subspaces, we select ordered bases whose

union is an ordered basis β for V such that

J = [T]β =


J1 O . . . O

O J2 . . . O
... ... . . . ...
O O . . . Jk

 ,

where each O is a zero matrix and each Ji is a square matrix of the form (λ) or

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
... ... ... ... ...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


for some eigenvalue λ for T.

Such a matrix Ji is called a Jordan block corresponding to λ, and the matrix J = [T]β is called

a Jordan canonical form of T.

Note that each Jordan block Ji is ”almost” a diagonal matrix. In fact, J is a diagonal matrix if

and only if each of Ji is of the form (λ).

Definition 7.1.1

Let T be a linear operator on a vector space V, and let λ be a scalar. A nonzero vector x in

V is called a generalized eigenvectors of T corresponding to λ if

( T− λI )p(x) = 0

for some positive integer p.



88 Chapter 7. Canonical Forms

Note that if x is a generalized eigenvector for T corresponding to λ, and p is the smallest positive

integer for which ( T− λI )px = 0, then ( T− λI )p−1x is an eigenvector of T corresponding to λ.

That is, λ is an eigenvalue of T.

Definition 7.1.2

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The

generalized eigenspace of T corresponding to λ, denoted by Kλ(T), is the subset of V

defined by

Kλ(T) = {x ∈ V : ( T− λI )p(x) = 0 for some positive integer p }.

Note that Kλ(T) consists of the zero vector and all generalized eigenvectors corresponding to

λ.

Theorem 7.1.1

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic

polynomial of T splits. Then

1. If λ is an eigenvalue of T with (algebraic) multiplicity m, then

Kλ(T) = N ( ( T− λI )m ) and dim(Kλ(T)) = m.

2. If λ1, λ2, · · · , λk are distinct eigenvalues of T, then

V = Kλ1(T)⊕Kλ2(T)⊕ . . .⊕Kλk
(T).

Note that if m(λ) = 1, then we simply have Kλ(T) = Eλ.

Theorem 7.1.2

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic

polynomial of T splits, and let λ1, λ2, · · · , λk be distinct eigenvalues of T with corresponding

multiplicities m1,m2, · · · ,mk. For 1 ≤ i ≤ k, let βi be an ordered basis for Kλi
(T). Then,

1. βi ∩ βj = ∅ for i 6= j.

2. β = β1 ∪ β2 ∪ · · · ∪ βk is an ordered basis for V.

3. dim(Kλi
(T)) = mi for all i.
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Definition 7.1.3

Let T be a linear operator on a vector space V, and let x be a generalized eigenvector of T

corresponding to the eigenvalue λ. Suppose that p is the smallest positive integer for which

( T− λI )px = 0. Then the ordered sets

{
( T− λI )p−1x, ( T− λI )p−2x, . . . , ( T− λI )x, x

}
is called a cycle of generalized eigenvectors of T corresponding to λ. The vectors ( T− λI )p−1x

and x are called the initial vector and end vector of the cycle, respectively. We also say

that the length of the cycle is p.

Note that the initial vector ( T− λI )p−1x of a cycle of generalized eigenvectors of a linear operator

T on a finite-dimensional vector space V is the only eigenvector of T in the cycle. On the other

hand, a vector x is the end vector of such a cycle if and only if (T−λI)p−1x 6= 0, but (T−λI)px = 0.

Moreover, if x is an eigenvector of T corresponding to the eigenvalue λ, then the set {x } is a

cycle of generalized eigenvectors of T corresponding to λ of length 1. If β is a disjoint union of cycles

of generalized eigenvectors of T, then β is a Jordan canonical basis for V.

Theorem 7.1.3

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue

of T. Then Kλ(T) has an ordered basis consisting of a union of disjoint cycles of generalized

eigenvectors corresponding to λ.

Corollary 7.1.1

Let T be a linear operator on a finite-dimensional vector space V whose characteristic poly-

nomial splits. Then T has a Jordan canonical form.

Remark 7.1.1

Let A ∈Mn×n(F) such that the characteristic polynomial of A (and hence of LA) splits. Then

1. The Jordan canonical form of A is defined to be the Jordan canonical form of the linear

operator LA on Fn.

2. A has a Jordan canonical form J , and A is similar to J .
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Section 7.2: Jordan Canonical Form II

Let T be a linear operator on an n-dimensional vector space V such that the characteristic polynomial

of T splits. Let λ1, λ2, · · · , λk be the distinct eigenvalues of T.

By Theorem 7.1.3, each Kλi
contains an ordered basis βi consisting of a union of disjoint cycles

of generalized eigenvectors corresponding to λi. Therefore, Theorem 7.1.2(2) implies that β =
k⋃
i=1

βi

is a Jordan canonical basis for T.

For each i, let Ti be the restriction of T to Kλi
and let Ji = [Ti]βi

. Then Ji is the Jordan

canonical form of Ti, and

J = [T]β =


J1 O . . . O

O J2 . . . O
... ... . . . ...
O O . . . Jk


is the Jordan canonical form of T, where O is a zero matrix of appropriate size.

Remark 7.2.1

If βi is a disjoint union of cycles (boxes) γ1, γ2, · · · , γni
each of which of length pi, then we

index the cycles so that p1 ≥ p2 ≥ · · · ≥ pni
.

In this way, the number ni of cycles for βi, and the length pj, j = 1, . . . ni of each cycle is

completely determined by T.

In other words, each Jordan block is decomposed into smaller boxes (cycles) each of which is

of length pi.

Example 7.2.1

Suppose that for some i, the ordered basis βi for Kλi
is the union of four cycles, i.e. βi =

γ1 ∪ γ2 ∪ γ3 ∪ γ4 with respective lengths p1 = 3, p2 = 3, p3 = 2 and p4 = 1. Then

Ji =



λi 1
λi 1

λi
λi 1

λi 1
λi

λi 1
λi

λi



.



7.2. Jordan Canonical Form II 91

Remark 7.2.2

To visualize Ji and βi, we use an array of dots called a dot diagram of Ti, where Ti is the

restriction of T to Kλi
.

Let βi be a disjoint union of cycles of generalized eigenvectors γ1, γ2, · · · , γni
with lengths

p1 ≥ p2 ≥ · · · ≥ pni
, respectively.

The dot diagram of Ti contains one dot for each vector in βi, and the dots are configured

with respect to the following reules.

1. The diagram consists of ni column (one column for each cycle).

2. Counting from left to right, the jth column consists of the pj dots that corresponds to

the vectors of γj starting with the initial vector at the top and continuing down to the

end vector.

If v1, v2, · · · , vni
are the end vectors of the cycles γ1, γ2, · · · , γni

, then we get:

•(T− λiI)p1−1v1 •(T− λiI)p2−1v2 . . . •(T− λiI)pni−1vni

•(T− λiI)p1−2v1 •(T− λiI)p2−2v2 . . . •(T− λiI)pni−2vni

... ... ...
•(T− λiI)vni

•vni

•(T− λiI)v2

•v2

•(T− λiI)v1

•v1

Note that the dot diagram of Ti has ni columns (one for each cycle) and p1 rows.

Let rj denote the number of dots in the jth row of the dot diagram. Note that r1 ≥ r2 ≥ · · · ≥ rp1 .

Moreover, the dot diagram can be reconstructed from the values of the rj’s.

Back to Example 7.2.1

We have ni = 4; p1 = p2 = 3, p3 = 2 and p4 = 1. The dot diagram of Ti is
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Moreover, r1 = 4, r2 = 3, and r3 = 2.

Remark 7.2.3

We compute the (unique) dot diagram of Ti using the ranks of linear operators determined

by T and λi. In this way, the dot diagram is uniquely determined by T.

To determine the dot diagram of Ti, we devise a method for computing each ri, the number

of dots in the jth row of the dot diagram, using only T and λi.

Theorem 7.2.1

For any positive integer r, the vectors in βi associated with the dots in the first r rows of the

dot diagram of Ti forms a basis for N ( ( T− λiI )r ).

That is, the number of dots in the first r rows of the dot diagram equals nullity( ( T− λiI )r ).

Theorem 7.2.2

Let rj denote the number of dots in the jth row of the dot diagram of Ti, the restriction of T

to Kλi
. Then

1. r1 = dim(V)− rank(( T− λiI )).

2. rj = rank(( T− λiI )j−1)− rank(( T− λiI )j) for j > 1.

Remark 7.2.4 Computing Jordan Canonical Forms

Given a matrix A ∈Mn×n(C), we use the following method to compute the Jordan canonical

form of A:

1. Calculate eigenvalues of A: λ1, λ2, · · · , λk.

2. For each λi (i = 1, 2, . . . , k): determine m(λi) and rj using Theorem 7.2.2.

Example 7.2.2 See Example 7.1.2

Let

A =


3 1 −2

−1 0 5

−1 −1 4

 .



7.2. Jordan Canonical Form II 93

Find the Jordan canonical form of A.

Solution:

1. Eigenvalues: We consider the characteristic polynomial of A to find all eigenvalues.

fA(λ) = |A− λI | =

∣∣∣∣∣∣∣∣∣∣∣
3− λ 1 −2

−1 −λ 5

−1 −1 4− λ

∣∣∣∣∣∣∣∣∣∣∣
. = · · · = −( 3− λ )( 2− λ )2.

Therefore, we have λ1 = 3 and λ2 = 2 with multiplicities m(λ1) = 1 and m(λ2) = 2,

respectively. Therefore, we can deduce that there are two Jordan blocks. One for λ1 of

size 1× 1 and the other for λ2 of size 2× 2. That is,

J =

J1 O

O J2

 .
2. Multiplicities and rj: Next we compute rj for λ1 and λ2:

λ1 = 3 Here, we have a cycle of length 1. Clearly m(λ1) = 1 and hence dim(Kλ1) = 1.

Thus,

J1 = (3).

λ2 = 2 Here, we have a cycle of length 2. So, we start with r1 = 3− rank(A− 2I) =

3− 2 = 1, where

rank(A− 2I) = rank(


1 1 −2

−1 −2 5

−1 −1 2

) = rank(


1 0 1

0 1 −3

0 0 0

) = 2.

That is, the dot diagram has one dot in the first row. That leaves us with one more dot

for r2. But we compute it using Theorem 7.2.2 anyway. We have, r2 = rank(A− 2I)−

rank((A− 2I)2) = 2− 1 = 1, where

rank((A− 2I)2) = rank(


2 1 −1

−4 −2 2

−2 −1 1

)rank(


1 0.5 −0.5

0 0 0

0 0 0

) = 1.

Therefore, our dot diagram is
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and we have one cycle of lengths 2. That is,

J2 =

 2 1

2


Therefore,

J =

J1 O

O J2

 =


3

2 1

2

 .

Example 7.2.3

Let

A =



3 1 0 1

−1 5 4 1

0 0 2 0

0 0 0 4


.

Find the Jordan canonical form of A.

Solution:

1. Eigenvalues: We consider the characteristic polynomial of A to find all eigenvalues.

Hint: Use the determinant of blocks!

fA(λ) = |A− λI | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3− λ 1 0 1

−1 5− λ 4 1

0 0 2− λ 0

0 0 0 4− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = ( 4− λ )3( 2− λ ).

Therefore, we have λ1 = 2 and λ2 = 4 with multiplicities m(λ1) = 1 and m(λ2) = 3,

respectively. Therefore, we can deduce that there are two Jordan blocks. One for λ1 of

size 1× 1 and the other for λ2 of size 3× 3. That is,

J =

J1 O

O J2

 .
2. Multiplicities and rj: Next we compute rj for λ1 and λ2:

λ1 = 2 Here, we have a cycle of length 1. Clearly m(λ1) = 1 and hence dim(Kλ1) = 1.
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Thus,

J1 = (2).

λ2 = 4 Here, we have a cycle of length 3. So, we start with r1 = 4− rank(A− 4I) =

4− 2 = 2, where

rank(A− 4I) = rank(



−1 1 0 1

−1 1 4 1

0 0 −2 0

0 0 0 0


) = · · · = 2.

That is, the dot diagram has two dots in the first row. That leaves us with one more dot

for r2. But we compute it using Theorem 7.2.2 anyway. We have, r2 = rank(A− 4I)−

rank((A− 4I)2) = 2− 1 = 1, where

rank((A− 4I)2) = rank(



0 0 4 0

0 0 −4 0

0 0 4 0

0 0 0 0


) = 1.

Therefore, our dot diagram is

and we have two cycles of lengths 2 and 1. That is,

J2 =


4 1

4

4

 .

Therefore,

J =

J1 O

O J2

 =



2

4 1

4

4


.
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Remark 7.2.5 Computing Jordan Canonical Basis

Given a matrix A ∈Mn×n(C), we use the following method to compute the Jordan canonical

basis of A so that A is decomposed as A = QJ Q−1:

1. Compute eigenvalues of A: λ1, λ2, · · · , λk.

2. For each λi (i = 1, 2, . . . , k):

(a) determine m(λi) and rj using Theorem 7.2.2.

(b) Calculate eigenspace and generalized eigenspace

3. Construct Q.

Example 7.2.4

Let

A =


3 1 −2

−1 0 5

−1 −1 4

 .
Find the Jordan canonical form of A and find a Jordan canonical basis for the linear operator

T = LA.

Solution:

1. Eigenvalues: We consider the characteristic polynomial of A to find all eigenvalues.

fA(λ) = |A− λI | =


3− λ 1 −2

−1 −λ 5

−1 −1 4− λ

 = · · · = −( 2− λ )2( 3− λ ).

Therefore, we have λ1 = 2 and λ2 = 3 with multiplicities m(λ1) = 2 and m(λ2) = 1,

respectively. Therefore, we can deduce that there are two Jordan blocks. One for λ1 of

size 2× 2 and the other for λ2 of size 1× 1. That is,

J =

J1 O

O J2

 .
Also, let T1 and T2 denote the restrictions of LA to the generalized eigenspaces Kλ1

and Kλ2 , respectively.

2. λ1 = 2
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(a) Multiplicities and rj: We have m(λ1) = 2 and hence if β1 is a Jordan canonical

basis for T1, then dim(Kλ1) = 2 and hence the dot diagram for λ1 has two dots.

Computing r1 = 3− rank(A− 2I) = 3− 2 = 1, where

rank(A− 2I) = rank(


1 1 −2

−1 −2 5

−1 −1 2

) = rank(


1 0 1

0 1 −3

0 0 0

) = 2.

That is, the dot diagram has one dot in the first row. That leaves us with one

more dot for r2. But we compute it using Theorem 7.2.2 anyway. We have,

r2 = rank(A− 2I)− rank((A− 2I)2) = 2− 1 = 1, where

rank((A− 2I)2) = rank(


2 1 −1

−4 −2 2

−2 −1 1

) = rank(


1 1

2 −1
2

0 0 0

0 0 0

) = 1.

Therefore, our dot diagram is

and we have one cycle of lengths 2. That is,

J1 =

 2 1

2


(b) Eigenspace and generalized eigenspace Here we determine a Jordan canonical

basis β1 for T1. The dot diagram of T1 has one column which corresponds to the

cycle of generalized eigenvectors. Let v1 denote the end vector of the this cycle.

Then we have
• (T− 2I)v1

• v1

Note that (T − 2I)2v1 = 0 but (T − 2I)v1 6= 0. That is, v1 ∈ N ( (T− 2I)2 ) but

v1 6∈ N ( T− 2I ). Thus, we compute bases for N ( T− 2I ) and N ( (T− 2I)2 ).

That is, we solve the systems (A− 2I)x = 0 and (A− 2I)2x = 0. For N ( T− 2I ),

we have

N (A− 2I ) =


(a, b, c) :


1 1 −2

−1 −2 5

−1 −1 2




a

b

c

 =


0

0

0
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This is can be solved as follows:
1 1 −2 0

−1 −2 5 0

−1 −1 2 0


r.r.e.f−−−→


1 0 1 0

0 1 −3 0

0 0 0 0


Thus, a = −c and b = 3c. Hence,

γ1 =




−1

3

1




is a basis for N (A− 2I). Note that N (A− 2I) ⊆ N ( (A− 2I)2 ). Now, We do the

same thing for N ( (A− 2I)2 ).

N
(

(A− 2I)2
)

=


(a, b, c) :


2 1 −1

−4 −2 2

−2 −1 1




a

b

c

 =


0

0

0




This is can be solved as follows:

2 1 −1 0

−4 −2 2 0

−2 −1 1 0


r.r.e.f−−−→


1 1

2 −1
2 0

0 0 0 0

0 0 0 0


Thus, 2a+ b− c = 0. Hence, γ1 ∪ γ2 is a basis for N ( (A− 2I)2 ), where

γ1 ∪ γ2 = γ1 ∪




−1

2

0




=




−1

3

1

 ,

−1

2

0




Now, we choose v1 from the basis produced in N ( (A− 2I)2 ); namely from γ2.

That is, v1 =


−1

2

0

. Hence,

(A− 2I )v1 =


1 1 −2

−1 −2 5

−1 −1 2




−1

2

0

 =


1

−3

−1

 .
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Thus, we have constructed the Jordan canonical basis β1 consisting of one cycles

for the Jordan block of λ1 = 2.

β1 = { (A− 2I )v1, v1 } =




1

−3

−1

 ,

−1

2

0




.

λ2 = 3

(a) Multiplicities and rj: We have m(λ2) = 1. Here, we have a cycle of length 1.

Clearly m(λ2) = 1 and hence dim(Kλ2) = 1. Thus,

J2 = (3).

(b) Eigenspace and generalized eigenspace: Note that dim(Kλ2) = 1 =

dim(Eλ2). Therefore, Kλ2 = Eλ2 and hence any eigenvector of LA correspond-

ing to λ2 would form the basis β2. For N ( T− 3I ), we have

N (A− 3I ) =


(a, b, c, d) :


0 1 −2

−1 −3 5

−1 −1 1




a

b

c

 =


0

0

0




This is can be solved as follows:

0 1 −2 0

−1 −3 5 0

−1 −1 1 0


r.r.e.f−−−→


1 0 1 0

0 1 −2 0

0 0 0 0


Thus, a = −c and b = c. Hence,

β2 =




−1

2

1




is a basis for N (A− 3I).

3. Construct J and Q We have already computed J1 and J2 and hence

J =

J1 O

O J2

 =


2 1

2

3

 .
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Moreover, we compute the invertible matrix Q whose columns are the vectors of the

ordered basis β = β1 ∪ β2. That is,

β =




1

−3

−1

 ,

−1

2

0

 ,

−1

2

1




,

and

Q =


1 −1 −1

−3 2 2

−1 0 1


would satisfies J = Q−1AQ or QJ = AQ.

Example 7.2.5

Let

A =



2 −1 0 1

0 3 −1 0

0 1 1 0

0 −1 0 3


.

Find the Jordan canonical form of A and find a Jordan canonical basis for the linear operator

T = LA.

Solution:

1. Eigenvalues: We consider the characteristic polynomial of A to find all eigenvalues.

fA(λ) = |A− λI | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2− λ −1 0 1

0 3− λ −1 0

0 1 1− λ 0

0 −1 0 3− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = ( 2− λ )3( 3− λ ).

Therefore, we have λ1 = 2 and λ2 = 3 with multiplicities m(λ1) = 3 and m(λ2) = 1,

respectively. Therefore, we can deduce that there are two Jordan blocks. One for λ1 of

size 3× 3 and the other for λ2 of size 1× 1. That is,

J =

J1 O

O J2

 .
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Also, let T1 and T2 denote the restrictions of LA to the generalized eigenspaces Kλ1

and Kλ2 , respectively.

2. λ1 = 2

(a) Multiplicities and rj: We have m(λ1) = 3 and hence if β1 is a Jordan canonical

basis for T1, then dim(Kλ1) = 3 and hence the dot diagram for λ1 has three dots.

Computing r1 = 4− rank(A− 2I) = 4− 2 = 2, where

rank(A− 2I) = rank(



0 −1 0 1

0 1 −1 0

0 1 −1 0

0 −1 0 1


) = 2.

Computing r2 = rank(A− 2I)− rank((A− 2I)2) = 2− 1 = 1, where

rank((A− 2I)2) = rank(



0 −2 1 1

0 0 0 0

0 0 0 0

0 −2 1 1


) = 1.

Therefore, our dot diagram is

and we have two cycles (correspond to vertical dots) of lengths 2 and 1. That is,

J1 = [T1]β1
=


2 1

2

2

 .

(b) Eigenspace and generalized eigenspace Here we determine a Jordan canonical

basis β1 for T1. The dot diagram of T1 has two columns, each of which corresponds

to a cycle of generalized eigenvectors. Let v1 and v2 denote the end vectors of the

first and second cycles, respectively. Then we have

• (T− 2I)v1 • v2

• v1

Note that (T − 2I)2v1 = 0 but (T − 2I)v1 6= 0. That is, v1 ∈ N ( (T− 2I)2 ) but

v1 6∈ N ( T− 2I ). Thus, we compute bases for N ( T− 2I ) and N ( (T− 2I)2 ).
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That is, we solve the systems (A− 2I)x = 0 and (A− 2I)2x = 0. For N ( T− 2I ),

we have

N (A− 2I ) =


(a, b, c, d) :



0 −1 0 1

0 1 −1 0

0 1 −1 0

0 −1 0 1





a

b

c

d


=



0

0

0

0




This is can be solved as follows:

0 −1 0 1 0

0 1 −1 0 0

0 1 −1 0 0

0 −1 0 1 0


r.r.e.f−−−→



0 1 0 −1 0

0 0 1 −1 0

0 0 0 0 0

0 0 0 0 0


Thus, b = d and c = d. Hence,

γ1 =





1

0

0

0


,



0

1

1

1




is a basis for N (A− 2I). Note that N (A− 2I) ⊆ N ( (A− 2I)2 ). Now, We do the

same thing for N ( (A− 2I)2 ).

N
(

(A− 2I)2
)

=


(a, b, c, d) :



0 −2 1 1

0 0 0 0

0 0 0 0

0 −2 1 1





a

b

c

d


=



0

0

0

0




This is can be solved as follows:

0 −2 1 1 0

0 0 0 0 0

0 0 0 0 0

0 −2 1 1 0


r.r.e.f−−−→



0 1 −0.5 −0.5 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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Thus, b = 1
2c+ 1

2d. Therefore, γ1 ∪ γ2 is a basis for N ( (A− 2I)2 ), where

γ1 ∪ γ2 =





1

0

0

0


,



0

1

1

1


,



0

1

2

0




Now, we choose v1 from the basis produced in N ( (A− 2I)2 ); namely from γ2.

That is, v1 =



0

1

2

0


. Hence,

(A− 2I )v1 =



0 −1 0 1

0 1 −1 0

0 1 −1 0

0 −1 0 1





0

1

2

0


=



−1

−1

−1

−1


.

For v2, we simply choose a vector in N (A − 2I) but linearly independent of

(A− 2I )v1. One choice from γ1 is

v2 =



1

0

0

0


, another option is v2 =



0

1

1

1


.

Thus, we have constructed the Jordan canonical basis β1 consisting of two cycles

for the Jordan block of λ1 = 2.

β1 = { (A− 2I )v1, v1, v2 } =





−1

−1

−1

−1


,



0

1

2

0


,



1

0

0

0




.

λ2 = 3

(a) Multiplicities and rj: We have m(λ2) = 1. Here, we have a cycle of length 1.

Clearly m(λ2) = 1 and hence dim(Kλ2) = 1. Thus,

J2 = (3).
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(b) Eigenspace and generalized eigenspace: Note that dim(Kλ2) = 1 =

dim(Eλ2). Therefore, Kλ2 = Eλ2 and hence any eigenvector of LA correspond-

ing to λ2 would form the basis β2. For N ( T− 3I ), we have

N (A− 3I ) =


(a, b, c, d) :



−1 −1 0 1

0 0 −1 0

0 1 −2 0

0 −1 0 0





a

b

c

d


=



0

0

0

0




This is can be solved as follows:

−1 −1 0 1 0

0 0 −1 0 0

0 1 −2 0 0

0 −1 0 0 0


r.r.e.f−−−→



1 0 0 −1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0


Thus, a = d and b = c = 0. Hence,

β2 =





1

0

0

1




is a basis for N (A− 3I).

3. Construct J and Q We have already computed J1 and J2 and hence

J =

J1 O

O J2

 =



2 1

2

2

3


.

Moreover, we compute the invertible matrix Q whose columns are the vectors of the

ordered basis β = β1 ∪ β2. That is,

β =





−1

−1

−1

−1


,



0

1

2

0


,



1

0

0

0


,



1

0

0

1




,
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and

Q =



−1 0 1 1

−1 1 0 0

−1 2 0 0

−1 0 0 1


would satisfies J = Q−1AQ or QJ = AQ.
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Exercise 7.2.1

Let T be the linear operator on P2(R) defined by T(f(x)) = −f(x) − f ′(x). Find a Jordan

canonical form of T.

Exercise 7.2.2

Let

A =



2 1 −1 8 −3

0 2 0 7 5

0 0 2 7 5

0 0 0 2 0

0 0 0 0 2


.

Find the Jordan canonical form of A.

Exercise 7.2.3

Let

A =



2 −1 0 1

0 3 −1 0

0 1 1 0

0 −1 0 3


.

Find the Jordan canonical form of A.

Exercise 7.2.4

Let

A =



1 1 1 −1 0

0 1 0 0 1

0 0 0 1 0

0 0 −1 2 1

0 0 0 0 1


.

Find the Jordan canonical form of A and find a Jordan canonical basis for the linear operator

T = LA.
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Section 7.3: Minimal Polynomials

By the Cayley-Hamilton Theorem, for any linear operator T on an n-dimensional vector space V

there is a polynomial f(t) of degree n such that f(T) = T0; namely, the characteristic polynomial

of T.

Hence there is a polynomial of least degree with this property. This degree is at most n.

If g(t) is such a polynomial, we can derive another polynomial p(t) of the same degree with leading

coefficient 1, by dividing g(t) by its leading coefficient. In that case, we say that p(t) is a monic

polynomial.

Definition 7.3.1

Let T be a linear operator on a finite-dimensional vector space. A polynomial p(t) is called

a minimal polynomial of T if p(t) is a monic polynomial of least positive degree for which

p(T) = T0.

Theorem 7.3.1

Let p(t) be a minimal polynomial of a linear operator T on a finite-dimensional vector space

V. Then

1. For any polynomial g(t), if g(T) = T0, then p(t) divides g(t). In particular, p(t) divides

the characteristic polynomial of T.

2. The minimal polynomial of T is unique.

The minimal polynomial of a linear operator has an obvious analog for a matrix.

Definition 7.3.2

Let A ∈Mn×n(F). The minimal polynomial of A is the monic polynomial of least positive

degree for which p(A) = O, where O is the zero matrix.
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Theorem 7.3.2

Let T be a linear operator on a finite-dimensional vector space V, and let β be an ordered

basis for V. Then, the minimal polynomial of T is the same as the minimal polynomial of

the matrix [T]β.

In particular, for any matrix A ∈ Mn×n(F), the minimal polynomial of A is the same as the

minimal polynomial of LA.

Theorem 7.3.3

Let T be a linear operator on a finite-dimensional vector space V, and let p(t) bt the minimal

polynomial of T. A scalar λ is an eigenvalue of T if and only if p(λ) = 0. Hence the

characteristic polynomial and the minimal polynomial of T have the same size.

Proof:

” ⇒” Suppose that λ is an eigenvalue of T corresponding to eigenvector x. That is, T(x) = λx.

Then,

0 = T0(x) = p(T)(x) = p(λ)(x).

Since x 6= 0, we get p(λ) = 0 and so λ is a zero of p(t).

” ⇐” Let f(t) be the characteristic polynomial of T. Since p(t) divides f(t), there exists a

polynomial g(t) such that f(t) = g(t)p(t). Now, if λ is a zero of p(t), then

f(λ) = g(λ)p(λ) = g(λ) · 0 = 0.

That is, λ is a zero of f(t) and hence it is an eigenvalue of T.

Corollary 7.3.1

Let T be a linear operator on a finite-dimensional vector space V with minimal polynomial

p(t) and a characteristic polynomial f(t). Suppose that f(t) factors as

f(t) = (λ1 − t )n1(λ2 − t )n2 · · · (λk − t )nk ,

where λ1, λ2, · · · , λk are the distinct eigenvalues of T. Then there exist integers

m1,m2, · · · ,mk such that 1 ≤ mi ≤ ni for all i and

p(t) = (λ1 − t )m1(λ2 − t )m2 · · · (λk − t )mk .
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Example 7.3.1

Find the minimal polynomial of

A =


3 −1 0

0 2 0

1 −1 2

 .

Solution:

Clearly the characteristic polynomial of A is

f(t) = |A− tI3 | =

∣∣∣∣∣∣∣∣∣∣∣
3− t −1 0

0 2− t 0

1 −1 2− t

∣∣∣∣∣∣∣∣∣∣∣
= · · · = −(t− 2)2(t− 3).

Thus, the minimal polynomial of A must be either ( t− 2 )( t− 3 ) or ( t− 2 )2( t− 3 ).

Substituting A into p(t) = ( t− 2 )( t− 3 ), we find that

p(A) = (A− 2I )(A− 3I ) = 0.

Hence p(t) = ( t− 2 )( t− 3 ) is the minimal polynomial of A.

Example 7.3.2

Let T be the linear operator on R2 defined by

T(a, b) = ( 2a+ 5b, 6a+ b ),

and β be the standard ordered basis for R2. Find the minimal polynomial of T.

Solution:

Clearly, A := [T]β =

 2 5

6 1

 and hence the characteristic polynomial of T is

f(t) = |A− tI2 | =

∣∣∣∣∣∣∣
2− t 5

6 1− t

∣∣∣∣∣∣∣ = · · · = ( t− 7 )( t+ 4 ).

Therefore, the minimal polynomial of T is clearly p(t) = ( t− 7 )( t+ 4 ).
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Example 7.3.3

Let T be the linear operator on P2(R) defined by

T(g(t)) = g′(t).

Find the minimal polynomial of T.

Solution:

Using the standard ordered basis β = { 1, x, x2 }, we clearly find

A := [T]β =


0 1 0

0 0 2

0 0 0

 .

Then

f(t) = |A− tI3 | =


−t 1 0

0 −t 2

0 0 −t

 = −t3.

That is, p(t) is either t, t2, or t3.

Note that

p(A2) = A2 =


0 0 2

0 0 0

0 0 0

 6= 0.

But p(A3) = 0 and hence the minimal polynomial of T is t3.

Theorem 7.3.4

Let T be a linear operator on a finite-dimensional vector space V. Then T is diagonalizable

if and only if the minimal polynomial of T is of the form

p(t) = ( t− λ1 )( t− λ2 ) · · · ( t− λk ),

where λ1, λ2, · · · , λk are the distinct eigenvalues of T.
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Example 7.3.4

Determine all matrices A ∈M2×2(R) for which A2 − 3A+ 2I2 = 0.

Solution:

Let g(t) = t2 − 3t + 2 = ( t− 1 )( t− 2 ). Since g(A) = 0, the minimal polynomial p(t) of A

divides g(t).

Therefore, the only possible candidates for p(t) are t− 1, t− 2, and (t− 1)(t− 2).

If p(t) = t − 1 or p(t) = t − 2, then A = I or A = 2I, respectively. If p(t) = (t − 1)(t − 2),

then A is diagonalizable with eigenvalues 1 and 2, and hence A is similar to

 1 0

0 2

.

Example 7.3.5

Let A ∈Mn×n(R) with A3 = A. Show that A is diagonalizable.

Solution:

Let g(t) = t3 − t = t(t+ 1)(t− 1). Then g(A) = 0 and hence the minimal polynomial p(t) of

A divides g(t).

Since g(t) has distinct zeros, so p(t) has distinct zeros as well. Thus, A is diagonalizable.

Remark 7.3.1

The operator T on P2(R) of Example 7.3.3 is not diagonalizable. This is because its minimal

polynomial is t3 and hence Theorem 7.3.4 implies that T is not diagonalizable.
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Exercise 7.3.1

Find the minimal polynomial of

A =

 2 1

1 2

 .

Exercise 7.3.2

Find the minimal polynomial of

A =

 1 1

0 1

 .

Exercise 7.3.3

Let T be the linear operator on R2 defined by

T((a, b)) = (a+ b, a− b).

Find the minimal polynomial of T.

Exercise 7.3.4

Let T be the linear operator on P2(R) defined by

T(g(t)) = g′(t) + 2g(x).

Find the minimal polynomial of T.
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