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1
Chapter

Triangles and Quadrilaterals

In this chapter, we discuss the following topics in some details: Lines and angles; Parallelism; Congru-

encey and similarity of triangles; Isosceles and equilateral triangles; Right-angled triangles; Parallelogram;

Rhombus; Rectangle; and Square.

1.1 Lines and Angles

Any two points A and B determine a unique line l, denoted by
←→
AB. Two lines l and m intersect in at most

one point. If l do not intersect m, then we say that l and m are parallel lines, denoted
←→
l ‖←→m . On the other

hand, if two (or more) lines intersect in one point, the lines are said to be concurrent. Moreover, points on

one line are called collinear.

Theorem 1.1.1

If l is a line and P is a point not on l, then:

1. There is exactly one line through P that is parallel to l.

2. There is exactly one line through P that is perpendicular to l.

A bisector of a segment is a line intersecting the segment at its midpoint. A perpendicular bisector

of a segment is a line that is perpendicular to the segment at its midpoint. As a reslt, any point lies

on the perpendiclar bisector is equidistant (has equal distant) from the endpoints of the segment.

A ray AC, denoted
−→
AC, consists of the segment AC and all other points P

such that C is between A and P. In this case, A is called the endpoint of

the ray.
A

C P

An angle Â is formed by two rays
−→
AB and

−→
AC that have the same end

point A. The rays then are called the sides of the angle, and A is called

the vertex of the angle. In the diagram, the angle can be denoted: Â,

ˆBAC, ˆCAB, or 1̂. A

B

C

1

1



2 Chapter 1. Triangles and Quadrilaterals

There are several types of angles:

1. Acute angle: measures between 0◦ and 90◦.

2. Right angle: measures exactly 90◦.

3. Obtuse angle: measures between 90◦ and 180◦.

4. Straight angle: measures exactly 180◦.

Two angles Â and B̂ with equal measures are called congruent angles, denoted Â∼= B̂.

Two angles with a common vertex and a common side are called adja-

cent angles. The bisector of an angle is the ray that divides the angle

into two congruent adjacent angles. As a reslt, a point lies on the bisec-

tor of an angle if and only if it is equidistant (has equal distant) from the

sides of the angle. In the diagram: The distance between C and B equals

the distance between C and D.

A

B

C

D

Theorem 1.1.2

A point lies on the perpendicular bisector of a segment if and only if

the point is equidistant from the end point of the segment.

A B

C

M

Theorem 1.1.3

A point lies on the angle bisector of an angle if and only if the point

is equidistant from the sides of the angle.

A B

C

M

X Y
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Complementary angles are two angles whose measures have the sum

90◦. Each angle is called complement of each other.

A B

C

D

40◦
50◦

Supplementary angles are two angles whose measures have the

sum 180◦. Each angle is called supplement of each other.

A BC

D

70◦
130◦

Vertical angles (vert.) are two angles such that the sides of one angle

are opposite rays to the sides of the other angle.
A

B

C

D

xy

Theorem 1.1.4

Vertical angles are congruent.

Proof:

Note that angles 1̂ and 3̂; and angles 2̂ and 3̂ are both supple-

mentary angles. That is

180◦ =
∣∣ 1̂ ∣∣+ ∣∣ 3̂ ∣∣= ∣∣ 2̂ ∣∣+ ∣∣ 3̂ ∣∣ . Therefore,

∣∣ 1̂ ∣∣= ∣∣ 2̂ ∣∣ .
21

3



4 Chapter 1. Triangles and Quadrilaterals

• A transversal is a line cutting off two or more other lines in

different points. Example: l is a transversal.

• Alternate interior angles are two nonadjacent interior angles

on opposite sides of a transversal. Example: 3̂ and 6̂; 4̂ and 5̂

are alternate interior angles.

• Same-side interior angles are two interior angles on the same

side side of the transversal. Example: 3̂ and 5̂; 4̂ and 6̂ are

same-side interior angles.

• Corresponding angles are two angles in corresponding posi-

tion relative to the two intersected lines. Example: 1̂ and 5̂; 2̂

and 6̂; 3̂ and 7̂; 4̂ and 8̂ are corresponding angles.

l

21

3 4

5 6

7 8

Theorem 1.1.5

If two lines are cut off by a transversal, then the two lines

are parallel if and only if any of the following hold:

1. Corresponding angles are congruent. e.g. 1̂∼= 5̂,

2. Altrnate interior angles are congruent. e.g. 3̂∼= 6̂, or

3. Same-side interior angles are supplementary. e.g.∣∣ 3̂ ∣∣+ ∣∣ 5̂ ∣∣= 180◦.

21

3 4

5 6

7 8

Example 1.1.1

Find the values of x and y in the diagram.

Solution:

Observe that we have two parallel lines: ←→m ‖
←→
l . Then,

by Theorem 1.1.5, we have | x̂ | = 70◦ (since they are corre-

sponding angles). Also, Theorem 1.1.4 implies that | ẑ | =

50◦ (they are opposite angles). Note that, angles x̂, Â, and ŷ

are supplementary, and hence | ŷ |= 180◦−| x̂ |− | ẑ |= 60◦.

lm

70◦y
z

x

50◦
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A triangle is formed by three segments called sides, and three points each

is called a vertex.

• Triangle ABC is denoted M ABC.

• Vertices of M ABC: A, B, and C.

• Sides of M ABC: AB, AC, and BC.

• Angles of M ABC: Â, B̂, and Ĉ.
A B

C

A B

C

Scalene.
No congruent sides.

A B

C

Isosceles.
At least two sides congruent.

A B

C

Equilateral.
All sides congruent.

Figure 1.1: Types of triangles with respect to their sides congruence.

A B

C

Acute.
Three acute angles.

A B

C

Obtuse.
One obtuse angle.

A B

C

hypotenusele
g

leg

Right.
One right angle.

A B

C

Equiangular.
All angles congruent.

Figure 1.2: Types of triangles with respect to their angles.

Theorem 1.1.6

The measure of angles of any triangle sums to 180◦.

Proof:

Let M ABC be any triangle. Draw a line
←→
BD parallel to

←→
AC, see the

diagram. Note that
∣∣ 2̂ ∣∣+ ∣∣ 4̂ ∣∣+ ∣∣ 5̂ ∣∣= 180◦ (supp. angles). The line

←→
AB

is a transversal to the parallel lines
←→
BD and

←→
AC. Hence, 1̂∼= 4̂ (alternate

interior angles). Also,
←→
BC is another transversal and hence 3̂∼= 5̂. Thus,∣∣ 2̂ ∣∣+ ∣∣ 1̂ ∣∣+ ∣∣ 3̂ ∣∣= ∣∣ 2̂ ∣∣+ ∣∣ 4̂ ∣∣+ ∣∣ 5̂ ∣∣= 180◦.

A

B

C

D

4
2 5

1 3
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When one side of a triangle is extended, an exterior angle is formed.

Fact: The measure of the exterior angle equal the sum of the other

two nonadjacent angles of the triangle. That is, | ŵ |= | x̂ |+ | ẑ |. A B

C

D

x y

z

w

A median CM of a triangle is a segment from a vertex to the middle

point of opposite side (inside the triangle).

A B

C

M

An altitude CO of a triangle is the perpendicular segment from a vertex to the line

that contains the opposite side (might be inside or outside the triangle).

A B

C

O

An incenter is the point of intersection of the angle bisectors of a triangle.

A B

C

G

A circumcenter is the point of intersection of the perpendicular bisectors

of the sides of a triangle.
A B

C

G

P

Q R
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1.2 Congruent and Similar Triangles

Definition 1.2.1

Two triangles are congruent if and only if their vertices can be matched up so that the corresponding

parts (sides and angles) of the triangles are congruent. In that case, we write the corresponding

vertices in the same order. That is, M ABC ∼=M DEF means that Â∼= D̂, B̂∼= Ê, and Ĉ ∼= F̂ ; and

AB∼= DE, AC ∼= DF , and BC ∼= EF .

Remark 1.2.1: Showing Two Triangles are Congruent

Two triangles are congruent if any condition of the following holds:

1. S.S.S.: The three sides of two triangles are congruent.

2. S.A.S.: Two sides and the included angle of two triangles are congruent.

3. A.S.A.: Two angles and the included side of two triangles are congruent.

4. A.A.S.: Two angles and a non-included side of two triangles are congruent.

5. H.L.: The hypotenuse and a leg of two (right) triangles are congruent.

A B

C

D E

F

1. S. S. S.
M ABC ∼=M DEF by SSS.

A B

C

D E

F

2. S. A. S.
M ABC ∼=M DEF by SAS.

A B

C

D E

F

3. A. S. A.
M ABC ∼=M DEF by ASA.

A B

C

D E

F

4. A. A. S.
M ABC ∼=M DEF by AAS.

A B

C

D E

F

5. H. L.
M ABC ∼=M DEF by HL.
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Example 1.2.1

Let D be the midpoint of AB, and let CD⊥ AB. Prove: M ADC ∼=M BDC.

Solution:

1. AD∼= BD (because D is a midpoint of AB).

2. ˆADC ∼= ˆBDC, because CD⊥ AB.

3. CD is common to triangles M ADC and M BDC.

Therefore, M ADC ∼=M BDC by SAS. A B

C

D

Example 1.2.2

Given: CE ∼= BE and AC ‖ BD. Prove: M ACE ∼=M DBE.

Solution:

Note that
←→
BC is a transversal to the parallel lines

←→
AC and

←→
BD

1. B̂∼= Ĉ (alt. int. angles).

2. CE ∼= BE (Given).

3. ˆBED∼= ˆAEC (vertical opposite angles).

Therefore, by ASA, M ACE ∼=M DBE.

A B

C D
E

A proportion is an equation
a
b
=

c
d
= k (k is called the scale factor) stating that the two ratios are equal.

Definition 1.2.2

Two triangle are similar if and only if their vertices can be paired so that:

1. corresponding angles are congruent, and

2. corresponding sides are in proportion. (Their lengths have the same ratio).

That is, if M ABC is similar to triangle M DEF , we write M ABC ∼M DEF which implies that

Â∼= D̂, B̂∼= Ê, and Ĉ ∼= F̂ ; and

∣∣AB
∣∣∣∣DE
∣∣ =

∣∣AC
∣∣∣∣DF
∣∣ =

∣∣BC
∣∣∣∣EF
∣∣ .



1.2. Congruent and Similar Triangles 9

For instance the triangles M ABC and M DEF are similar:

A B

C

2

3
4

D E

F

4

6
8

Remark 1.2.2: Showing Two Triangles are Similar

Two triangles are similar if any condition of the following holds:

1. S-S.S.S.: The three sides of two triangles are in proportion.

2. S-S.A.S.: Two sides (in proportion) and the included angle (congruent) of two triangles.

3. S-A.A.: Two angles (and hence the third) of two triangles are congruent.

Example 1.2.3

Given: Â∼= B̂ (right angles). Prove: M ACE ∼M BDE. Or Show that
∣∣AC

∣∣ · ∣∣DE
∣∣= ∣∣BD

∣∣ · ∣∣CE
∣∣.

Solution:

1. 1̂∼= 2̂ (vertical opposite angles).

2. Moreover, Â∼= B̂ (given).

Therefore, M ACE ∼M BDE by S-AA. That is,

∣∣AC
∣∣∣∣BD
∣∣ =

∣∣CE
∣∣∣∣DE
∣∣ and

hence the results.
A B

C
D

E
1 2

Theorem 1.2.1: Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two

sides, then it divides those sides proportionally. In fact it pro-

duces two similar triangles. That is,

Given: M ABC; PQ ‖ AB. Then:

∣∣AP
∣∣∣∣PC
∣∣ =

∣∣BQ
∣∣∣∣QC
∣∣ . That is

M ABC ∼M PQC.
A

B

C

P

Q

1
2

3

4

Proof:

Since PQ ‖ AB, we have (corresponding angles) 1̂∼= 2̂ and 3̂∼= 4̂. Since Ĉ is a common angle in
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triangles M ABC and M PQC, we get M ABC ∼M PQC, by S-AA. That is,

∣∣AC
∣∣∣∣PC
∣∣ =

∣∣BC
∣∣∣∣QC
∣∣ where∣∣AC

∣∣= ∣∣AP
∣∣+ ∣∣PC

∣∣, and
∣∣BC

∣∣= ∣∣BQ
∣∣+ ∣∣QC

∣∣. Thus,∣∣AP
∣∣+ ∣∣PC

∣∣∣∣PC
∣∣ =

∣∣BQ
∣∣+ ∣∣QC

∣∣∣∣QC
∣∣ ⇒

∣∣AP
∣∣∣∣PC
∣∣ =

∣∣BQ
∣∣∣∣QC
∣∣ .

Theorem 1.2.2: Triangle Angle-Bisector Theorem

The bisector of an angle in a triangle divides the opposite side into segments proportional to the

other sides. That is,

Given: M ABC; bisector CM. Then:

∣∣AC
∣∣∣∣BC
∣∣ =

∣∣AM
∣∣∣∣BM
∣∣ .

Proof:

Draw AN ‖MC so that BC intersects AN in point N. Then

1. 1̂∼= 2̂ (CM is bisector of Ĉ).

2. 2̂∼= 4̂ (alternate interior angles since AC is a transversal).

3. 1̂∼= 3̂ (corresponding angles since BN is a transversal).

Therefore, 3̂∼= 4̂ and hence MCNA is isosceles with NC ∼= AC.

By Theorem 1.2.1, M BCM ∼M BNA, and

∣∣NC
∣∣∣∣BC
∣∣ =

∣∣AM
∣∣∣∣BM
∣∣ . But

∣∣NC
∣∣= ∣∣AC

∣∣. Therefore,

∣∣AC
∣∣∣∣BC
∣∣ =

∣∣AM
∣∣∣∣BM
∣∣ .

A B

C

M

N

12

3

4

Example 1.2.4

Given: M AYC ∼M BXC. Then: MCXY ∼MCBA.

A B

C

X Y

Solution:



1.2. Congruent and Similar Triangles 11

We first redraw the needed triangles:

A

C

Y

A B

C

YX

B

C

X

It is clear that the angle Ĉ is a common angle in the two triangles MCXY and MCBA. Since,

M AYC ∼M BXC, we have

∣∣BX
∣∣∣∣AY
∣∣ =

∣∣CX
∣∣∣∣CY
∣∣ =

∣∣CB
∣∣∣∣CA
∣∣ . That is

∣∣CX
∣∣∣∣CB
∣∣ =

∣∣CY
∣∣∣∣CA
∣∣ . Therefore, by S-SAS,

we have MCXY ∼MCBA.
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1.3 More on Triangles

Theorem 1.3.1

In any triangle M ABC, let M be a midpoint of AB. Then, BC ‖MN if and only if N is the midpoint

of AC.

Given: M ABC; M is midpoint of AB. Then: BC ‖MN iff N is midpoint of AC.

Proof:

A

B C

M N1 2

”⇒”: Suppose BC ‖MN. We show that M ABC ∼M AMN.

1. 1̂∼= B̂ and 2̂∼= Ĉ (corresponding angles).

2. Â is common.

Thus, by S-AA, we have M ABC ∼M AMN.

Hence,

∣∣AN
∣∣∣∣AC
∣∣ =

∣∣AM
∣∣∣∣AB
∣∣ = 1

2 . Therefore,
∣∣AN

∣∣= 1
2

∣∣AC
∣∣ and therefore,

N is the midpoint of AC.

”⇐”: Suppose N is the midpoint of AC.

Clearly, M ABC ∼M AMN since

1. Â is common angle.

2.

∣∣AM
∣∣∣∣AB
∣∣ =

∣∣AN
∣∣∣∣AC
∣∣ = 1

2 .

Thus, by S-SAS, we have M ABC ∼M AMN.

Therefore, 1̂∼= B̂ (corresponding angles) which implies that MN ‖ BC.

Theorem 1.3.2

In any triangle M ABC, the three angle bisectors concurrent at an equidistant point (called incenter)

from the sides of the triangle.

Given: M ABC; the bisectors of Â, B̂, and Ĉ. Then: The angle bisectors intersect in a point; that

point is equidistant from AB, AC, and BC.

Proof:
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Let I be the intersection of bisectors of angles Â, and B̂. We

show that I also lies on bisector of angle Ĉ; and that I is

equidistant from all sides.

Draw segments IR, IS, and IT perpendicular to AB, AC, BC,

respectively. By Theorem 1.1.3, we have

1. IR∼= IS (I lies on bisector of angle Â).

2. IR∼= IT (I lies on bisector of angle B̂).

Hence IS∼= IT . Again by Theorem 1.1.3, we have I lies on the

bisector of angle Ĉ. Clearly,
∣∣ IR
∣∣ = ∣∣ IS

∣∣ = ∣∣ IT
∣∣ and hence I

is equidistant from the sides of M ABC.

I

A B

C

R

S T

Theorem 1.3.3

In any triangle M ABC, the three perpendicular bisectors of the sides concurrent at an equidistant

point (called circumcenter) from the vertices of the triangle.

Given: M ABC; the perpendicular bisectors of AB, AC, and BC. Then: The perpendicular bisectors

intersect in a point; that point is equidistant from vertices A, B, and C.

Proof:

Let O be the intersection of perpendicular bisectors of AB, and

AC. We show that O also lies on perp. bisector of BC; and that

O is equidistant from all vertices.

Draw segments OR, OS, and OT . By Theorem 1.1.2, we have

1. OA∼= OB (O lies on perp. bisector of AB).

2. OA∼= OC (O lies on perp. bisector of AC).

Hence OB∼= OC. Again by Theorem 1.1.2, we have O lies on

the perp. bisector of BC. Clearly,
∣∣OA

∣∣ = ∣∣OB
∣∣ = ∣∣OC

∣∣ and

hence O is equidistant from the vertices of M ABC. A B

C

O

R

S T
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Theorem 1.3.4: The Isosceles Triangle Theorem

The base angles of an isosceles triangle are congruent.

Proof:

Given M ABC isosceles with
∣∣AC

∣∣ = ∣∣BC
∣∣. Let M be the midpoint

of AB. Hence AM ∼= BM. Also note that CM is common in the

two triangles M ACM and M BCM. Therefore, M ACM ∼=M BCM by

SSS. Hence Â∼= B̂.

A B

C

M

Theorem 1.3.5: The Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Proof:

Given M ABC with Â∼= B̂. Draw the angle bisector CM to get

ˆACM ∼= ˆBCM. By AAS, we have M ACM ∼=M BCM since

1. Â∼= B̂ (given).

2. ˆACM ∼= ˆBCM (constructed).

3. CM is common.

Therefore, AC ∼= BC. A B

C

M

Theorem 1.3.6: The Altitude Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then

the two triangles formed are similar to the original one and to each

other.

Given: M ABC with right angle Â; altitude AM. Then: M BAC ∼

M BMA∼ M AMC. A B

C

M
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Proof:

Simply redraw the three triangles and use the S-AA to show the similarity.

A B

C

M B

A

M A

C

Theorem 1.3.7: The Pythagorean Theorem

In a right triangle, the square of the hypotenuse equals the sum of the squares of the legs.

Given: Right M ABC;
∣∣A ∣∣= 90◦. Then: a2 = b2 + c2.

Proof:

By Theorem 1.3.6, we have M BAC ∼ M BMA ∼ M AMC. Hence, we

have ∣∣BA
∣∣∣∣BM
∣∣ =

∣∣BC
∣∣∣∣BA
∣∣ ⇒ c

d
=

a
c
⇒ c2 = ad.

Also,

∣∣BC
∣∣∣∣AC
∣∣ =

∣∣AC
∣∣∣∣MC
∣∣ that is

a
b
=

b
e

and hence b2 = ae. Therefore,

b2 + c2 = ae+ad = a(d + e) = a2.

A B

C

M

a

d

e

b

c

Theorem 1.3.8: The Converse of Pythagorean Theorem

If the square of the one side of a triangle equals the sum of the squares of the two other sides, then

the triangle is right.

Given: triangle M ABC; a2 = b2 + c2. Then: M ABC is right triangle.

Proof:

Let M DEF be a right triangle with legs b and c and the length of hy-

potenue is d. Then d2 = b2 + c2 = a2. That is a = d. By SSS,

M ABC ∼=M DEF . That is M ABC is a right triangle.
A B

C

ab

c
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1.4 Parallelograms

Definition 1.4.1

A parallelogram ( ) is quadrilateral (a polygon with four sides) with both pairs of opposite

sides parallel.

Theorem 1.4.1

Opposite sides of a parallelogram are congruent. Given: ABCD. Then: AB∼=CD and AD∼= BC.

Proof:

Consider M ABC and MCDA:

1. AC is common.

2. 1̂∼= 4̂ (alternate interior angles).

3. 2̂∼= 3̂ (alternate interior angles).

By ASA: M ABC ∼=MCDA. Hence AB∼=CD and AD∼= BC. A B

CD

1
2

3
4

Theorem 1.4.2

Opposite angles of a parallelogram are congruent.

Theorem 1.4.3

The diagonals of a parallelogram bisect each other.

Given: ABCD with diagonals AC and BD. Then: AC and BD bisect each other.

Proof:

Consider M AMB and MCMD. By Theorem 1.4.1, we have

AB∼=CD. Also, 1̂∼= 4̂ and 2̂∼= 3̂ (alternate interior angles).

By ASA: M AMB ∼=MCMD. Hence, AM ∼=CM and BM ∼= DM.
A B

CD

M

1 2

3 4
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Theorem 1.4.4

In a quadrilateral, if the opposite sides congruent, then it is parallelogram.

Given: AB∼=CD and AD∼= BC. Then: ABCD is parallelogram.

Proof:

By SSS, M ABC ∼=MCDA. Hence 1̂∼= 4̂ (and 2̂∼= 3̂). By Theo-

rem 1.1.5, we have AB ‖CD and AD ‖ BC. Thus, ABCD is a

parallelogram.
A B

CD

1
2

3
4

Theorem 1.4.5

In a quadrilateral, if two opposite sides are congruent and parallel, then it is parallelogram.

Given: AB ‖CD and AB∼=CD. Then: ABCD is parallelogram.

Proof:

Consider M ABC and MCDA:

1. AC is common.

2. AB∼=CD (given).

3. 1̂∼= 2̂ (alternate interior angles).

By SAS: M ABC ∼=MCDA. Hence AD∼= BC. Thus, ABCD is a

parallelogram.

A B

CD

1

2

Theorem 1.4.6

If the diagonals bisect each other in a quadrilateral, then it is parallelogram.

Given: diagonals bisect each other in quadrilateral ABCD. Then: ABCD is parallelogram.

Proof:

A B

CD

M

1

2

Consider M ABM and MCDM:

1. ˆAMB∼= ˆCMD (vertically opposite).

2. AM ∼=CM (given).

3. BM ∼= DM (given).
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By SAS: M ABM ∼=MCDM. Then AB∼=CD and 1̂∼= 2̂ which implies

that AB ‖CD. That is ABCD is a parallelogram.

Theorem 1.4.7

If the opposite angles are congruent in a quadrilateral, then it is parallelogram.

Given: Â∼= Ĉ and B̂∼= D̂ in quadrilateral ABCD. Then: ABCD is parallelogram.

Proof:

∣∣ Â ∣∣+∣∣ B̂ ∣∣+∣∣Ĉ ∣∣+∣∣ D̂ ∣∣= 2
∣∣ Â ∣∣+2

∣∣ B̂ ∣∣= 360. That is,
∣∣ Â ∣∣+∣∣ B̂ ∣∣= 180

(Â and B̂ are supplementary). By Theorem 1.1.5, AD ‖ BC. But then

Â and D̂ are also supplementary and again AB ‖CD. That is ABCD is

a parallelogram. A B

CD

Example 1.4.1

Let M ABC be a triangle with P, Q, and R are midpoints for AB, AC, and BC, respectively. Show

that APRQ is a parallelogram.

Solution:

By Theorem 1.3.1, we have AP ‖ QR and AC ‖ PR. Hence, AP ‖ QR

and AQ ‖ PR. That is APRQ is a parallelogram.

A B

C

P

Q R
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1.5 Special Parallelograms

Definition 1.5.1

A rectangle is a parallelogram with four right angles.

Definition 1.5.2

A rhombus is a parallelogram with four congruent sides.

Definition 1.5.3

A square is a parallelogram with four congruent sides and four right angles.

Thus, every square is a rectangle and a rhombus.

Theorem 1.5.1

Let ABCD be a parallelogram, then ABCD is a rectangle if and only if its diagonals are congruent.

Proof:

A B

CD

A B

CD

”⇒”: Suppose that ABCD is a rectangle. Then it has four right angles. In the two triangles M ABC

and M BAD, we have:

1. AB is common.

2. ˆABC ∼= ˆBAD (both are right).

3. AD∼= BC (It is parallelogram).

By SAS: M ABC ∼=MCDA. Hence AC ∼= BD.

” ⇐”: Suppose that ABCD is a parallelogram with congruent diagonal AC and BD. In the two

triangles M ABC and M BAD, we have:

1. AB is common.
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2. AD∼= BC (It is a parallelogram).

3. AC ∼= BD (given).

By SSS: M ABC ∼=M BAD. Thus Â∼= B̂. But since AD ‖ BC, we have
∣∣ Â ∣∣+ ∣∣ B̂ ∣∣= 180◦ (same-side

interior angles are supplementary). Hence
∣∣ Â ∣∣= ∣∣ B̂ ∣∣= 90◦. That is ABCD is a rectangle.

Theorem 1.5.2

A quadrilateral ABCD is a rhombus if and only if its diagonals are perpendicular bisectors.

Proof:

A

B

C

D

O

” ⇒”: Suppose that ABCD is a rhombus. Then it is a parallelogram and

hence its diagonals AC and BD bisect each other. We need to show that

AC ⊥ BD. In the two triangles M ADO and MCDO, we have:

1. OD is common.

2. AD∼=CD (It is rhombus).

3. AO∼=CO (It is parallelogram).

By SSS: M ADO ∼=MCDO. Hence ˆAOD∼= ˆCOD and both are right angles.

”⇐”: Suppose that ABCD is a quadrilateral with its diagonals are perpendicular bisector. Since AC

and BD bisect each other, then ABCD is a parallelogram. In the two triangles M ADO and MCDO,

we have:

1. OD is common.

2. ˆAOD∼= ˆCOD (given).

3. AO∼=CO (given).

By SAS: M ADO ∼=MCDO. Thus AD∼=CD which implies that ABCD is a rhombus.

Example 1.5.1

A B

C D

M

Show that the point M is equidistant from the vertices of the right tiangle.

Solution:

Let D be the point of intersection of the lines
←→
CD (parallel to

←→
AB), and

←→
BD

(parallel to
←→
AC). By this construction, we get the parallelogram ABDC which

has a right angle Â. Thus we get the rectangle ABDC. Since it is a rectangle, its
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diagonals AD and BC bisect each other. That is,
∣∣AM

∣∣= ∣∣BM
∣∣= ∣∣CM

∣∣.
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2
Chapter

Circles

In this chapter we consider: Basic notions and definitions of circles. Circle theorems. Cyclic quadrilateral.

2.1 Notions and Definitions

Definition 2.1.1

1. A circle is a set of points at a given distance (called radius "r") from a

given point (called center). All radii of a circle are congruents.

2. A chord is a segment whose endpoints on a circle. Drawn as XY .

3. A secant is a line that contains a chord. Drawn as CD.

4. A diameter is a chord containing the center of a circle. Drawn as AB.

5. A tangent is a line intersecting the circle in exactly one point called the

point of tangency. Drawn as PQ. The tangency point here is T .

6. We write c(A,r) to denote a circle with radius r centered at point A. We

also write �A to denote a circle centered at point A.

7. Congruent circles c(A,r)∼= c(B,r) are circles with congruent radii.

O

A

B
C

D

X

Y

PQ T

r

r

A polygon is inscribed in a circle and the circle is circumscribed about the polygon when each

vertex of the polygon lies on the circle. In that case, the polygon is called cyclic.

If each side of a polygon is tangent to a circle, the polygon is said to be circumscribed about the

circle and the circle is inscribed in the polygon.

OA

B

C

OA

B

C

Inscribed polygons

circumscribed circles

circumscribed polygons

Inscribed circles

O

A

B

C

D

O

A

B

C

D

23
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Definition 2.1.2

1. A central angle ˆAOB of a circle is an angle whose vertex at the center. Examples of central

angles: ˆAOB, ˆBOC, and ˆCOD.

2. A, B and the inbetween points of the circle form an arc, denoted >AB.

3. If A and B were the endpoints of a diameter, then the arc is called semicircle.

4. Adjacent arcs of a circle are arcs with exactly one common point. Arcs >AB and >BC are

adjacent.

5. The measure of an arc is defined to be the measure of its central angle.
∣∣>AB

∣∣= ∣∣ ˆAOB
∣∣.

6. Congruent arcs are arcs having the same measure.

7. An inscribed angle ˆY XZ is an angle whose vertex X is on the circle and whose sides contain

chords XY and XZ of the circle. In that case, we say that angle ˆY XZ intercept the arc >YZ.

>AB
>BC

>CD

>AD semicircle

O

A

B

C

D

X

Y Z

Theorem 2.1.1

If
←→
AB is a line and �O is a circle. Then

←→
AB is tangent to �O at A if and only if AB⊥ AO.

Sketch:

O

A BC



2.1. Notions and Definitions 25

Theorem 2.1.2: The Two Tangent Theorem

Tangents to a circle from a point P are congruent.

Proof:

In the two right triangles PAO and PBO (
∣∣ Â ∣∣ = ∣∣ B̂ ∣∣ = 90◦ since

both points are tangency points), we have:

1. (leg) AO∼= BO (radii).

2. (hypotenuse) PO is common.

By HL, we have M PAO ∼=M PBO. Thus, PA∼= PB.

A

B

P
O

Theorem 2.1.3: The Arc Addition Theorem

The measure of the arc formed by two adjacent arcs equals the sum of the measure of these arcs.

Theorem 2.1.4

Two arcs are congruent if and only if their central angles are congruent.

Example 2.1.1

A

B

C

D

O
1

2 3

4

Given AB is a diameter of �O, and let CO ‖ BD. Show that >AC∼=>CD.

Solution:

If CO ‖ BD, then 1̂∼= 2̂ (corresponding angles). But then 2̂∼= 3̂ as the

M OBD is isosceles triangle with congruent base angles. Then 3̂∼= 4̂ (al-

ternate interior angles). That is 1̂∼= 4̂ which implies >AC∼=>BD.

Example 2.1.2

A

B

C

R

S

Let RS be tangent to �A and �B. Show that M ARC ∼M BSC.

Solution:

Clearly, ˆACR∼= ˆBCS (vertically opposite). Also Ŝ∼= R̂ (both are right

angles). By S-AA, M ARC ∼=M BSC.
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2.2 Arcs, Chords, and Angles of Circles

Theorem 2.2.1

O

A

B

C

D

Two chords are congruent if and only if their intercepted arcs are congruent.

Proof:

”⇒”: Suppose that AB∼=CD. Then: M AOB and MCOD have:

1. AB∼=CD (given).

2. AO∼=CO and BO∼= DO (all of length radius r).

By SSS, we have M AOB ∼=MCOD. Hence ˆAOB∼= ˆCOD which implies that
>AB∼=>CD.

”⇐”: Suppose that >AB∼=>CD. Then ˆAOB∼= ˆCOD. In M AOB and MCOD we have:

1. AO∼=CO and BO∼= DO (all of length radius r).

2. ˆAOB∼= ˆCOD (given).

By SAS, we have M AOB ∼=MCOD. Hence AB∼=CD.

Theorem 2.2.2

Let ON be the segment joining the center O to a point N on the circle. Then: ON ⊥ AB if and only

if ON bisects AB. In either case, ON bisects >AB.

Given: �O; and ON. Then ON ⊥ AB iff ON bisects AB. Moreover, ON bisects >AB.

Proof:

O

A B
M

N

O

A B
M

N

1 2

3 4

” ⇒”: Suppose that ON ⊥ AB intersecting in point M. In

right triangles M OAM and M OBM:

1. (hypotenuse) OA∼= OB (both have length radius-r).

2. (leg) OM is common.

By HL, we have M OAM ∼=M OBM. Hence, AM ∼= BM.

Also, ˆMOA∼= ˆMOB which implies that >AN∼=>BN.

” ⇐”: Suppose that ON bisects AB. Then, AM ∼= BM. In

triangles M OAM and M OBM, we have

1. AO∼= BO (both have length radius-r).
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2. AM ∼= BM (given).

3. OM is common.

By SSS, we have M OAM ∼=M OBM. Hence 1̂∼= 2̂ which implies that both angles are right. That is

ON ⊥ AB. Moreover, 3̂∼= 4̂ which implies that >AN∼=>BN.

Theorem 2.2.3

O

A

B

C

D

M

N

Two chords are congruent if and only if they are equidistant from the center.

Proof:

” ⇒”: Suppose that AB∼=CD. Then >AB∼=>CD. Let OM ⊥ AB and

ON ⊥CD. We now need to show that OM ∼= ON. By Theorem 2.2.2, M

and N are midpoints for AB and CD. Then the right triangles M OBM and

M ODN have:

1. (hypotenuse) OB∼= OD (both have length radius-r).

2. (leg)
∣∣ND

∣∣= 1/2
∣∣CD

∣∣= 1/2
∣∣AB

∣∣= ∣∣MB
∣∣ (given:

∣∣AB
∣∣= ∣∣CD

∣∣).
By HL, we have M OBM ∼=M ODN. Hence, OM ∼= ON.

”⇐”: Suppose that OM ∼= ON "AB and CD are equidistant". Then the right triangles M OBM and

M ODN have:

1. OM ∼= ON (given).

2. OB∼= OD (both have length radius-r).

3. M̂ ∼= N̂ (both right angles).

By HL, we have M OBM ∼=M ODN. Hence BM ∼= DN. But since OM and ON are perpendicular to

AB and CD, Theorem 2.2.2 implies that M and N are midpoint of AB and CD. Therefore, AB∼=CD.

Example 2.2.1

1
2

O

A

BC

D

Let >AB∼=>DB. Show that 1̂∼= 2̂.

Solution:

Given >AB∼=>BD, we get AB∼= BD by Theorem 2.2.1. Therefore,
∣∣>AC

∣∣=
180◦−

∣∣>AB
∣∣= 180◦−

∣∣>BD
∣∣= ∣∣>CD

∣∣. Thus >AC∼=>CD which implies that

AC ∼=CD. By SSS, M ABC ∼=M DBC and hence 1̂∼= 2̂.
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Theorem 2.2.4

The measure of an inscribed angle in a circle equals half of the measure of its intercepted arc.

Given: �O and inscribed angle ˆABC. Then:
∣∣ ˆABC

∣∣= 1
2

∣∣>AC
∣∣.

Proof:

We have three cases for such inscribed angle whether its chords passing through the center or not:

OA

B

C

Case 1

OA

B

CD

Case 2

OA

B

C
D

Case 3

Case 1: Draw line OA. Then M OAB is isosceles with
∣∣ ˆBAO

∣∣= ∣∣ ˆABO
∣∣= x. Then ˆAOC is an exterior

angle to the triangle. That is
∣∣ ˆAOC

∣∣= 2x. That is,
∣∣>AC

∣∣= 2x. Therefore,
∣∣ ˆABO

∣∣= x = 1
2

∣∣>AC
∣∣.

Case 2: Draw diameter BD passing through the center O. By case 1:
∣∣ ˆCBD

∣∣= 1
2

∣∣>CD
∣∣ and

∣∣ ˆDBA
∣∣=

1
2

∣∣>AD
∣∣. Thus

∣∣ ˆABC
∣∣= ∣∣ ˆABD

∣∣+ ∣∣ ˆDBC
∣∣= 1

2

∣∣>AD
∣∣+ 1

2

∣∣>CD
∣∣= 1

2

∣∣>AC
∣∣ .

Case 3: Draw diameter BD passing through the center O. By case 1:
∣∣ ˆABC

∣∣+ ∣∣ ˆCBD
∣∣= ∣∣ ˆABD

∣∣=
1
2

∣∣>AD
∣∣ and

∣∣ ˆCBD
∣∣= 1

2

∣∣>CD
∣∣. Thus

∣∣ ˆABC
∣∣= ∣∣ ˆABD

∣∣− ∣∣ ˆCBD
∣∣= 1

2

∣∣>AD
∣∣− 1

2

∣∣>CD
∣∣= 1

2
(∣∣>AC

∣∣+ ∣∣>CD
∣∣)− 1

2

∣∣>CD
∣∣= 1

2

∣∣>AC
∣∣ .

Corollary 2.2.1: Based on Theorem 2.2.4

1. Any two inscribed angles intercepting the same arc are congruent.

2. An angle inscribed in a semicircle is a right angle.

3. An inscribed quadrilateral in a circle have opposite supplementary angles.

xy

O

1: x̂∼= ŷ.

90◦

O

2: right angle.

xy

z w
O

3: x+ z = 180◦ = y+w.
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Theorem 2.2.5

1
2

O

AB

C

D

The measure of an angle formed by a chord and a tangent is half as the measure

of the intercepted arc. That is: in the diagram
∣∣ ˆBAC

∣∣= 1
2

∣∣>AC
∣∣.

Proof:

Draw AD passing through O and join C and D. By Theorem 2.1.1 AB⊥ AD, and

hence
∣∣ ˆBAD

∣∣= 90◦. That is
∣∣ 1̂ ∣∣+ ∣∣ 2̂ ∣∣= 90◦.

By Corollary 2.2.1, we have
∣∣Ĉ ∣∣ = 90◦. Also,

∣∣ 2̂ ∣∣+ ∣∣ D̂ ∣∣ = 1
2180◦ = 90◦. Thus,

1̂∼= D̂, but
∣∣ D̂ ∣∣= 1

2

∣∣>AC
∣∣= ∣∣ 1̂ ∣∣.

Example 2.2.2

1

2

O

A
B

C
D

If two chords of a circle are parallel, then the two arcs between the chords

are congruent.

Solution:

Since AB ‖CD, we have 1̂∼= 2̂ (alternate interior angles). Thus,
∣∣>AC

∣∣ =
2
∣∣ 2̂ ∣∣= 2

∣∣ 1̂ ∣∣= ∣∣>BD
∣∣. That is >AC∼=>BD.

Theorem 2.2.6

1

23A

B
C

D

I

The measure of an angle formed by intersected chords in a circle equals

to half the sum of the intercepted arcs. That is: in the diagram
∣∣ 1̂ ∣∣ =

1
2

(∣∣>AC
∣∣+ ∣∣>BD

∣∣).
Proof:

Draw AD. Then
∣∣ 1̂ ∣∣= ∣∣ 2̂ ∣∣+ ∣∣ 3̂ ∣∣ as 1̂ is an exterior angle to M IAD. But∣∣ 2̂ ∣∣= 1

2

∣∣>AC
∣∣ and

∣∣ 3̂ ∣∣= 1
2

∣∣>BD
∣∣. Hence,

∣∣ 1̂ ∣∣= 1
2

∣∣>AC
∣∣+ 1

2

∣∣>BD
∣∣= 1

2
(∣∣>AC

∣∣+ ∣∣>BD
∣∣).
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Theorem 2.2.7

The measure of an angle formed by (1) two secants, (2) two tangents, or (3) a secant and a tangent

drawn from a point outside a circle equals half the difference of the measure of its intercepted arcs.

That is, in all cases (of the diagram), show that m = 1
2(x− y).

Proof:

x y

C
A

B
D

P
m

z

w

1: two secants.

A

B

P
x y m

z

w

2: two tangents.

A

B

P
x

y
m

z

w

3: a secant and a tangent.

In any case, we have (exterior angle of M ABP) w = m+z. Thus, m = w−z. But z = 1
2y and w = 1

2x.

That is, m = 1
2x− 1

2y = 1
2(x− y).

Theorem 2.2.8

A

BC

D

P

When two chords intersect in a circle, the product of the segments of one chord

equals the product of the segments of the other chord.

Given: AB intersects CD at P. Then:
∣∣AP

∣∣ · ∣∣PB
∣∣= ∣∣CP

∣∣ · ∣∣PD
∣∣.

Proof:

Draw segments AD and BC. In triangles M PAD and M PCB, we have

1. Â∼= Ĉ and B̂∼= D̂ (share same intercepted arcs).

2. ˆAPD∼= ˆCPB (vertically opposite).

By S-AA: M PAD ∼M PCB. That is

∣∣AP
∣∣∣∣CP
∣∣ =

∣∣PD
∣∣∣∣PB
∣∣ or similarily,

∣∣AP
∣∣ · ∣∣PB

∣∣= ∣∣CP
∣∣ · ∣∣PD

∣∣.
Theorem 2.2.9

A

B
C

D

P

When two secants intersect a circle, the product of the segments of one

secant equals the product of the segments of the other secant.

Given: PA and PC intersects a circle at D and B. Then:
∣∣PA

∣∣ · ∣∣PD
∣∣ =∣∣PC

∣∣ · ∣∣PB
∣∣.
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Proof:

Draw segments AB and CD. In triangles M PAB and M PCD, we have

1. Â∼= Ĉ (share same intercepted arc >BD).

2. P̂ is common.

By S-AA: M PAB ∼M PCD. That is

∣∣PA
∣∣∣∣PC
∣∣ =

∣∣PB
∣∣∣∣PD
∣∣ or similarily,

∣∣PA
∣∣ · ∣∣PD

∣∣= ∣∣PC
∣∣ · ∣∣PB

∣∣.
Theorem 2.2.10

A

B

C

P

If PB is a tangent and PA is a secant drawn from a point P outside a circle,

then
∣∣PB

∣∣2 = ∣∣PA
∣∣ · ∣∣PC

∣∣.
Proof:

Draw segments AB and BC. In triangles M PAB and M PBC, we have

1. ˆPAB∼= ˆPBC (share same intercepted arc >BC).

2. P̂ is common.

By S-AA: M PAB ∼M PBC. That is

∣∣PA
∣∣∣∣PB
∣∣ =

∣∣PB
∣∣∣∣PC
∣∣ or similarily,

∣∣PA
∣∣ · ∣∣PC

∣∣= ∣∣PB
∣∣2.

Example 2.2.3

x

y

120◦

z
z

O

A

BC

In the diagram, let
∣∣>BC

∣∣= 120◦. Also assume that >AB∼= >AC.

1. Find x, y and z.

2. Show that M ABO ∼=M ACO.

3. Find the distance between B and C in terms of
∣∣AB

∣∣ and
∣∣AC

∣∣.
Solution:

1. Clearly, x = 1
2

∣∣>BC
∣∣ = 60◦, and y =

∣∣>BC
∣∣ = 120◦. Thus, (completing

the circle 360◦), we have 2z = 360◦−120◦ = 240◦ and hence z = 120◦.

2. in the triangles M ABO and M ACO, we have:

(a) BO∼=CO (both are radii).

(b) AB∼= AC (since >AB∼= >AC).

(c) AO is common.

By SSS, M ABO ∼=M ACO.
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3. As >BC∼=>AB, we have
∣∣BC

∣∣= ∣∣AB
∣∣= ∣∣AC

∣∣.
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Chapter

Locus

3.1 The locus

Definition 3.1.1

A locus (plural: loci) (Latin word for "location") is a set of points that satisfy one or more conditions.

Theorem 3.1.1

d

d

l

Given a line
←→
l . The locus of points that at distance d from

←→
l is the points of two parallel lines at distance d.

The condition: All points at distance d from
←→
l . The locus of

such points are forming two parallel lines to
←→
l .

Theorem 3.1.2

dA

B

C

D

E

Let A be a fixed point in the plane. The locus of points that at distance r

from A are the points of the circle centered at A with radius r.

Note that any point B lies on the locus must satisfy the condition
∣∣AB

∣∣= r.

Also, any point B on the circle must satisfy
∣∣AB

∣∣= r.

Hence the locus is a circle centered at A with radius r.

Theorem 3.1.3

A BM

P

Given two fixed points A and B, the locus of points equidistant from A and B is the

perpendicular bisector of AB. Such a line is sometimes called mediatrix.

Let M be the midpoint of AB. Then any point P lies on the perpendicular bisector if

and only if it is equidistant from the endpoints (points A and B). That is, the locus

of points that are equidistant from fixed points A and B are the points forming the

perpendicular bisector of AB. See Theorem 1.1.2.

33
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Theorem 3.1.4

α

α

A

B C

D

E

F

Given an angel ˆABC, the locus of points equidistant from the sides of

ˆABC (namely,
−→
AB and

−→
BC) is the angle bisector.

Proof:

Here is a proof of "a point is on the angle bisector iff it is equidistant

from its sides". This is a restate of Theorem 1.1.3.

Assume first that a point D is on the angle bisector of ˆABC. In the tri-

angles M EBD and M FDB, we have ˆEBD∼= ˆFBD (assumption). Also,

ˆDEB∼= ˆDFB for both are right angles. Since BD is common in both triangles, then by AAS,

M EBD ∼=M FBD. That is ED∼= FD and the point D (which is on the locus) is equidistant from

the sides.

Next, assume that the point D is equidistant from
−→
AC and

−→
BC. Then, in triangles M EBD and M FBD

we have ˆDEB∼= ˆDFB (both are right angles). Also, ED∼= FD (by assumption). By HL, we have

M EBD ∼=M FBD. Therefore, ˆEBD∼= ˆFBD and hence
−→
BD is a bisector for the angle B̂.

Theorem 3.1.5

The locus of points equidistant from two intersecting

lines←→m1 and←→m2 is the pair of lines bisecting the angles

formed by←→m1 and←→m2 .

m1

m2

x
x

x
x

yy

yy

Example 3.1.1

A B

D C

X

Y

Given a square ABCD with sides r cm. Construct the locus of points which

are 1
2r cm from A and equidistant from AB and AC.

Solution:

Note that the points that are equidistant from sides AB and AC are the points

on the angle bisector of ˆBAC. Moreover, the points that are at distance 1
2r

from A are the points on a circle centered at A with radius 1
2r.
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Therefore, the locus of points that are equidistant from sides AB and AC and

that are at distance 1
2r from A are the two points X and Y .

Example 3.1.2

AB

P
Q

R

S

T

arc1

arc2

Let A and B be two fixed points. If P moves in the plane such that
∣∣ ˆAPB

∣∣ is a

constant, find the locus of such points.

Solution:

The locus of points P that keep the same angle measure
∣∣ ˆAPB

∣∣ = k consists

of two arcs (arc 1 and arc 2) of circles of the same radius symmetric through

AB (points A and B do not belong to the locus).

Assume that P lies on a circle with some radius such that the smaller arc >AB

has a measure
∣∣>AB

∣∣ = 2k. Hence all points on bigger arc of >AB form an

inscribed angle with measure
∣∣ ˆAPB

∣∣= 1
22k = k. Note that P can be on either circles the one on top

or on the bottom.

Assume that
∣∣ ˆAPB

∣∣= k. Then the angle is inscribed in a circle with P is a vertex on the circle facing

arc >AB with
∣∣>AB

∣∣= 2k.

Remark 3.1.1

Note that if the constant angle in Example 3.1.2 was 90◦ (right

angle).

Then AB would be a diameter of a circle (the locus) centered at

the midpoint of AB and with radius 1
2

∣∣AB
∣∣.

That is the locus of points preserving the right angle lie on the

circle and facing an arc of measure 180◦. That is a semicircle.

M
AB

P

Q

R
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Example 3.1.3

A B

C

P

Q R
O

Find the locus of points that are equidistant from three fixed points (non

collinear) A, B, and C.

Solution:

Note that the points that are equidistant from A and B lie on the perpen-

dicular bisector of AB, namely PO. Also, the points that are equidistant

from A and C are the points on QO. The points that are equidistant

from B and C are on the perpendicular bisector RO.

Therefore, the equidistant point from all of the three points must lie on

the intersection of the three perpendicular bisectors of AB, AC, and BC.

Then the locus is only one point O satisfying the locus condition
∣∣AO

∣∣ = ∣∣BO
∣∣ = ∣∣CO

∣∣ which is

the circumcenter of M ABC.

Example 3.1.4

Given a circle c(O,r) and a chord AB moving such that
∣∣AB

∣∣ is a constant. Find the locus of the

midpoints of AB.

Solution:

A

B
O

M

d

O

A

B
d

The locus is a circle centered at O of radius d < r, where d =
∣∣OM

∣∣.
Reasoning: We will show that

∣∣OM
∣∣ = d is a constant distance. That is when M moves around

along with its chord, a circle forming the locus is created. Note that
∣∣OA

∣∣= r is a constant. Also, M

is a midpoint of AB and hence
∣∣AM

∣∣= 1
2

∣∣AB
∣∣ is a constant as well. But by Pythagorean Theorem,

we have
∣∣OM

∣∣2 = ∣∣OA
∣∣2− ∣∣AM

∣∣2 which is also a constant.

Therefore, the locus of midpoints M is a circle c(O,d).
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Chapter

Transformations

4.1 Isometries

Definition 4.1.1

A transformation is a bijective (ono-to-one and onto) mapping of E2 (the plane) onto itself.

That is if T is a transformation, then for every point P in the plane, there is a unique point Q such that

T(P) = Q. Conversely, for every point Q there is a unique point P such that T(P) = Q.

In that case, we say that Q is the image of P, and that P is the preimage of Q.

Definition 4.1.2

If T is a transformation satisfying the property that "if P,Q,R are three collinear points, then

T(P) ,T(Q) ,T(R) are collinear", then T is called a collineation.

Definition 4.1.3

Let T and S be any two transformations, then

• The identity transformation is the transformation I defined by I(P) = P for every point P.

• The inverse transformation of T, denoted T−1, is defined by T−1 (Q) = P iff T(P) = Q.

• The composition (or product) of T and S (which is also a transformation) is denoted S ◦T

(or as a product ST) and is defined by S◦T(P) = S(T(P)).

Note that S is the inverse of T iff ST = I = TS.

Definition 4.1.4

An isometry (iso-metry: equal-distance) is a transformation that maps every segment to a congruent

segment. That is, an isometry preserves distance. In notation: T is an isometry iff T
(
AB
)

= A′B′

with AB∼= A′B′.

37
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Theorem 4.1.1

The product (composition) of two isometries is an isometry.

Proof:

Let T and S be two isometries. Then for any A and B, T
(
AB
)
= A′B′ and S

(
A′B′

)
= A′′B′′, where

AB∼= A′B′ (T is isometry) and A′B′ ∼= A′′B′′ (S is isometry).

Therefore, ST
(
AB
)
= S

(
T
(
AB
))

= S
(

A′B′
)
= A′′B′′, with AB∼= A′′B′′.

Theorem 4.1.2

The identity transformation is an isometry.

Theorem 4.1.3

Let T be any isometry. Then

• T−1 is also an isometry.

• If T fixes A and B, then T fixes
←→
AB.

• If T fixes any three noncollinear points, then T = I.

Theorem 4.1.4

Two isometries agree on three noncollinear points are identical.

Proof:

Let T and S be two isometries such that T(A) = S(A) , T(B) = S(B) , T(C) = S(C), for non-

collinear points A,B,C. Then S−1T(A) = A, S−1T(B) = B, S−1T(C) = C. That is S−1T = I.

Hence, T = S.

Theorem 4.1.5

An isometry is a (?) collineation that preserves (a) betweenness; (b) midpoints; (c) segments;

(d) rays; (e) triangles; (f) angles; (g) angle measure; (h) perpendicularity; (i) parallelism;

Proof:

Let T be any isometry. Suppose that A,B,C are any three points in the plane, and let T(A) =

P,T(B) = Q,T(C) = R. Then:
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(a) betweenness: If
∣∣AB

∣∣+ ∣∣BC
∣∣ = ∣∣AC

∣∣, then as T isometry,
∣∣PQ

∣∣+ ∣∣QR
∣∣ = ∣∣PR

∣∣. Hence, if

B is between A and C, then Q is between P and R. That is, T preserves betweenness.

(b) midpoints: If B is the midpoint of AC, then
∣∣AB

∣∣= ∣∣BC
∣∣. By part (a), we get

∣∣PQ
∣∣= ∣∣QR

∣∣
and hence Q is the midpoint of PR. T preserves midpoints.

(c) segments: This is clear by the definition of isometry T, we have T
(
AB
)
= PQ with AB∼= PQ.

T preserves segments.

(d) rays: Note that
−→
AB is the union of AB and all points C such that B is between A and C. Thus,

T
(−→

AB
)

is the union of PQ and all points R such that Q is between P and R. So, T
(−→

AB
)
=
−→
PQ.

That is,
−→
AB∼=

−→
PQ. Thus, T preserves rays.

(?) Since
←→
AB is the union of

−→
AB and

−→
BA, we have T

(←→
AB
)

is the union of
−→
PQ and

−→
QP, which is

←→
PQ. T preserves lines and hence T is a collineation.

(e) triangles: If A,B,C are noncollinear, then
∣∣AB

∣∣+ ∣∣BC
∣∣ > ∣∣AC

∣∣ and hence
∣∣PQ

∣∣+ ∣∣QR
∣∣ >∣∣PR

∣∣ (noncollinear). Moreover, M ABC is the union of the segments AB,BC,AC. By part (c),

T preserves segments and hence M ABC ∼=M PQR by SSS. That is, T preserves triangles.

(f) angles: part (e) implies that ˆABC ∼= ˆPQR since T
( ˆABC

)
= ˆPQR . T preserves angles.

(g) angle measure: by part (f),
∣∣ ˆABC

∣∣= ∣∣ ˆPQR
∣∣. T preserves angle measures.

(h) perpendicularity: by part (g), if AB⊥ BC, then
∣∣ ˆABC

∣∣= 90◦. Thus,
∣∣ ˆPQR

∣∣= 90◦ and hence

PQ⊥ QR. T preserves perpendicularity.

(i) parallelism: isometry preserves angles and hence it preserves parallelism.



40 Chapter 4. Transformations

4.2 Reflections

Definition 4.2.1

A reflection in a line m (called mirror), denoted Rm, is the transformation defined by

P 7→

P, if P ∈←→m ;

Q, otherwise, and←→m is the perpendicular bisector of PQ.

m

SS′

PP′

QQ′

m

C

B

A

C′

B′

A′

Figure 4.1: Reflection in a line m.
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Theorem 4.2.1

A reflection is an isometry.

Proof:

Here we must show that
∣∣PQ

∣∣ = ∣∣∣P′Q′ ∣∣∣ for all choices of P and Q. Here are some possible cases

we will prove (all reflections are made in the line m. That is, Rm):

m

PP′ Q′ = Q

Case 1

m

QQ′ M

P′ = P

Case 2

m

QQ′

P P′

M

Case 3

12

34

m

QQ′

PP′ M

N

Case 4
Figure 4.2: Reflection of some points in line m.

Case 1: P 6∈ m and hence line m is perpendicular bisector of PP′. Since Q ∈ m, Q′ ∈ m. Therefore, Q

is the midpoint of PP′ and hence
∣∣PQ

∣∣= ∣∣∣P′Q′ ∣∣∣.
Case 2: Q 6∈ m and hence m is the perpendicular bisector of QQ′. Let M ∈ m be the midpoint of QQ′.

In right triangles M PQM and M P′Q′M, we have

(a) PM is common.

(b) QM ∼= Q′M (m is a bisector).

(c) ˆQMP∼= ˆQ′MP′ (m is perpendicular on QQ′).

By SAS, M PQM ∼=M P′Q′M, and hence PQ∼= P′Q′.

Case 3: Let M be the intersection point of m with PQ. By Case 2, we have PM ∼= P′M and QM ∼= Q′M.

Therefore, PQ∼= P′Q′.

Case 4: By Case 2, MQ∼= MQ′ and hence M MQQ′ is isosceles with 3̂∼= 4̂. Since m is perpendicular

to both
←→
PP′ and

←→
QQ′, we obtain that

←→
PP′ ‖

←→
QQ′. Therefore, 1̂∼= 3̂∼= 4̂∼= 2̂. So, in M PQM and

M P′Q′M, we have:

(a) PM ∼= P′M (←→m is perpendicular bisector of PP′).

(b) QM ∼= Q′M (Case 2).

(c) 1̂∼= 2̂ (proved).

By SAS, we have M PQM ∼=M P′Q′M and hence PQ∼= P′Q′.
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Definition 4.2.2

Given an isometry T, then T is

• a direct isometry if it preserves the orientation. That is, the order of lettering in the figure

and the image are the same: either both clockwise or both counterclockwise.

• an opposite isometry if it does not preserve the orientation. That is, the order of lettering is

reversed.

• a periodic if Tn = I for some integer n. In that case, we say that T is periodic with period n.

Remark 4.2.1

m

C B

A

C′B′

A′

A product of two reflections in the same line is the identity. That is,

R2
m = I. If m is any line then R−1

m = Rm. Therefore, the reflection is

periodic with period 2.

Reflections are opposite isometries not preserving the orientation and

reversing the lettering.

Here is a table for the composition of two isometries with respect to

direct or opposite property:

◦ direct opposite

direct direct opposite

opposite opposite direct

We note that, given any isometry T, we can show that T is a reflection if it is opposite isometry

fixing at least a point.

Isometry Direct / Opposite Fixed Points

Translation Direct NO

Rotation Direct YES

Reflection Opposite YES

Glide Reflection Opposite NO
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Example 4.2.1

m

PP′ QQ′

l

Let m and l be two perpendicular lines in the plane. Find the reflection of l

in m, that is Rm (l).

Solution:

Let P and Q be two points on l. Then Rm (P) = P′ ∈ l and Rm (Q) = Q′ ∈ l.

That is Rm (l) =
←−→
P′Q′ =

←→
l .

Example 4.2.2

P P′M

Let T be an opposite isometry of period 2. Show that T is a reflection.

Solution:

We need to show that T is an opposite isometry and fixing a point. T is of period 2

implies that T2 = I. Take any point P. Then T(P) = P′ and T(T(P)) = P (since T2 = I). That is,

T(P′) = P. If M is the midpoint of PP′, then T(M) = M and hence M is a fixed point. That is T is

a reflection whose mirror is the perpendicular bisector of PP′ passing through M.

Example 4.2.3

Let Ra and Rb be two reflections in two parallel lines a and b, respectively. Let P ∈ a and Q ∈ b be

points with Rb (P) = P′ and Ra (Q) = Q′. Show that P,P′,Q,Q′ are either collinear or the vertices

of a parallelogram.

Solution:

P′ Q′PQ

ab d

d

PP′

Q Q′

M

N

b a

Case 1: Assume that P and Q are on the same line
←→
PQ. Then PQ ⊥ a and PQ ⊥ b. Also Rb (P) =

P′ ∈←→PQ and Ra (Q) = Q′ ∈←→PQ. Thus, P,P′,Q,Q′ are collinear.

Case 2: Assume that P and Q are not on the same line. Then PQ 6⊥ a or b. But Rb (P) = P′.

Then PP′ ⊥ b and
∣∣∣PP′

∣∣∣= 2d (where d is the distance between a and b). Also, Ra (Q) = Q′ which
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implies QQ′ ⊥ a and
∣∣∣QQ′

∣∣∣ = 2d. Therefore, PP′ ‖ QQ′ with PP′ ∼= QQ′. Therefore, PP′QQ′ is a

parallelogram.
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4.3 Rotations

Definition 4.3.1

A rotation about point O through angle x◦, denotedRO,x, is the transformation defined by

P 7→

P, if P = O;

Q, otherwise, and
∣∣OP

∣∣= ∣∣OQ
∣∣ and

∣∣ ˆPOQ
∣∣= x◦.

If in addition x = 180◦, then we say that RO,180 is a half-turn and denote it as HO . As a result HO

is periodic with period 2.

Theorem 4.3.1

A

B

O = O′

A′

B′

1

2
3

x◦

x◦

A rotation is an isometry.

Solution:

Consider a rotation RO,x about some point O through x◦. Let A and B

be points in the plane with RO,x (A) = A′ and RO,x (B) = B′. Then, we

need to show that
∣∣AB

∣∣= ∣∣∣A′B′ ∣∣∣. In M AOB and M A′OB′, we have:

1.
∣∣OA

∣∣= ∣∣∣OA′
∣∣∣ and

∣∣OB
∣∣= ∣∣∣OB′

∣∣∣ (definition of rotation).

2.
∣∣ 1̂ ∣∣= x−

∣∣ 2̂ ∣∣= ∣∣ 3̂ ∣∣ (look at diagram).

By SAS, M AOB ∼=M A′OB′. That is
∣∣AB

∣∣= ∣∣∣A′B′ ∣∣∣.
Remark 4.3.1

LetRO,x be a rotation about point O through x◦. Then:

• A rotation is a direct isometry.

• The only invariant point is O. It is called the center of the rotation.

• By the definition of a half-turn we haveH2
O
= I.

• The composition of two rotations about the same center is a rotation: RO,x ◦RO,y =RO,x+y.

• The inverse of a rotation is a rotation. That is,R−1
O,x =RO,−x.

• A half-turn about O is a composition of two reflections in perpendicular lines, say l and m,

intersecing in O. That is,HO = Rl ◦Rm = Rm ◦Rl . See Example 4.2.1.
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Theorem 4.3.2

r

r

r
A

B

O

A′

B′

a

b

A composition of two reflections in two intersecting lines is sim-

ply a rotation about the intersection point through doubled the

angle between the two lines.

Proof:

Let a and b be two lines intersecting in a point O with the angle

inbetween measures r. Let A be a point in a distinct from O and

let B be the intersection of line b with the circle �O centered at

O with radius
∣∣OA

∣∣. Then,
∣∣ ˆAOB

∣∣ = r and
←→
OB = b. Let A′ =

RO,2r (A). Then, A′ is on the circle �O and b is perpendicular

bisector of AA′ (properties of circles). So, A′ = Rb (A). Now let

B′ = Ra (B). Then a is perpendicular bisector of BB′ (definition of reflections), and the directed

angle
∣∣∣ ˆB′OB

∣∣∣= 2r. Thus we have:

• Rb (Ra (O)) = Rb (O) = O =RO,2r (O).

• Rb (Ra (B′)) = Rb (B) = B =RO,2r (B′).

• Rb (Ra (A)) = Rb (A) = A′ =RO,2r (A).

Since O,A,B′ are three noncollinear points, Theorem 4.1.4 implies that Rb ◦Ra =RO,2r.

Proof:

x
x

y
y

P

P′

O

P′′

k

l

M

N

Here is another proof. Assume that lines k and line l in-

tersect at point O with a directed angle from k to l equals

to r = (x+ y).

Let P be a point so that Rk (P) = P′ and Rl (P′) = P′′.

We have M OPM ∼=M OP′M and M OP′N ∼=M OP′′N, by

SAS. Hence we have

1 · · ·
∣∣OP

∣∣= ∣∣∣OP′
∣∣∣= ∣∣∣OP′′

∣∣∣.
Moreover, the (directed) angle from OP to OP′′ is

2 · · · 2(x+ y) = 2r.

Therefore, from 1 and 2 we have Rl ◦Rk =RO,2r.
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Example 4.3.1

Let RA,x and RB,y be two rotations with distinct centers A and B. Assuming the x+ y is not a

multiple of 360◦, findRO,θ =RB,y ◦RA,x.

Solution:

1
2 y

1
2 x

w = 1
2 (x+ y)

B A

O

m

ln

Recall that any rotation is a composition of two reflections in two intersected lines with the angle

between lines is half the angle of the rotation.

Let n and m be two lines intersected in A with an angle from n to m equals to x
2 , and l be the line

intersects with m in B with an angle from m to l equals to y
2 . Since x+y is not a multiple of 360, lines

l and n intersects as in the diagram, say at point O, with an angle from n to l equals w = 1
2(x+y) as

it is an exterior angle of the M ABO.

LetRA,x = Rm ◦Rn, andRB,y = Rl ◦Rm. Then

RO,θ =RB,y ◦RA,x = Rl ◦Rm ◦Rm ◦Rn = Rl ◦Rn.

Recall that Rm ◦Rm = I. That is the rotationRO,θ is infact a composition of two reflections in lines

a1 and b2 intersecting in O (the new center of rotation) through angle θ = 2w = (x+y), note that w

is the angle between a1 and b2.
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Example 4.3.2

A A′

B B′OB

OA

A

A′

OA

B

B′

Show that every isometry of period 2 is either a reflection or a half-turn.

Solution:

Let T be an isometry of period 2. Hence T2 = I. For any point A, we have T(A) =

A′ and T(A′) = A so that if OA is the midpoint of AA′, we have T(OA) = OA.

Case 1: Any other point we choose, say B, we get T(OB) = OB = OA. Then T is

a half-turn.

Case 2: Any other point we choose, say B, we get T(OB) = OB 6= OA. Then T is

a reflection.

Example 4.3.3

A

B

C

Let M ABC be a triangle with the vertices labelled clockwise such that
∣∣AC

∣∣= ∣∣BC
∣∣

and
∣∣ ˆACB

∣∣= 90◦. Let R←→AB be the reflection in the line
←→
AB, R←→AC be the reflection in

the line
←→
AC, and RB,90◦ be the rotation by 90◦ counterclockwise around B. Identify

the compositionRB,90◦ ◦R←→AB ◦R←→AC.

Solution:

Note that R←→AB ◦R←→AC is simply the rotationRA,90◦ . That is,

RB,90◦ ◦
(

R←→AB ◦R←→AC

)
=RB,90◦ ◦RA,90◦ =

(
R←→BC ◦R←→AB

)
◦
(

R←→AB ◦R←→AC

)
= R←→BC ◦R←→AC =RC,180◦ .

Example 4.3.4

A

B

O

A′

B′

θ

θ

Given two points A and B in the plane, and their respective images A′ and B′

under a rotationRO,θ . Construct (Find) the center of rotation O.

Solution:

Clearly, join A with A′ and B with B′ and then take the perpendicular bisector

for AA′ and BB′. The center of rotation then is the intersection point of the

two perpendicular bisectors.

In the case of θ = 180◦ and that A,B,O are collinear, then the center would

be the midpoint of AA′ which is exactly the midpoint of BB′.
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4.4 Translations

Definition 4.4.1

A translation (or a glide) is a transformation that glide all points of the plane in the same direction

with the same distance.

glide→ with distance x

P

P′

C B

A C′ B′

A′

Figure 4.3: Translation with distance x.

Remark 4.4.1

• A translation is a direct isometry.

• A nonidentity translation fixes no points in the plane.

• Given points A and B, there is a unique translation moving A to B. Thus, we we write T−→
AB

to

denote the translation mapping A to B.

Theorem 4.4.1

T−→
PQ

T−→QR

T−→PR

P Q

R

A composition of two translation is a translation

Solution:

Let T−→
AB

, T−→
CD

be any two translations. Assume that for any point P,

T−→
AB
(P) = Q and T−→

CD
(Q) = R. Then, T−→

CD
◦T−→

AB
(P) = T−→

CD

(
T−→

AB
(P)
)
=

T−→
CD

(Q) = R. That is T−→
CD
◦T−→

AB
= T−→

PR
.
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Theorem 4.4.2

x x x

xx

AA′ B B′

CC′

ab

A composition of two reflections in two parallel lines (with

distance x between the lines) is a translation (with distance 2x).

Solution:

Let a and b be two parallel lines and the distance between a

and b is x. Let
←→
AB be perpendicular to both lines a and b with

A ∈ a and B ∈ b. Let C be a point on a distinct from A. Let

A′ = Rb (A) and C′ = T−−→
AA′

(C). Then, clearly T−−→
AA′

= T−−→
CC′

and the glide distance is 2x. Since b is the

perpendicular bisector of CC′, we have Rb (C) =C′.

If B′ = Ra (B), then A is the midpoint of BB′ and also B is the midpoint of AA′. Hence, T−−→
B′B

= T−−→
AA′

with the same distance 2x. Therefore, we have:

• Rb (Ra (B′)) = Rb (B) = B = T−−→
B′B

= T−−→
AA′

.

• Rb (Ra (C)) = Rb (C) =C′ = T−−→
CC′

= T−−→
AA′

.

• Rb (Ra (A)) = Rb (A) = A′ = T−−→
AA′

.

As A,B′,C are three noncollinear points, Theorem 4.1.4 implies that Rb ◦Ra = T−−→
AA′

= T 2
−→
AB

.

Theorem 4.4.3

Every direct isometry of the plane is either a rotation or a translation.

Solution:

Let T be any direct (=opposite x opposite) isometry. Then T = RaRb a product of two reflections in

lines a and b. If a is parallel to b, then T is a translation by Theorem 4.4.2. Otherwise it is a rotation

by Theorem 4.3.2.

Theorem 4.4.4

Every translation is the product of two half-turns.

Solution:

Let T−→
AB

be any translation. Then T−→
AB

can be written as a product of two reflections in parallel lines

a and b. That is, T−→
AB

= RaRb. Let c be a line perpendicular to a and b in points O1 and O2. Then,
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HO1
= RaRc andHO2

= RcRb. Therefore,

T−→
AB

= RaRb = RaIRb = RaRcRcRb =HO1
HO2

.

Example 4.4.1

x

A A1 A2 · · ·
ab

Show that the only periodic translation is the identity.

Solution:

Assume that T−→
PQ

is any translation. So it can be composed of two

reflections in two parallel lines a and b with distance x. If A1 = T−→PQ
(A),

then
∣∣AA1

∣∣ = 2x. Let A2 = T 2
−→
PQ
(A) = T−→

PQ
(A1) and with

∣∣A2A1
∣∣ = 2x

and hence
∣∣AA2

∣∣= 4x. If n is the period of T−→
PQ

, then T n
−→
PQ
(A) = An = A

(assuming it is periodic with period n). Therefore,
∣∣AAn

∣∣ = 2nx =
∣∣AA

∣∣ = 0. Hence x = 0 so the

lines a and b are infact the same line. That is, the translation is the identity.

Example 4.4.2

Let T−→
PQ

be a translation taking P to Q at distance 2x. Show that for any points A 6= B, if A,B,C,D

form a quadrilateral, then it is a parallelogram, where C = T−→
PQ
(A) and D = T−→

PQ
(B).

Solution:

Let Ra,Rb be two reflections so that T−→
PQ

= Rb ◦Ra with the distance between the lines is x. Thus,

Rb ◦Ra (A) =C with
∣∣AC

∣∣ = 2x and Rb ◦Ra (B) = D with
∣∣BD

∣∣ = 2x. Note that a ⊥ AC and also

a⊥ BD and hence AC ‖ BD. Therefore, ABCD is a parallelogram.
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5
Chapter

Homothecy and Similarity

5.1 Homothecy

Definition 5.1.1

λ
>

0

λ
<

0 O

P
P′

P′

Let λ be a nonzero scalar. A homothecy (or homothety, or dilation), denoted

DO,λ , is the transformation that maps O to itself and for any other point P,

P 7→

P′ ∈ −→OP, if λ > 0;

P′ ∈ −→PO, if λ < 0;

such that
∣∣∣OP′

∣∣∣= |λ | ∣∣OP
∣∣. The point O and the scalar λ are called the center

of and the ratio of the homothecy, respectively.

Remark 5.1.1

• A homothecy is called expansion (stretching) if it ratio |λ |> 1, and it is called contraction

(or reduction) if |λ |< 1.

• A homothecy maps a figure to a similar figure. It has exactly one fixed point in the plane.

• A homothecyDO,1 is the identity mapping I, and a homothecyDO,−1 is the (reversed) identity

mapping −I.

Example 5.1.1

O A A′

B
B′

For a noncollinear points A,B,O, show thatDO,λ

(
AB
)
=A′B′ implies

∣∣∣AB′
∣∣∣∣∣AB
∣∣ = |λ |.

Solution:

Simply show that M OAB ∼M OA′B′ to get the result.
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A homothecy is not an isometry in general.
∣∣∣OA′

∣∣∣= |λ | ∣∣OA
∣∣ 6= ∣∣∣OA′

∣∣∣ if λ 6= |1 |.

O

A

BC

A′

B′
C′

DO,2

O

A

B
C

A′

B′
C′

DO,−1

O

A

B

C

A′

B′
C′

A′′

B′′

C′′

DO,0.5 and DO,1.75

Figure 5.1: Some example of homothecy DO,λ for different position of O and different values of λ .

Theorem 5.1.1

A homothecy maps any triangle to a similar triangle. Consequently, homothecies preserve angles.

Proof:

Let DO,λ (M ABC) = M A′B′C′ (see Figure 5.1). Clearly, by S-SAS, we have M OAB ∼M OA′B′,

M OAC ∼M OA′C′, and M OBC ∼M OB′C′. Therefore,

∣∣∣A′B′ ∣∣∣
|AB| =

∣∣∣A′C′ ∣∣∣
|AC | =

∣∣∣B′C′ ∣∣∣
|BC | = |λ |. By S-SSS,

we have M ABC ∼M A′B′C′. Therefore, Â∼= Â′ = B̂∼= B̂′ = Ĉ ∼= Ĉ′.

Example 5.1.2

Use the definition of a homothecy to show that a homothecy is a collineation.

Proof:

Let A,B,C be three collinear points in the plane, so that
∣∣AC

∣∣= ∣∣AB
∣∣+ ∣∣BC

∣∣. Then,∣∣∣A′C′ ∣∣∣= |λ | ∣∣AC
∣∣= |λ |(∣∣AB

∣∣+ ∣∣BC
∣∣)= |λ | ∣∣AB

∣∣+ |λ | ∣∣BC
∣∣= ∣∣∣A′B′ ∣∣∣+ ∣∣∣B′C′ ∣∣∣.

That is A′B′C′ are collinear.
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Theorem 5.1.2

A homothecy maps a line l to a parallel line l′.

Proof:

Let l be a line and DO,λ (l) = l′. Then:

Case 1: Assume that O ∈ l. Then by the definition DO,λ maps each point to

another point in the same line. That is l = l′.

O
P

P′

Case 1
Case 2: Assume that O 6∈ l.

l′

l

1 2

O A A′

B

B′

l′

l

1

2

O
A

A′

B

B′

Case 2

Two triangles (see the diagram) M OAB and M OA′B′ are similar (S-SAS). Hence 1̂∼= 2̂. Since 1̂ and

2̂ are (corresponding left figure, and alternate right figure) congruent, l is parallel to l′.

Theorem 5.1.3

The product of homothecies DO,λ and DO,µ is a homothecy DO,λ µ . Consequently, D−1
O,λ =DO, 1

λ

.

Proof:

Clearly, DO,λ µ (O) = DO,λ (O) = DO,µ (O) = O. If P is any other point, then DO,λ (P) = P′ with∣∣∣OP′
∣∣∣ = |λ | ∣∣OP

∣∣ with O,P,P′ collinear. Aslo, DO,µ (P′) = P′′ with
∣∣∣OP′′

∣∣∣ = |µ | ∣∣∣OP′
∣∣∣ with

O,P′,P′′ collinear. Hence O,P,P′′ are collinear and∣∣∣OP′′
∣∣∣= |µ | ∣∣∣OP′

∣∣∣= |µ |( |λ | ∣∣OP
∣∣)= |λ µ |

∣∣OP
∣∣.

That is DO,λ µ (P) = P′′.

Therefore, DO,λDO, 1
λ

=DO,λ 1
λ

=DO,1 = I.
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Example 5.1.3

Let �A1 and �A2 be two circles with two distinct centers A1 6= A2 with two different radii r1 6= r2.

Show that there is exactly two homothecies DO1,λ1,DO2,λ2 that map �A1 to �A2. Construct the

centers O1 and O2 of such homothecies.

Solution:

r1
r2

O A1

B
B′

A2

r1

r2 O
A1

B

B′

A2

Note that the homothecy ratio is positive (direct) or negative (opposite). Then there is only two

cases as drawn above. The homothecy center would be the intersection point of A1A2 and BB′, and

the ratio is then |λ |= r2
r1

assuming that DO,|λ | (B) = B′ and DO,|λ | (A1) = A2. Hence DO,|λ | maps

�A1 to �A2 in both cases.
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5.2 Similarity

Definition 5.2.1

Let k be a positive scalar. A similarity with ratio k is the transformation

Sk such that for any points A and B with A′ = Sk (A) and B′ = Sk (B),∣∣∣A′B′ ∣∣∣= k
∣∣AB

∣∣.
C B

A

C′
B′

A′

Remark 5.2.1

• A similarity has no center.

• Every isometry is a similarity of ratio 1.

• Every homothecy DO,λ is a similarity of ratio |λ |.

• The product of two similarities of ratios k1, k2 is a similarity of ratio k1k2. See Theorem 5.1.3.

• The inverse of Sk is S 1
k
.

Another definition of a similarity:

Definition 5.2.2

A similarity is a composition of a finite number of dilations or isometries. The ratio of a similarity

is the product of the ratios of the dilations in the composition. If there are no dilations in the

composition, the ratio is defined to be 1.

Two figures in a plane are similar if there exists a similarity transformation taking one figure onto

the other figure.

Remark 5.2.2

Some examples of similarities:

• A dilative reflection is a similarity produced by a dilation (homothecy) and a reflection.

• A dilative rotation is a similarity produced by a dilation (homothecy) and a rotation.

• A dilative translation is a similarity produced by a dilation (homothecy) and a translation.
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l

P

A

B

C

A′

B′

C′

A′′

B′′

C′′

Figure 5.2: Dilative reflection: Rl ◦DP,λ (M ABC).

45◦

P

A

B

C

A′

B′

C′

A′′

B′′
C′′

Figure 5.3: Dilative rotation: RB′,45◦ ◦DP,λ (M ABC).

P

A

B

C

A′

B′

C′

A′′

B′′

C′′

Figure 5.4: Dilative translation: T−−−→
B′B′′
◦DP,λ (M ABC).
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Example 5.2.1

Let T be a transformation of the plane. Show that if T preserves angle measure, then T is a similarity.

Solution:

Let M ABC be a triangle with T(M ABC) = A′B′C′. Then Â∼= Â′, B̂∼= B̂′,Ĉ ∼= Ĉ′ and hence

M ABC ∼M A′B′C′. That is, ∣∣∣A′B′ ∣∣∣∣∣AB
∣∣ =

∣∣∣A′C′ ∣∣∣∣∣AC
∣∣ =

∣∣∣B′C′ ∣∣∣∣∣BC
∣∣ = k.

Therefore, Sk (M ABC) = M A′B′C′ and it is a similarity of ratio k.

Example 5.2.2

r1r2

P M
P1

Let Sλ be a similarity and P any point in the plane. Show that there exists a

translation T such that P is invariant under TSλ .

Solution:

If λ = 1, then simply S1 (P) = P. Take T = I to get TSλ (P) = P.

If λ 6= 1, then Sλ (P) = P1 6= P. Let M be the midpoint of
∣∣PP1

∣∣ and let

T = Rr2Rr1 where r2 and r1 passing through M and P1 so that PP1 is perpendicular to both lines.

That is r1 ‖ r2. Note that T(P1) = Rr2Rr1 (P1) = Rr2 (P1) = P. Therefore, T(Sλ (P)) = T(P1) = P.

Example 5.2.3

r

··

x

y

x

O

P

P1 P′

Q

Q1Q′

Let r be the angle bisector of angle O of a triangle M POQ. Consider

the dilative reflection T = Rr ◦DO,λ . If T(P) = P′ and T(Q) = Q′,

show that the quadrilateral PQP′Q′ is cyclic.

Solution:

Let DO,λ (P) = P1 and Rr (P1) = P′; and let DO,λ (Q) = Q1 and

Rr (Q1) = Q′. That is T(P) = P′ and T(Q) = Q′. Note that

x+ y = 180◦. Recall that reflection and homothecy preserve angle

measure, and hence
∣∣ ˆOPQ

∣∣= ∣∣ ˆOP1Q1
∣∣= ∣∣∣ ˆOP′Q′

∣∣∣= x. Therefore,∣∣∣ ˆQ′P′Q
∣∣∣+ ∣∣∣ ˆQPQ′

∣∣∣ = 180. Similarily, we can show that
∣∣∣ ˆPQP′

∣∣∣+ ∣∣∣ ˆP′Q′P
∣∣∣ = 180. Thus, PQP′Q′

has supplementary opposite angles and hence it is cyclic.
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6
Chapter

Coordinate Geometry

6.1 Coordinates of Points and Lines

Remark 6.1.1

• A point A(x,y) in the Cartesian plane (or xy-plane) is represented by its x and y coordinates.

• The slope of a line l, denoted ml , through the points P1(x1,y1) and P2(x2,y2) is defined by

ml =
y2− y1

x2− x1
=

changes in y
changes in x

= tanθ .

x

y

P1(x1,y1)

P2(x2,y2)

y2− y1

x2− x1

θ

Remark 6.1.2

A line l can be presented by:

1. standard form: ax+by+ c = 0, where a and b are not both zeros.

2. slope-intercept form: y = mx+ c, where m is the slope of the line and c is y-intercept.

3. point-slope form: (y− y1 ) = m(x− x1 ), where (x1,y1) is a point on the line l with slope m.

Theorem 6.1.1

Let l1 and l2 be two lines with slopes m1 and m2, respectively. Then:

1. l1 ‖ l2 if and only if m1 = m2.

2. l1 ⊥ l2 if and only if m1 ·m2 =−1 if and only if m2 =− 1
m1

.

61



62 Chapter 6. Coordinate Geometry

Example 6.1.1

Find the slope of the line l passing through points A(2,−3) and B(1,5) and write its equation.

Solution:

Simply ml =
5−(−3)

1−2 = 8
−1 =−8.

Hence l : (y−5) =−8(x−1) or l : y =−8x+13 or l : 8x+ y−13 = 0.

Example 6.1.2

Let l1 : 2x+y = 1; l2 : 2y−x = 7; l3 : 4x+2y = 0; l4 : y = 2; l5 : y = 7; l6 : x =−2; and l7 : x = 2.

Then: m1 =
−2
1 =−2; m2 =

1
2 ; m3 =−2; m4 = m5 = 0; m6 = m7 = undefined.

Therefore: l1 ‖ l3 and l1 ⊥ l2 ⊥ l3. Also, l4 ‖ l5 (horizontal lines) and l6 ‖ l7 (vertical lines).

Hence l4 and l5 are perpendicular to l6 and l7.

Definition 6.1.1

Let A(x1,y1) and B(x2,y2) be two points and let l : ax+by+ c = 0 be a line. Then

• The distance between A and B is defined by

d(A,B) =
√

(x1− x2 )
2 +(y1− y2 )

2.

• The distance between A and line l is defined by

d(A, l) =
|ax1 +by1 + c |√

a2 +b2
.

• The midpoint of the segment AB is defined by

mid AB =

(
x1 + x2

2
,
y1 + y2

2

)
.

Example 6.1.3

Find d(A, l), where A(1,2) and l : y = 2x−1.

Solution:

Clearly, l : 2x− y−1 = 0 and hence d(A, l) =
|2(1)− (2)−1 |√

22 +12
=

1√
5

.
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Definition 6.1.2

The equation of the circle with center A(a,b) and radius r is

(x−a)2 +(y−b)2 = r2. O(a,b)

P(x,y)

Example 6.1.4

Find the locus of points equidistant from A(3,−2) and B(4,3).

Solution (1):

Let M(x,y) be the points of the locus. Thus, d(M,A) = d(M,B). That is√
(x−3)2 +(y+2)2 =

√
(x−4)2 +(y−3)2

(x−3)2 +(y+2)2 = (x−4)2 +(y−3)2(
x2−6x+9

)
+
(

y2 +4y+4
)
=
(

x2−8x+16
)
+
(

y2−6y+9
)

2x+10y−12 = 0.

Thus, the locus of points equidistant from A and B are the points of the line l : 2x+10y−12 = 0.

Solution (2):

We can solve the question in a different way: Recall that the locus of points M equidistant from two

points is a line l which is the perpendicular bisector of AB. Clearly the slope of
←→
AB is mAB = 5 and

hence ml =−1
5 . Also, M = mid AB lies on the line l where M =

( 7
2 ,

1
2

)
. Therefore, the locus is the

equation of

l :
(

y− 1
2

)
=−1

5

(
x− 7

2

)
⇒ 10y−5 =−2x+7 ⇒ 2x+10y−12 = 0.

Example 6.1.5

Find the locus of points P(x,y) that are at distance 3 cm from the point A(1,2).

Solution:

The locus of points P(x,y) at distance 3 cm is the points of the circle centered at A with radius

3 cm. That is, 3 = d(P,A) =
√

(x−1)2 +(y−2)2. Hence, the locus is the circle with equation:

(x−1)2 +(y−2)2 = 9.
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Example 6.1.6

Find the locus of points M equidistant from the lines l1 : x− y+1 = 0 and l2 : 2x−2y+7 = 0.

Solution:

Notice that if l1 ‖ l2, then the locus is a line that is parallel to both lines l1 and l2. Otherwise, the

locus is two lines which are angle bisectors of the two lines.

Let M(x,y) be the points of the locus. Thus,

d(M, l1) = d(M, l2) ⇒
|x− y+1 |√

1+1
=
|2x−2y+7 |√

4+4
⇒ 2
√

2 |x− y+1 |=
√

2 |2x−2y+7 | .

That is we have two cases:

Case 1: 2(x− y+1) =+(2x−2y+7), and hence 2 = 7 which is impossible. So this case is rejected.

Case 2: 2(x− y+1) =−(2x−2y+7), and hence 4x−4y+9 = 0.

Therefore, the locus is formed by the line with equation: 4x−4y+9 = 0. We obtain here that l1 and

l2 are parallel.

Example 6.1.7

x

y

A(−3,2)

P(−3,0)

Find an equation of the circle with center A(−3,2) and tangent to the

x-axis.

Solution:

Since the circle is tangent to x-axis, we have the radius equals to the y-

coordinates of A which is the distance from x-axis to A. Thus, r = |2 |= 2,

and hence the circle equation: (x+3)2 +(y−2)2 = 4.
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6.2 Transformation in Coordinates Geometry

Remark 6.2.1

If P(a,b) is a point, then its reflection in a line is:

• reflection in x-axis: P(a,b) 7→ P′(a,−b).

• reflection in y-axis: P(a,b) 7→ P′(−a,b).

• reflection in the origin: P(a,b) 7→ P′(−a,−b).

• reflection in the line y = x: P(a,b) 7→ P′(b,a).

• reflection in the line y =−x: P(a,b) 7→ P′(−b,−a).

The reflection of a point P(a,b) in a general line y = mx+ c can be computed using the definition of

reflection. See Example 6.2.1.

Example 6.2.1

lP

P′

M

Find Rl (P), where l : x−2y+3 = 0 and P(2,5).

Solution:

Let P′(x1,y1) = Rl (P). The midpoint M = mid PP′ =
(

x1+2
2 , y1+5

2

)
∈ l by the def-

inition of reflection. That is, x1+2
2 − 2 y1+5

2 + 3 = 0. Multiply both sides by 2 to get

x1 +2−2y1−10+6 = 0 and hence x1−2y1−2 = 0 · · · 1 .

Since, PP′ ⊥ l and ml =
1
2 , we get the slope of PP′ = −2. Thus PP′ : (y1− 5) = −2(x1− 2) and

hence the equation of the line PP′ : 2x1 + y1−9 = 0 · · · 2 .

Computing 1 +2 · 2 , we obtain 5x1−20 = 0 and hence x1 = 4 and thus y1 = 1. That is P′(4,1).

Example 6.2.2

If P′(4,6) is the image of P(0,2) under Rl , then find an equation of the line l.

Solution:

Note that the slope of PP′ is 6−2
4−0 = 1 and hence ml =−1. Moreover, M = mid PP′ =

( 4+0
2 , 6+2

2

)
=

(2,4) ∈ l. Thus: l : (y−2) =−(x−4) and hence l : y+ x−6 = 0.
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Remark 6.2.2

The translation of the point P(x,y) of a horizontal units and b vertical units is P′(x+a,y+b).

That is,

Ta,b : P(x,y) 7→ P′(x+a,y+b).

Example 6.2.3

Show that the product of two translations is a translation.

Solution:

Let Ta1,b1
and Ta2,b2

be two translations. Then we show that T = Ta1,b1
◦Ta2,b2

is a translation.

For any point (x,y), we have

T(x,y) = Ta1,b1

(
Ta2,b2

(x,y)
)

= Ta1,b1
(x+a2,y+b2) = (x+a2 +a1,y+b2 +b1)

= Ta,b (x,y) ,

where a = a1 +a2 and b = b1 +b2 which is also a translation.

Remark 6.2.3

The rotation of P(x,y) about the origin through angle θ is P′(x′,y′), wherex′

y′

=

cosθ −sinθ

sinθ cosθ

 x

y

 .

That is, x′ = xcosθ −ysinθ and y′ = xsinθ +ycosθ and the matrix

cosθ −sinθ

sinθ cosθ

 is called the

rotation matrix. Observe that:

• RO, π

2
((x,y)) = (−y,x).

• RO,π ((x,y)) = (−x,−y).

Note that a half-turn is the same as reflecting in origin.
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Example 6.2.4

Find the rotation of P(1,5) about the origin through π

6 .

Solution:

Using the rotation matrix, we get:

RO, π

6
((1,5)) =

√3
2 −1

2
1
2

√
3

2

1

5

=

 √3
2 −

5
2

1
2 +

5
√

3
2

 .

Example 6.2.5

If a rotationR(0,0),x maps A(3,−4) to A′(4,3), then find the measure of x.

Solution:

Using the rotation matrix D, we have A′ = D A. That is:4

3

=

cosx −sinx

sinx cosx

  3

−4

 .
Hence,

4 = 3cosx+4sinx · · · 1 and 3 = 3sinx−4cosx · · · 2 .

Computing 4 · 1 +3 · 2 , we get 25sinx = 25 and hence sinx = 1. Therefore, x = π

2 .

Example 6.2.6

x

l

l′

O

F ′ F

G

H

The rotationRO,x maps the line l to line l′. Show that one of the angles between

l and l′ has measure x.

Solution:

Let F be a point on l so that OF ⊥ l. Thus,RO,x (F) = F ′ ∈ l′.

Let G be the point of intersection of OF with l′, and let H be the intersection

point of l with l′.

Since
∣∣ ˆOFH

∣∣ = 90◦, we have
∣∣∣ ˆOF ′H

∣∣∣ = 90◦ (since rotation preserves angle

measure). Thus we get
∣∣∣ ˆF ′GO

∣∣∣= 90◦− x.

Therefore,
∣∣ ˆGHF

∣∣= 90◦− (90◦− x) = x.
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Example 6.2.7

Find the image of P(2,3) underH
(−2,7) . [Or: FindR(−2,7),π ((2,3))]

Solution:

LetH
(−2,7) (P) = P′(x,y). Then, the midpoint M = mid PP′ =

(
2+x

2 , 3+y
2

)
= (−2,7).

That is, −2 = 2+x
2 and 7 = 3+y

2 which implies that x =−6 and y = 11. Hence P′(−6,11).

Remark 6.2.4

The homethecy (dilation) image of point P(x,y) with center O and ratio λ is P′(λx,λy). That is,

DO,λ : P(x,y) 7→ P′(λx,λy).

Example 6.2.8

If DO,λ maps PQ to P′Q′, show that PQ ‖ P′Q′.

Solution:

We show that the slopes of PQ and P′Q′ are equal. Note that DO,λ (P(x1,y1)) = P′(λx1,λy1) and

DO,λ (Q(x2,y2)) = Q′(λx2,λy2). Hence, the slope P′Q′ is

λy2−λy1

λx2−λx1
=

λ (y2− y1)

λ (x2− x1)
=

y2− y1

x2− x1
= slope of PQ.

Thus, PQ ‖ P′Q′.
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