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0
Chapter

Review

Section 0.0: Basic Notation

Definition 0.0.1

• A set is a collection of objects (called elements or members).

• We write x ∈ A to indicate that an element x belongs to set A, while we write x ̸∈ A

to indicate that x does not belong to A.

• For any two sets A and B, we write A ⊆ B if ∀x ∈ A, x ∈ B.

• Equality: A = B if and only if A ⊆ B and B ⊆ A.

• Intersection: A ∩ B = {x : x ∈ A and x ∈ B}.

• Union: A ∪ B = {x : x ∈ A or x ∈ B}.

• Difference: A − B = {x : x ∈ A and x ̸∈ B}.

• Cartesian (Cross) Product: A × B = {(x, y) : x ∈ A and y ∈ B}.

• Note that in general, A × B ̸= B × A.

⋆ Notations: We define the following sets of numbers:

• N: the set of all natural numbers {1, 2, 3, · · · }.

• Z: the set of all integers {· · · , −2, −1, 0, 1, 2, · · · }.

• Q: the set of all rational numbers {a
b

: a, b ∈ Z and b ̸= 0}.

• R: the set of all real numbers.

• C: the set of all complex numbers.

• S∗: the whole set S without the ’0’ element.

• S+: the set of all positive numbers in S.
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2 CHAPTER 0. REVIEW

• S−: the set of all negative numbers in S.

• Mn×n: the set of all n × n matrices with entries of real numbers.

• Nn×n: the set of all n × n non-singular matrices with entries of real numbers.
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Chapter

Mapping and Operations

Section 1.1: Mappings

Definition 1.1.1

A mapping from a set S to a set T is a relationship that maps every element of S to a

uniquely determined element of T . Moreover, If α : S → T is a mapping from S to T , then

we say that S is the domain and T is the codomain of α. Such a mapping is written as

S
α−→ T sometimes. Moreover, if S = T , we simply say that α is a mapping on S.

Example 1.1.1

Let S = {a, b, c} and T = {1, 2, 3}. Let α : S → T so that:

i. α(a) = 1, α(b) = 2, α(c) = 3, α is a mapping,

ii. α(a) = 1, α(b) = 1, α(c) = 2, α is a mapping,

iii. α(a) = 1, α(a) = 3, α(b) = 2, α is not a mapping.

Clearly iii. is not a mapping since first α does not map c and second because α(a) = 1 ̸= 3 =

α(a).

Definition 1.1.2

If α : S → T is a mapping and α(a) = b for some a ∈ S and b ∈ T , then we say that b is the

image of a and that a is the preimage of b.

Moreover, if A ⊆ S, then α(A) = {α(x) : x ∈ A} ⊆ T .

Definition 1.1.3

A mapping (function) α from a set S into a set T is one-to-one if each element of T has

at most one element of S mapped into it. Moreover, α is onto T if each element of T has at

least one element of S mapped into it.

3
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Definition 1.1.4

A mapping α is called a bijection if it is one-to-one and onto.

Remark 1.1.1

Let α : S → T be a function. Then,

1. α is a one-to-one function if for all a, b ∈ S, α(a) = α(b) implies a = b.

2. α is onto T if for each b ∈ T , there is a ∈ S such that α(a) = b.

Example 1.1.2

Consider the two mappings f : R → R defined by f(x) = x2 and g : R → R defined by

g(x) = x3. Decide whether f and g are one-to-one and onto?

Solution:

• Clearly, f is not one-to-one since f(1) = f(−1) = 1 but −1 ̸= 1. Also, f is not onto

since there is no x ∈ R with f(x) = −1 for instance. Therefore f is not a bijection.

• g is one-to-one since if g(x) = g(y), then x3 = y3 and hence x = y. Also it is onto since

for any y ∈ R, there is x = y
1
3 ∈ R with g(x) = (y 1

3 )3 = y. Hence g is a bijection.

Example 1.1.3

Let f be a mapping on N defined by f(x) = 2x. Is f a bijection? Explain.

Solution:

Clearly, f is one-to-one since f(a) = f(b) implies that 2a = 2b and hence a = b. But f is not

onto, since 1 ∈ N and no a ∈ N with f(a) = 1. That is f is not a bijection.
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Exercise 1.1.1

Solve the following exercises from the book at page 14:

• 1.1 − 1.6,

• 1.12 − 1.13.



6 CHAPTER 1. MAPPING AND OPERATIONS

Section 1.2: Composition. Invertible Mappings

Definition 1.2.1

Let A, B, and C be three nonempty sets. If f : A → B and g : B → C are two mappings,

then the composition of f and g, denoted by g ◦ f , is the mapping from A to C defined by

(g ◦ f)(x) = g(f(x)) for each x ∈ A.

Example 1.2.1

Let A = {x, y, z}, B = {1, 2, 3} and C = {a, b, c}. Define f : A → B and g : B → C by

f(x) = 2, f(y) = 1, and f(z) = 3, and g(1) = b, g(2) = c, and g(3) = a.

List all the elements of g ◦ f .

Solution:

• (g ◦ f)(x) = g(f(x)) = g(2) = c,

• (g ◦ f)(y) = g(f(y)) = g(1) = b,

• (g ◦ f)(z) = g(f(z)) = g(3) = a.

Example 1.2.2

Let f and g be two mapping on R where f(x) = 2x + 1 and g(x) = x − 1. Is g ◦ f = f ◦ g?

Explain.

Solution:

Clearly,

• (g ◦ f)(x) = g(f(x)) = g(2x + 1) = (2x + 1) − 1 = 2x, while

• (f ◦ g)(z) = f(g(x)) = f(x − 1) = 2(x − 1) + 1 = 2x − 1.

Therefore, g ◦ f ̸= f ◦ g.
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Theorem 1.2.1: This is from Math-250

Assume that f : A → B and g : B → C are two mappings. Then,

1. If f and g are onto, then g ◦ f is onto.

2. If g ◦ f is onto, then g is onto.

3. If f and g are one-to-one, then g ◦ f is one-to-one.

4. If g ◦ f is one-to-one, then f is one-to-one.

5. If f and g are bijections, then g ◦ f is a bijection.

Proof:

Recall this Theorem from Math-250.

1. Assume that both f and g are onto. Let z ∈ C, then there is y ∈ B such that g(y) = z

since g is onto. Also, there is x ∈ A such that f(x) = y since f is onto. Therefore,

(g ◦ f)(x) = g(f(x)) = g(y) = z and hence g ◦ f is onto.

2. Assume that g ◦ f is onto. If z ∈ C, then there is x ∈ A such that (g ◦ f)(x) = z (since

g ◦ f is onto). That is g(f(x)) = z with f(x) = y ∈ B. Thus g is onto.

3. Assume that both f and g are one-to-one. Then (g◦f)(x) = (g◦f)(y) implies g(f(x)) =

g(f(y)) which implies that f(x) = f(y) since g is one-to-one. Hence x = y because f is

one-to-one. Therefore, g ◦ f is one-to-one.

4. Assume that g◦f is one-to-one. Let f(x) = f(y). Then (g◦f)(x) = g(f(x)) = g(f(y)) =

(g ◦ f)(y) and since g ◦ f is one-to-one, we get that x = y. Hence f is one-to-one.

5. Assume that f and g are both bijections. Combining part 1 and part 3 concludes the

result. Hence g ◦ f is a bijection.

Definition 1.2.2

Let IA denote the identity mapping on A. That is,

IA(x) = x for every x ∈ A.

Note that this mapping is an example of a bijection mapping.
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Definition 1.2.3

A mapping g : B → A is an inverse of a mapping f : A → B if both g ◦f = IA and f ◦g = IB.

In that case, f is called invertible and we write f−1 = g.

Theorem 1.2.2

A mapping f : A → B is invertible if and only if f is a bijection.

Proof:

” ⇒”: Assume that f is invertible. Then f−1 ◦f = IA is one-to-one, and hence f is one-to-one.

Moreover, f ◦ f−1 = IB is onto and hence f is onto. Therefore, f is a bijection.

” ⇐”: Assume that f is a bijection. We construct f−1 : B → A as follows: If y ∈ B, then

there is x ∈ A such that f(x) = y (since f is onto). But since f is one-to-one, this element x

is unique. Let f−1(y) = x. This is can be done to all elements y ∈ B and hence f−1 : B → A

satisfying f ◦ f−1 = IB and f−1 ◦ f = IA. Thus f is invertible.

Theorem 1.2.3

If f : A → B is a bijection, then f−1 : B → A is a bijection.

Proof:

This is can be done using your knowledge from Math-250.
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Exercise 1.2.1

Solve the following exercises from the book at page 18:

• 2.1 − 2.6,

• 2.11 − 2.13.
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Section 1.3: Operations

Definition 1.3.1

A binary operation ” ∗ ” on a set S is a relationship that maps each ordered pair of elements

of S to a unique element of S. That is ∗ : S ×S → S, where S ×S is the Cartesian product

of S with S which contains all ordered pairs (a, b) with a, b ∈ S.

Definition 1.3.2

Let ∗ be a binary operation on a set S. For all a, b ∈ S, a ∗ b ∈ S. This property of ∗ is called

closure and we say that S is closed with respect to ∗.

Note that we write (S, ∗) for a defined binary operation ∗ on a set S.

Example 1.3.1

Decide if the following is binary operation:

(N, −) NO, 1, 2 ∈ N but 1 − 2 = −1 ̸∈ N

(Z, +) YES

(Z, −) YES

(Z, ·) YES

(Z, ÷) NO, 1, 2 ∈ Z but 1
2 ̸∈ Z

(Q, ÷) NO, 0, 1 ∈ Q but 1
0 ̸∈ Q

(Q∗, ÷) YES

(R, +) YES

(R, −) YES

(R, ·) YES

(R∗, ÷) YES

Example 1.3.2

Let ∗ be defined on Z+ by m ∗ n = mn for all m, n ∈ Z+. Is ∗ a binary operation? Does the

order of elements make any difference?
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Solution:

Clearly, for any m, n ∈ Z+, m ∗ n = mn ∈ Z+. Thus, ∗ is a binary operation on Z+.

However, the order makes difference since 3 ∗ 2 = 32 = 9 while 2 ∗ 3 = 23 = 8.

Definition 1.3.3

If S is a finite set, then we can specify a binary operation on S by means of a table. We put

a ∗ b at the intersection of the row containing a and the column containing b, for all a, b ∈ S.

Changing one more of the entries in the table will give a different binary operation. Such

defined tables are called Cayley tables.

Example 1.3.3

Let S = {a, b, c}. Give two different Cayley tables.

Solution:

∗1 a b c

a a c c

b b b a

c b c b

∗2 a b c

a b b b

b a b c

c b b b

Remark 1.3.1

In general there are nn2 Cayley tables for S = {a1, a2, · · · , an}. This is because each row has

n positions with n possible elements in each position. That is, each row has nn possible ways.

Overall we have n rows and thus we have nn · nn · · · · nn (n-times) which is nn2 .

Example 1.3.4

Decide whether + and · are binary operations on M2×2

Solution:

Yes, because for any 2 × 2 matrices, we have



12 CHAPTER 1. MAPPING AND OPERATIONS

•

a b

c d

 +

x y

z w

 =

a + x b + y

c + z d + w

 ∈ M2×2,

•

a b

c d

 ·

x y

z w

 =

ax + bz ay + bw

cx + dz cy + dw

 ∈ M2×2,

Definition 1.3.4

A binary operation ∗ on a set S is said to be associative if the associative law

a ∗ (b ∗ c) = (a ∗ b) ∗ c

is satisfied for all a, b, c ∈ S.

Definition 1.3.5

A binary operation ∗ on a set S is said to be commutative if the commutative law

a ∗ b = b ∗ a

is satisfied for all a, b ∈ S.

Example 1.3.5

Discuss the associative and commutative properties on

1. (Z, +),

2. (Z, −),

3. (Q∗, ÷)

Solution:

1) Clearly, m + (n + k) = (m + n) + k for all m, n, k ∈ Z, then + is associative on Z. Also,

m + n = n + m for all m, n ∈ Z and hence + is commutative on Z.

2) 2 − (1 − 3) = 4 while (2 − 1) − 3 = −2 and hence − is not associative on Z. Moreover,

1 − 2 ̸= 2 − 1. Thus − is not commutative on Z.

3) ”÷” is not associative on Q∗ since 1 ÷ (3 ÷ 2) = 2
3 while (1 ÷ 3) ÷ 2 = 1

6 . Moreover,
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1 ÷ 2 ̸= 2 ÷ 1, hence ÷ is not commutative on Q∗.

Definition 1.3.6

Let S be a set with a binary operation ∗. An element e ∈ S is called an identity (or identity

element) for ∗ on S if

e ∗ a = a ∗ e = a

for all a ∈ S.

Definition 1.3.7

Let e be an identity for a binary operation ∗ on a set S. An element b ∈ S is called an inverse

of a relative to ∗ if

a ∗ b = b ∗ a = e.

Example 1.3.6

Discuss the identity and inverse elements in what follows:

1. (Z, +): 0 is the identity element for + on Z, while ”−a” is the inverse of a relative to

+ for every a ∈ Z. Note that a + (−a) = 0.

2. (Q∗, ·): 1 is the identity for · on Q∗, while 1
a

is the inverse of a ∈ Q∗. That is a · 1
a

= 1

for all a ∈ Q∗.

3. (Z+, +): has no identity and no inverse.

4. (2Z, ·): 2Z = {· · · , −4, −2, 0, 2, 4, · · · } has no identity and no inverses.

5. (M2×2, +): the identity matrix is

0 0

0 0

 and for any

a b

c d

 ∈ M2×2 the inverse element

is

−a −b

−c −d

.

6. (M2×2, ·): the identity matrix is I2 =

1 0

0 1

. Some matrices have no inverse and some
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do. For instance the matrix

1 2

0 0

 has no inverse since its determinant equals zero.

7. (N2×2, ·): the identity matrix is I2 and the inverse of a matrix

a b

c d

 is given by

1
ad−bc

 d −b

−c a

. That is, A−1 = 1
|A|adj(A).
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Exercise 1.3.1

Solve the following exercises from the book at page 23:

• 3.1 − 3.8,

• 3.13.

Exercise 1.3.2

Let ∗ be defined by m ∗ n = mn for all positive integers m and n. Is ∗ a commutative binary

operation on Z+? Explain.
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Section 1.4: Composition as an Operation

Example 1.4.1

Let S be any nonempty set, and let M(S) denote the set of all mappings from S to S. Is ”◦”,

the composition, an operation on M(S)? Explain.

Solution:

Let α, β ∈ M(S). Then α : S → S and β : S → S and hence β ◦ α : S → S. Thus,

β ◦ α ∈ M(S) and the composition ”◦” is an operation on M(S).

Theorem 1.4.1

Let S denote any nonempty set. Then

1. Composition is an associative operation on M(S), with the identity element IS.

2. Composition is an associative operation on the set of all invertible mappings in M(S),

with identity IS.

Proof:

1. Let f, g, h ∈ M(S). Then for any x ∈ S, we have

[h ◦ (g ◦ f)](x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = [(h ◦ g) ◦ f ](x).

That is ◦ is associative on M(S). Moreover, it is clear that f ◦ IS = IS ◦ f = f for any

f ∈ M(S).

2. Assume that f, g ∈ M(S) and that both are invertible. Thus both f and g are bijections

and hence g◦f is a bijection which implies that g◦f is invertible. Since the composition

is associative on M(S), it is associative on any of its subsets and hence it is associative

on the subset of invertible mappings. Moreover, IS is invertible and thus it is the identity

element on the subset of invertible elements in M(S).
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Remark 1.4.1

Note that the composition operation ”◦” is not commutative in general since f ◦ g ̸= g ◦ f for

some mappings f and g.
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Chapter

Introduction To Groups

Section 2.5: Definition and Examples

Definition 2.5.1

A group (G, ∗) is a set G, closed under a binary operation ∗, such that the following

conditions are satisfied

G1: associativity: ∗ is associative on G,

G2: identity element: there is e ∈ G such that e ∗ g = g ∗ e = g for every g ∈ G,

G3: inverse element: for every g ∈ G, there exists h ∈ G (usually written as h = g−1) such

that g ∗ h = h ∗ g = e. That is every element in G has an inverse in G.

Example 2.5.1

Show that the set of even integers, denoted by 2Z, with addition is a group.

Solution:

We show that (2Z, +) is a group by showing the conditions of Definition 2.5.1 as follows:

G1: Let a, b, c ∈ 2Z. Then (a + b) + c = a + b + c = a + (b + c) and hence + is associative.

G2: The identity element is 0 ∈ 2Z since a + 0 = 0 + a = a for all a ∈ 2Z.

G3: For any a ∈ 2Z, −a ∈ 2Z and a + (−a) = 0 = (−a) + a.

Therefore (2Z, +) is a group.

Example 2.5.2

Is (Z+, +) a group? Explain.

Solution:

No. There is no identity element in Z+ and there is no inverse in Z+ for any element in Z+.

19
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Example 2.5.3

Decide whther (M2×2, ·) ”the set of all 2 × 2 matrices” is a group.

Solution:

Clearly, · is associative on M2×2 and there is identity element I2 ∈ M2×2. But for some

elements A ∈ M2×2 there is no inverse. For instance the inverse of
1 0
0 0

 does not exist.

Thus (M2×2, ·) is not a group.

Definition 2.5.2

A group G is called abelian if its binary operation is commutative. It is called non-abelian

otherwise.

Definition 2.5.3

For a, n ∈ Z with n > 0, define the congruence class of a modulo n in Z by

[a] = a = {x ∈ Z : a ≡n x ⇔ n | a − x}.

Moreover, for [a], [b] ∈ Zn, define

[a] ⊕ [b] = [a + b].

Theorem 2.5.1

Let n be a positive integer, then Zn = {[0], [1], · · · , [n − 1]} is an abelian group with respect

to the operation ⊕.

Proof:

G1:

[a] ⊕ ([b] ⊕ [c]) = [a] ⊕ [b + c] = [a + b + c] = [(a + b) + c]

= [a + b] ⊕ [c] = ([a] ⊕ [b]) ⊕ [c].

G2: The identity is [0] since [0] ⊕ [a] = [0 + a] = [a] = [a + 0] = [a] ⊕ [0].

G3: The inverse of [a] is [−a]:

[a] ⊕ [−a] = [a + (−a)] = [0] = [(−a) + a] = [−a] ⊕ [a].
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Note that [−a] is congruent modulo n to exactly one integer in {[0], [1], · · · , [n − 1]}.

To show that Zn is abelian, let [a], [b] ∈ Zn, then

[a] ⊕ [b] = [a + b] = [b + a] = [b] ⊕ [a].

Thus, Zn is abelian group with respect to ⊕.

Remark 2.5.1

Notation:

For simplicity, we write Zn = {0, 1, · · · , n − 1} instead of Zn = {[0], [1], · · · , [n − 1]}.

Example 2.5.4

The following are examples of some groups:

(Z, +), (Q, +), (M2×2, +), and (Mm×n, +).

(Nn×n, ·), (Q∗, ·), (Q+, ·), and (2Z, +).

Theorem 2.5.2

Let (G, ∗) be a group. Then:

1. The identity element of G is unique.

2. The inverse of each element in G is unique.

Proof:

1. Let e1 and e2 be two identity elements in G. Then e1 ∗a = a for all a ∈ G. In particular,

e1 ∗ e2 = e2 and e1 ∗ e2 = e1. Thus, e1 = e1 ∗ e2 = e2, and hence e1 = e2.

2. Let a1 and a2 be two inverses of a ∈ G. Then,

a1 = a1 ∗ e = a1 ∗ (a ∗ a2) = (a1 ∗ a) ∗ a2 = e ∗ a2 = a2.
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Definition 2.5.4

The order of a group is the number of elements in G denoted by | G |. If G is finite, we write

| G | < ∞. Otherwise, we say that G is infinite group.

Groups of small order:

⋆ Groups of order 1: Z1 = {0}, +:

If G = {e}, then G is a group of order 1, with e−1 = e.
∗ e

e e

⋆ Groups of order 2: Z2 = {0, 1}, +:

Let G = {e, a}. The identity element is e and the inverse

of a is a.

∗ e a

e e a

a a e

Remark 2.5.2

Each element needs an inverse in any group. Thus, there must be identity input in each row

and column in the Caylay table of the group.

Remark 2.5.3

The equations a ∗ x = b and y ∗ a = b have unique solutions. Therefore, each element appears

exactly once in each row and column of the Caylay table of the group.

⋆ Groups of order 3: Z3 = {0, 1, 2}, +:

Let G = {e, a, b}. We start with Table 1.

Now if a ∗ a = e, then a ∗ b = b since each element

appears once in each row and column. But this suggests

that a = e which is not the case. Thus, we must have

a ∗ a = b and a ∗ b = e. Therefore, we get Table 2.

Table 1.
∗ e a b

e e a b

a a

b b

Table 2.
∗ e a b

e e a b

a a b e
b b e a
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Remark 2.5.4

For any element a in a group G and n is a natural number, we have:

1. an = a ∗ a ∗ · · · ∗ a, n-times.

2. a−n = (a−1)n = (an)−1 = a−1 ∗ a−1 ∗ · · · ∗ a−1, n-times.

3. a0 = e.

Definition 2.5.5

If two groups G1 and G2 have the same structure, one group can be made to look exactly

like the other by a renaming of elements. Then they are said to be isomorphic, denoted by

G1 ∼= G2. In particular, | G1 | = | G2 |.

Example 2.5.5

Consider Z3 = {0, 1, 2} with ”+ modulo 3”. Find its order.

Solution:

This is a group of order 3 as above by renaming e = 0, a = 1, and b = 2. Thus, |Z3 | = 3.

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

⋆ Groups of order 4: Z4 and Z2
2 = D2:

Let G = {e, a, b, c}. Thus, the Caylay table is

∗ e a b c

e e a b c

a a ?
b b

c c

The question mark can NOT be filled with a, but it can be filled either with e or with {b or c}.

Case-1: The ? spot filled with ”e”: Note that a ∗ b ̸= b since a ̸= e. Thus, we get two possible tables
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T1 and T2 as follows:

T1(The Klein 4-group) :

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

or T2 :

∗ e a b c

e e a b c

a a e c b

b b c a e

c c b e a

Case-2: The ? spot filled with ”b” without loss of generality, and a ∗ c ̸= c since a ̸= e. We get T3:

T3 :

∗ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

We end up with three tables T1, T2, and T3. Note that T2 has the same structure as T3 when we

interchanging letters a and b in table T2 everywhere and then rewrite the table to get exactly table

T3. Note that T1 is the smallest example of a non-cyclic group which is called the Klein 4-group.

Example 2.5.6

Consider the group (Z4, +). Find its order.

Solution:

This is a group of order 4 and it is isomorphic to the table T3, namely (Z4, +).

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Exercise 2.5.1

Show that G = {2m3n : m, n ∈ Z} is a group with respect to multiplication.

Exercise 2.5.2

Let G denote M(R), the set of all mappings on R. For f, g ∈ G define f + g by (f + g)(x) =

f(x) + g(x) for all x ∈ R. Verify that G with this operation is a group.
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Exercise 2.5.3

Let G = {A ∈ M2×2 : det A ∈ Q∗}. Show that (G, ·) is a group.

Exercise 2.5.4

Let G = {A ∈ M2×2 : det A = 1}. Show that (G, ·) is a group.

Exercise 2.5.5

Prove that if G is a group, a ∈ G, and a ∗ b = b for some b ∈ G, then a is the identity element

of G.
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Exercise 2.5.6

Solve the following exercises from the book at pages 33 - 34:

• 5.1 − 5.14,

• 5.16 − 5.18,

• 5.22.

Exercise 2.5.7

Consider the group (U4, ·) where U4 = {1, i, −1, −i}. Find its order and its isomorphic group.
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Section 2.6: Permutations and Symmetric Group

Definition 2.6.1

A permutation of a set A is a mapping ϕ : A → A that is both one-to-one and onto A. That

is ϕ : A
1−1−−→
onto

A.

The composition mapping is a binary operation on the collection of all permutations of a set

A. We will call this operation permutation multiplication.

Theorem 2.6.1

The set of all permutations of a nonempty set A is a group with respect to permutation

multiplication. This group is called the symmetric group on A and is denoted by Sym(A).

If A = {1, 2, · · · , n} is a set, then the group Sym(A) is commonly denoted by Sn, and is called

the symmetric group on n letters.

Example 2.6.1

Let A = {1, 2, 3}. Find the elements of Sym(A) or simply S3.

Solution:
1 2 3

1 2 3

 ,

1 2 3

1 3 2

 ,

1 2 3

2 1 3

 ,

1 2 3

2 3 1

 ,

1 2 3

3 1 2

 , and

1 2 3

3 2 1


Which is (in cycle notation):

e, (2 3), (1 2), (1 2 3), (1 3 2), and (1 3)

Theorem 2.6.2

The order of Sn = n!.

Proof:
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Counting the number of possibilities of permutations

1 2 · · · n

.. .. · · · ..

.

Remark 2.6.1

• the identity element in Sn is

1 2 · · · n

1 2 · · · n

.

• the inverse element is obtained by reading from bottom to top. That is, for instance,1 2 3 4

3 1 4 2


−1

=

1 2 3 4

2 4 1 3

 .

That is (1 3 4 2)−1 = (1 2 4 3).

• Compute in S4: 1 2 3 4

2 4 1 3

 ◦

1 2 3 4

3 1 2 4

 =

1 2 3 4

1 2 4 3

 .

That is (1 2 4 3) ◦ (1 3 2) = (3 4) ”in cycle notation”.

Theorem 2.6.3

S1 and S2 are abelian groups. If n ≥ 3, then Sn is non-abelian group.

Proof:

Let α and β in Sn (n ≥ 3) be defined by

α =

1 2 3 4 · · · n

1 3 2 4 · · · n

 and β =

1 2 3 4 · · · n

3 2 1 4 · · · n

 .

Then,

α ◦ β =

1 2 3 4 · · · n

2 3 1 4 · · · n

 and β ◦ α =

1 2 3 4 · · · n

3 1 2 4 · · · n

 .

That is α ◦ β ̸= β ◦ α, and the group is non-abelian.
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Definition 2.6.2

If A is a set and a1, a2, · · · , ak ∈ A, then (a1 a2 · · · ak) denotes the permutation of A for

which a1 7→ a2, a2 7→ a3, · · · , ak−1 7→ ak, ak 7→ a1, and x 7→ x for all other x ∈ A. Such a

permutation is called a cycle or k-cycle.

Example 2.6.2

Compute (1 3 2 5)(1 4 3 2) in S5.

Solution:

We multiply from right to left to get, (1 3 2 5)(1 4 3 2) = (1 4 2 3 5).

Example 2.6.3

Compute (1 2 3 4)−1 in S4.

Solution:

(1 2 3 4)−1 = (1 4 3 2)

Definition 2.6.3

We say that cycles (a1 a2 · · · am) and (b1 b2 · · · bn) are disjoint cycles if ai ̸= bj for

all i and j.

Theorem 2.6.4

Disjoint cycles commute; That is if α and β represent disjoint cycles, then αβ = βα.

Theorem 2.6.5

Any permutation of a finite set is either a cycle or can be written as a product of pairwise

disjoint cycles. The resulting form is called the cyclic decomposition of the permutation.
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Example 2.6.4

Find the cyclic decomposition of the following permutations: 1. (1 3)(2 5 4), 2.

(1 4 5)(2 3 5), 3. (1 2)(1 3)(4 5), and 4. (1 5 4 6 3 2)(4 3 6)(2 5).

Solution:

1. (1 3)(2 5 4) = (1 3)(2 5 4).

2. (1 4 5)(2 3 5) = (1 4 5 2 3).

3. (1 2)(1 3)(4 5) = (1 3 2)(4 5).

4. (1 5 4 6 3 2)(4 3 6)(2 5) = (1 5)(2 4).

5. (1 3 2)(2 4 5)(1 4) = (1 5)(2 4 3).

Example 2.6.5

Write down the Caylay table for S3 defined by ”row ◦ column”.

Solution:

◦ e (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

e e (1 2 3) (1 3 2) (1 2) (1 3) (2 3)
(1 2 3) (1 2 3) (1 3 2) e (1 3) (2 3) (1 2)
(1 3 2) (1 3 2) e (1 2 3) (2 3) (1 2) (1 3)

(1 2) (1 2) (2 3) (1 3) e (1 3 2) (1 2 3)
(1 3) (1 3) (1 2) (2 3) (1 2 3) e (1 3 2)
(2 3) (2 3) (1 3) (1 2) (1 3 2) (1 2 3) e
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Exercise 2.6.1

Solve the following exercises from the book at page 40:

• 6.1 − 6.4.

Exercise 2.6.2

Compute (1 4 6)−1(1 2 4 3 5) in S6.
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Section 2.7: Subgroups

Definition 2.7.1

A subset H of a group G is a subgroup of G if H is itself a group under the binary operation

of G. In that case, we write H ≤ G. In addition, if H ̸= G, we simply write H < G.

Example 2.7.1

The following are some examples of subgroups:

• (Z, +) ≤ (R, +),

• ({1, −1}, ·) ≤ (R∗, ·),

• (improper subgroup) (G, ∗) ≤ (G, ∗) for any group G with operation ∗, and

• (improper subgroup) ({e}, ∗) ≤ (G, ∗) for any group G with operation ∗.

Remark 2.7.1

Let H be a subgroup of a group (G, ∗), i.e. H ≤ G. Then:

• a ∗ b ∈ H for all a, b ∈ H. In particular, H must be closed under the operation ∗.

• eH = eG and for a ∈ H, a−1 in H is the same as a−1 in G.

Theorem 2.7.1

A subset H is a subgroup of a group G if and only if the following properties hold:

S1: H is not empty.

S2: If a, b ∈ H, then a ∗ b ∈ H, and

S3: If a ∈ H, then a−1 ∈ H.

Proof:

” ⇒” Assume that H is a subgroup of G. Then H is a group itself and the properties 1, 2,

and 3 hold.
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” ⇐” Assume now that properties 1, 2, and 3 hold. Then we show that H is a group contained

in G:

G1: Clearly ∗ is associative on G and hence it is associative on its subset H.

G2: H is not empty by Property 1, and hence there is a ∈ H and thus a−1 ∈ H (by Property

3). Therefore, a ∗ a−1 = e ∈ H (by Property 2).

G3: For any a ∈ H, there is an inverse of a in H by Property 3.

Therefor H is a subgroup of G.

Definition 2.7.2

A subgroup H of a group G is called a proper subgroup if H ̸= {e} ”the trivial subgroup

of G”, and H ̸= G ”the improper subgroup of G”.

Example 2.7.2: Exercise 7.22 at page 46

Prove that if G is a group with operation ∗, and H is a subset of G, then H is a subgroup of

G if and only if:

1. H is not empty.

2. If a, b ∈ H, then a ∗ b−1 ∈ H, and

Solution:

” ⇒” Assume that H ≤ G. Then H is a group and the properties 1, and 2 hold.

” ⇐” Assume now that properties 1, and 2 hold. Then we show that H is a group in G:

G1: Clearly ∗ is associative on G and hence it is associative on its subset H.

G2: Let a ∈ H, then e = a ∗ a−1 ∈ H (by Property 2).

G3: For any a ∈ H, we have e ∗ a−1 ∈ H (by Property 2) and hence there is an inverse of a

in H.

Therefor H is a subgroup of G.
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Remark 2.7.2

1. (R, +) ≥ (Q, +) ≥ (Z, +) ≥ (nZ, +), n ∈ Z, ≥ {0}.

2. (R∗, ·) ≥ (Q∗, ·) ≥ (Q+, ·) ≥ {1}.

3. Note that (3Z, +) ̸≤ (2Z, +) since 3Z ̸⊆ 2Z.

Example 2.7.3

Show that H = {0, 2} is a subgroup of Z4 under the addition modular 4.

Solution:

+ 0 2

0 0 2
2 2 4 ≡4 0

Clearly, H is not empty and the identity element is 0 and the inverse of each element in H is

itself. Thus H ≤ Z4.

Example 2.7.4

Show that H = {e, (1 2 3), (1 3 2)} is a subgroup of S3 under the permutation multiplication.

Solution:

We show that by proving that H satisfying the three properties of Theorem 2.7.1. We first

start with the following table:

◦ e (1 2 3) (1 3 2)

e e (1 2 3) (1 3 2)
(1 2 3) (1 2 3) (1 3 2) e

(1 3 2) (1 3 2) e (1 2 3)

S1: Clearly H is not empty.

S2: The previous table shows that H is closed under the operation ◦.

S3: Finally, e−1 = e ∈ H, (1 2 3)−1 = (1 3 2) ∈ H, and (1 3 2)−1 = (1 2 3) ∈ H.

Therefore, H is a subgroup of S3.
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Remark 2.7.3

Subgroups of S3 are:

1. S3.

2. {e}.

3. {e, (1 2)}.

4. {e, (1 3)}.

5. {e, (2 3)}.

6. {e, (1 2 3), (1 3 2)}.

Remark 2.7.4

A transposition is a 2-cycle element in Sn.

• Every element in Sn is a transposition or a product of transpositions (not in a unique

way). For instance in S3, (1 2 3) = (1 3)(1 2) = (2 3)(1 2)(1 3)(2 3) and in general in

Sn we have

(a1 a2 · · · ak) = (a1 ak)(a1 ak−1) · · · (a1 a2).

• A permutation is even (or odd) if it can be written as a product of an even (or an odd,

respectively) number of transpositions.

Example 2.7.5

Decide whether α = (1 2 3 4 5) and β = (1 2 5)(3 4) are even or odd permutations in S5.

Solution:

• α is even (4 transpositions): α = (1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2), and

• β is odd (3 transpositions): β = (1 2 5)(3 4) = (1 5)(1 2)(3 4).
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Definition 2.7.3

The set of all even permutations in Sn is called the alternating group and is denoted by An.

Moreover, it is of order 1
2 n!.

Theorem 2.7.2

For each n ≥ 2, An is a subgroup of Sn.

Proof:

Let n ≥ 2, then

S1: The identity permutation e = (1 2)(1 2) ∈ An and hence An ̸= ϕ.

S2: If a, b ∈ An, then both are even permutations and the product of two even number of

transpositions is an even number. Thus ab ∈ An.

S3: If a = (a1 a2)(a3 a4) · · · (ak−1 ak) ∈ An, then a−1 = (ak−1 ak) · · · (a3 a4)(a1 a2) ∈ An

Therefore, An ≤ Sn.

Remark 2.7.5

Note that the subgroup H of Example 2.7.4 is in fact A3 which is a subgroup of S3 and its

order is 3 = 1
2 3!.

Definition 2.7.4

Let G be a permutation group on a set S, and let T ⊆ S. We define:

• GT = {α ∈ G : α(t) = t for all t ∈ T}, which leaves T elementwise invariant.

• G(T ) = {α ∈ G : α(T ) = T}, which leaves T setwise invariant.

Example 2.7.6

Let S = {1, 2, 3, 4}, G = sym(S) = S4, and T = {1, 2}. Find GT and G(T ).

Solution:
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GT = {(1)(2)(3)(4), (1)(2)(3 4)} = {e, (3 4)}.

G(T ) = {(1)(2)(3)(4), (1 2)(3)(4), (1)(2)(3 4), (1 2)(3 4)} = {e, (1 2), (3 4), (1 2)(3 4)}.

Theorem 2.7.3

If G is a permutation group on S, and T ⊆ S, then GT and G(T ) are subgroups of G. Moreover,

GT is a subgroup of G(T ).

Proof:

We first show that GT ≤ G.

S1: Clearly, the identity mapping I of G is in GT , and hence GT ̸= ϕ.

S2: Let α, β ∈ GT , then for each t ∈ T , we have

(α ◦ β)(t) = α(β(t)) = α(t) = t.

So, α ◦ β ∈ GT .

S3: If α ∈ GT , and t ∈ T , then α−1 ∈ GT because

α(t) = t

α−1(α(t)) = α−1(t)

(α−1 ◦ α)(t) = α−1(t)

t = α−1(t).

Therefore GT is a subgroup of G. Next we show that G(T ) ≤ G.

S1: Clearly I(T ) = T and hence G(T ) ̸= ϕ.

S2: If α, β ∈ G(T ), then (α ◦ β)(T ) = α(β(T )) = α(T ) = T and hence α ◦ β ∈ G(T ).

S3: If α ∈ G(T ), then α(T ) = T ⇒ α−1(α(T )) = α−1(T ) ⇒ T = α−1(T ) and hence

α−1 ∈ G(T ).

Therefore, G(T ) ≤ G.

To show that GT ≤ G(T ), we only show that GT ⊆ G(T ) as follows: If α ∈ GT , then α(t) = t

for each t ∈ T and hence α(T ) = T . That is α ∈ G(T ). Therefore, GT ⊆ G(T ) and hence

GT ≤ G(T ).
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Example 2.7.7: Exercise 7.13 at page 46

Let H and K be two subgroups of (G, ∗). Show that H ∩ K is also a subgroup of (G, ∗).

Solution:

We show that H ∩ K is a subgroup of G as follows:

S1: H ∩ K ̸= ϕ: Since H and K are both subgroups of G, then e ∈ H and e ∈ K, and hence

e ∈ H ∩ K.

S2: H ∩ K is closed under ∗: Let a, b ∈ H ∩ K. Then

1. a, b ∈ H, and since H is a subgroup of G, a ∗ b ∈ H, and

2. a, b ∈ K, and since K is a subgroup of G, a ∗ b ∈ K.

Thus, a ∗ b ∈ H ∩ K.

S3: For each a ∈ H ∩ K, there exists a−1 ∈ H ∩ K: Let a ∈ H ∩ K. Thus, a ∈ H and

hence a−1 ∈ H. Also, a ∈ K and hence a−1 ∈ K. Therefore, a−1 ∈ H ∩ K.

Therefore, H ∩ K is a subgroup of G.

Definition 2.7.5

Let G be a group with operation ∗ and that a ∈ G. The centralizer of a in G is defined by

C(a) = {g ∈ G : a ∗ g = g ∗ a}.

Definition 2.7.6

Let G be a group with operation ∗. The center of G is defined by

Z(G) = {g ∈ G : g ∗ a = a ∗ g for all a ∈ G}.

Remark 2.7.6

For the sake of simplicity, we write ab instead of a ∗ b for any elements a and b in (G, ∗).
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Example 2.7.8: Exercises 7.23 & 7.24 at page 46

Let G be a group with operation ∗. Then,

(a) Show that C(a) is a subgroup of G for a ∈ G.

(b) Show that Z(G) is a subgroup of G.

Solution:

We first show that C(a) ≤ G for a ∈ G as follows:

S1: Clearly, ae = a = ea. Hence, e ∈ C(a) ̸= ϕ.

S2: Let g, h ∈ C(a). Then, ag = ga and ah = ha. Thus,

a(gh) = (ag)h = (ga)h = g(ah) = g(ha) = (gh)a.

Since a(gh) = (gh)a, (gh) ∈ C(a), and C(a) is closed.

S3: Let g ∈ C(a). Then,

ag = ga ⇔ g−1(ag) = a ⇔ g−1a = ag−1.

Hence, g−1 ∈ C(a).

Therefore, C(a) ≤ G. Next we show that Z(G) ≤ G as follows:

S1: For all a ∈ G, ae = a = ea. Hence, e ∈ Z(G) ̸= ϕ.

S2: Let g, h ∈ Z(G), then ga = ag and ha = ah for all a ∈ G. Thus, for all a ∈ G, we have

a(gh) = (ag)h = (ga)h = g(ah) = g(ha) = (gh)a.

Therefore, gh ∈ Z(G).

S3: Let g ∈ C(a). Then, ag = ga for all a ∈ G. Then

g−1ag = a ⇔ g−1a = ag−1.

Therefore, Z(G) ≤ G.
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Example 2.7.9

Suppose that G is an abelian group with operation ∗. Let H and K be two subgroups of G.

Show that HK = {hk : h ∈ H and k ∈ K} is also a subgroup of G.

Solution:

S1: Clearly, e ∈ H and e ∈ K. Thus, e = ee ∈ HK ̸= ϕ.

S2: Let a = h1k1, b = h2k2 ∈ HK so that h1, h2 ∈ H and k1, k2 ∈ K. Then, h1h2 ∈ H and

k1k2 ∈ K since both H and K are subgroups of G. Since G is abelian, we have

ab = (h1k1)(h2k2) = (h1h2)(k1k2) = hk ∈ HK,

where h = h1h2 ∈ H and k = k1k2 ∈ K. Thus HK is closed.

S3: Let a = hk ∈ HK where h ∈ H and k ∈ K. Then, h−1 ∈ H and k−1 ∈ K. Thus,

a−1 = (hk)−1 = k−1h−1,

and since G is abelian, we have

a−1 = k−1h−1 = h−1k−1 ∈ HK

Therefore, HK is a subgroup of G.

Remark 2.7.7

Note that if G is a group (not abelian), then HK is not necessary a subgroup of G for any

subgroups H and K. For instance consider G = S3 and H = {e, (1 2)} and K = {e, (2 3)}.

Example 2.7.10

Let G be a group. If a, b ∈ G with ab ∈ Z(G), then ab = ba.

Solution:

We show that aba−1b−1 = e which is equivalent to showing that ab = ba. Note that (ab)g =

g(ab) for all g ∈ G. Then

(ab)a−1b−1 = a−1(ab)b−1 = e.
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Exercise 2.7.1

Solve the following exercises from the book at pages 45 - 46:

• 7.1 − 7.4,

• 7.8, 7.10, 7.13, 7.15,

• 7.22 − 7.24.

Exercise 2.7.2

Prove or disprove: For any given group G,

Z(G) =
⋂

a∈G

C(a).

Exercise 2.7.3

For any given group G, Compute C(e).

Exercise 2.7.4

Let GLn(R) = {all n × n nonsingular matrices with real entries} be a group with the opera-

tion of matrix multiplication and let SLn(R) = {A ∈ GLn(R) : det (A) = 1}. Show that

SLn(R) ≤ GLn(R).

Exercise 2.7.5

Let GL2(R) = {all 2 × 2 nonsingular matrices with real entries} be a group with the opera-

tion of matrix multiplication. Find C


1 1

1 0


.
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3
Chapter

Equivalence. Congruence. Divisiblity

Section 3.9: Equivalence Relations

Definition 3.9.1

Let A and B be sets. A relation ∼ from A to B is a subset of A × B. If a ∈ A is related to

b ∈ B, then we write a ∼ b. Otherwise, a ̸∼ b. Moreover, if A = B, we simply say that ∼ is a

relation on A.

Definition 3.9.2

Let ∼ be a relation on a set A. Then ∼ is called an equivalence relation if and only if:

1. ∼ is reflexive on A: (∀x ∈ A) x ∼ x.

2. ∼ is symmetric on A: (∀x, y ∈ A) if x ∼ y, then y ∼ x.

3. ∼ is transitive on A: (∀x, y, z ∈ A) if x ∼ y and y ∼ z, then x ∼ z.

Example 3.9.1

Let ∼ be the relation on Z given by x ∼ y iff x − y is even. Show that ∼ is an equivalence

relation on Z.

Solution:

• for all x ∈ Z, x − x = 0 which is even, hence x ∼ x and ∼ is reflexive.

• for any x, y ∈ Z, let x ∼ y. Then x − y is even. That is x − y = 2k for some k ∈ Z.

Hence y − x = 2(−k) which is even as well. Thus, y ∼ x and ∼ is symmetric.

• for any x, y, z ∈ Z, let x ∼ y and y ∼ z. Then, x−y and y−z is even. So, (x−y)+(y−z) =

x − z is also even. Thus, x ∼ z and ∼ is transitive.

Therefore, ∼ is an equivalence relation on Z.

43
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Example 3.9.2

Let α : A → B be a mapping and define a relation ∼ on A so that for any x, y ∈ A, x ∼ y iff

α(x) = α(y). Clearly, ∼ is an equivalence relation. (Can you show it!?).

Definition 3.9.3

Let A be a non-empty set. A partition of the set A is a family of nonempty subsets

A1, A2, · · · , An such that:

1.
n⋃

i=1
Ai = A, and

2. Ai ∩ Aj = ϕ if i ̸= j.

Example 3.9.3

Let E denote the set of even integers and O the set of odd integers. Then, {E, O} forms

a partition of the set of all integers. Note that {0, 1} is a complete set of equivalence class

representatives.

Definition 3.9.4

Let ∼ be an equivalence relation on a set A. For x ∈ A, define the equivalence class of x

determined by ∼ as

[x] = {y ∈ A : x ∼ y}.

Remark 3.9.1

It is always true that x ∈ [x] because ∼ is reflexive. And if y ∈ [x], then x ∈ [y] because ∼ is

symmetric.

Theorem 3.9.1

If ∼ is an equivalence relation on a nonempty set A, then the set of equivalence classes of ∼

forms a partition of A.
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Theorem 3.9.2

Let G be a permutation group on nonepmty set S and define a relation ∼ on S by a ∼ b iff

α(a) = b for some α ∈ G. Then ∼ is an equivalence relation on S.

Proof:

We show that ∼ is reflexive, symmetric, and transitive relations as follows:

Ref.: If a ∈ S, then I(a) = a and hence a ∼ a.

Symm.: If a, b ∈ S and a ∼ b, then α(a) = b for some α ∈ G and hence α−1(b) = a with α−1 ∈ G.

Thus b ∼ a.

Trans.: If a, b, c ∈ S with a ∼ b and b ∼ c, then there are α, β ∈ G such that α(a) = b and

β(b) = c. Thus β ◦ α ∈ G with

(β ◦ α)(a) = β(α(a)) = β(b) = c.

That is a ∼ c.

Example 3.9.4

Let G = {e, (1 2 5), (1 5 2)} and S = {1, 2, 3, 4, 5} and define a relation ∼ on S by a ∼ b

iff α(a) = b for some α ∈ G. Find all the equivalence classes of ∼ on S.

Solution:

Clearly, {1, 2, 5}, {3}, {4} are the equivalence classes of ∼ on S. Moreover, {1, 3, 4} are called

equivalence classes representatives.
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Exercise 3.9.1

Solve the following exercises from the book at pages 55 - 56:

• 9.1 − 9.4,

• 9.8, 9.9, 9.13

• 9.19.

Exercise 3.9.2

Let ∼ be a relation on N so that x ∼ y iff 3
∣∣∣x+y. Is ∼ an equivalence relation on N? Explain

your answer.

Exercise 3.9.3

Let ∼ be a relation on N so that x ∼ y iff 3
∣∣∣x + 2y. Show that ∼ is an equivalence relation

on N.
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Section 3.10: Congruence. The Division Algorithm

Definition 3.10.1

Let a, b ∈ Z. Then b is divisible by a if there is k ∈ Z such that b = ak. In that case we say:

• a divides b, written as a | b,

• b is a multiple of a, and

• a is a factor of b.

Theorem 3.10.1

If a, b ∈ Z, not both zero, then there is a unique positive integer d such that

1. d | a and d | b, and

2. if c ∈ Z with c | a and c | b, then c | d.

In that case, d is called the greatest common divisor and it is denoted by d = GCD(a, b).

Remark 3.10.1

The following are some general facts about integer numbers:

1. An integer p is a prime if p > 1 and has no positive factors other than 1 and p,

2. If a | b, then a | −b, and

3. If a | b and a | c, then a | (b ± c).

4. If a, b ∈ Z (not both zeros), then GCD(a, b) = 1 if and only if there are integers m and

n such that am + bn = 1.

Definition 3.10.2

Let n be a positive integer. Integers a and b are said to be congruent modulo n if a − b is

divisible by n. This is written as a ≡ b (mod n) or a ≡n b. That is

a ≡n b ⇐⇒ n | a − b ⇐⇒ a = kn + b or a − b = kn for some k ∈ Z.
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Example 3.10.1

Here is some examples of some integers modulo n for some positive integer n:

• 17 ≡ 3 (mod 7) since 7 | (17 − 3) = 14,

• 4 ≡ 22 (mod 9) since 9 | (4 − 22) = −18,

• 19 ≡ 19 (mod 11) since 11 | (19 − 19) = 0,

• but 17 ̸≡ 3 (mod 8) since 8 ∤ (17 − 3) = 14.

Theorem 3.10.2

Congruence modulo n is an equivalence relation on Z, for each n ∈ Z+.

Proof:

We show that ”≡n” is reflexive, symmetric, and transitive:

Ref.: for all a ∈ Z, a ≡n a since n | (a − a) = 0.

Symm.: for all a, b ∈ Z, if a ≡n b, then n | a − b and so n | b − a. That is b ≡n a.

Trans.: for all a, b, c ∈ Z, if a ≡n b and b ≡n c, then n | a − b and n | b − c. Thus, n |

[(a − b) + (b − c)] which implies n | a − c. Hence, a ≡n c.

Remark 3.10.2

The equivalence classes for the equivalence relation ”≡n” are called congruence classes modulo

n.

Theorem 3.10.3

Let n be a positive integer and x, y ∈ Z. Then, x ≡n y if and only if [x] = [y].

Proof:

” ⇒ ”: Assume that x ≡n y. Then, n | x − y.

z ∈ [x] ⇐⇒ z ≡n x ⇐⇒ z ≡n y ⇐⇒ z ∈ [y].

” ⇐ ”: Assume that [x] = [y]. Then x ∈ [x] = [y] implies that x ≡n y.
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Example 3.10.2

Find a complete set of equivalence class representatives of ≡4 on Z.

Solution:

There are four congruence classes modulo 4:

[0] = {· · · , −8, −4, 0, 4, 8, · · · } : 4 | 0 − a where a ∈ Z,

[1] = {· · · , −7, −3, 1, 5, 9, · · · } : 4 | 1 − a where a ∈ Z,

[2] = {· · · , −6, −2, 2, 6, 10, · · · } : 4 | 2 − a where a ∈ Z,

[3] = {· · · , −5, −1, 3, 7, 11, · · · } : 4 | 3 − a where a ∈ Z.

Thus {0, 1, 2, 3} is a complete set of congruence class representatives.

Theorem 3.10.4

Let n be a positive integer. Then each integer is congruent modulo n to exactly one of the

integers 0, 1, 2, · · · , n − 1.

Definition 3.10.3

Let n be a positive integer. Then Zn denotes a complete set of congruence classes modulo n.

That is Zn = {[0], [1], · · · , [n − 1]}.

Least Integer Principle

Every nonempty set of positive integers contains a least element.

Example 3.10.3

Note that
11
4 = 2 + 3

4 is the same as 11 = 4 · 2 + 3.
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Theorem 3.10.5: The Division Algorithm

If a, b ∈ Z with b > 0, then there exist unique integers q and r such that

a = bq + r; 0 ≤ r < b. That is, a ≡ r (mod b).

Example 3.10.4

Note that (1) 11 = 4 · 2 + 3 and (2) −6 = 4 · (−2) + 2 as in a = b · q + r. That is

1. r = 3 is the smallest positive integer in the congruence class mod 4 containing a = 11,

and q = 2 is the number of positions (right) that moves us from r = 3 to a = 11.

2. r = 2 is the smallest positive integer in the congruence class mod 4 containing a = −6,

and q = −2 is the number of positions (left) that moves us from r = 2 to a = −6.

Example 3.10.5: Exercise 10.3 at page 60

Find the smallest nonnegative integer congruent modulo 7 for

a. 12 b. 100 c. − 25

Solution:

a 12
7 = 1 + 5

7 ⇒ 12 = 1 · 7 + 5 ⇒ 12 ≡ 5 (mod 7),

b 100
7 = 14 + 2

7 ⇒ 100 = 14 · 7 + 2 ⇒ 100 ≡ 2 (mod 7),

c −25
7 = −3 − 4

7 + (1 − 1) = −4 + 3
7 ⇒ −25 = −4 · 7 + 3 ⇒ −25 ≡ 3 (mod 7).

Example 3.10.6: Exercise 10.5 at page 60

Find all x such that 2x ≡ x (mod 5).

Solution:

Clearly, 2x ≡ x (mod 5) ⇔ 5 | (2x − x) ⇔ 5 | x ⇔ x = {5k : k ∈ Z}.
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Example 3.10.7: Exercise 10.11 at page 60

For each pair a and b, find the unique integers q and r such that a = bq + r with 0 ≤ r < b.

(a) a = 19, b = 5, (b) a = −7, b = 5, (c) a = 11, b = 17,

(d) a = 50, b = 6, (e) a = 13, b = 20, (f) a = 30, b = 1.

Solution:

Recall that a = q · b + r ⇔ a
b

= q + r
b

⇔ a − r = br ⇔ a ≡ r (mod b). Then,

(a) 19
5 = 3 + 4

5 ⇒ 19 = 3 · 5 + 4 .

(b) −7
5 = −2 + 3

5 ⇒ −7 = -2 · 5 + 3 .

(c) 11
17 = 0 + 11

17 ⇒ 11 = 0 · 17 + 11 .

(d) 50
6 = 8 + 2

6 ⇒ 50 = 8 · 6 + 2 .

(e) 13
20 = 0 + 13

20 ⇒ 13 = 0 · 20 + 13 .

(f) 30
1 = 30 + 0

1 ⇒ 30 = 30 · 1 + 0 .
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Exercise 3.10.1

Solve the following exercises from the book at pages 60 - 61:

• 10.1,

• 10.3 − 10.8,

• 10.11 − 10.18,

• 10.24.
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Section 3.11: Integers Modulo n

Remark 3.11.1

With n is a fixed positive integer and k is any integer, let [k] denote the congruence class to

which k belongs (mod n). That is

[k] = {h ∈ Z : h ≡ k (mod n)}.

Definition 3.11.1

Let [a], [b] ∈ Zn = {[0], [1], · · · , [n − 1]}, define [a] ⊕ [b] by

[a] ⊕ [b] = [a + b].

Example 3.11.1

For n = 5, compute [3] ⊕ [4] and [18] ⊕ [−1].

Solution:

1. [3] ⊕ [4] = [3 + 4] = [7] = [2] ∈ Z5, and

2. [18] ⊕ [−1] = [18 + (−1)] = [17] = [2] ∈ Z5.

Theorem 3.11.1

Zn, the group of integers modulo n, is an abelian group with respect to the operation ⊕.

Proof:

Clearly, Zn is abelian since [a] ⊕ [b] = [a + b] = [b + a] = [b] ⊕ [a]. To show that Zn is a group:

G1: ⊕ is associative:

[a] ⊕ ([b] ⊕ [c]) = [a] ⊕ [b + c] = [a + (b + c)]

= [(a + b) + c] = [a + b] ⊕ [c] = ([a] ⊕ [b]) ⊕ [c].

G2: The identity is [0] since [a] ⊕ [0] = [a] = [0] ⊕ [a].

G3: For [a] ∈ Zn, the inverse is [−a] ∈ Zn with [a] ⊕ [−a] = [a + (−a)] = [0].
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Theorem 3.11.2

There is a group of order n for each positive integer n.

Proof:

(Zn, ⊕) has n elements {[0], [1], · · · , [n − 1]}.

Definition 3.11.2

For [a], [b] ∈ Zn, define [a] ⊙ [b] = [ab].

Remark 3.11.2

(Zn, ⊙) is not a group in general, but ⊙ is associative and commutative on Zn and Zn has [1]

as an identity element. Note that [0] has no inverse in Zn.

Theorem 3.11.3

(Z∗
n, ⊙) is a group if and only if n is a prime number.

Proof:

” ⇒” By contradiction assume that n is not prime. Then n = ab for some 1 < a, b < n.

Considering the equivalence classes, we have [a], [b] ∈ Z∗
n. Then

[a][b] = [ab] = [n] = [0] ̸∈ Z∗
n.

Then, Z∗
n is not a group, which is contradiction.

” ⇐” Assume that n is a prime. Then,

1. Let a, b ∈ Z∗
n, then ab ∈ Z∗

n since ab ̸= n.

2. Clearly, 1 ∈ Z∗
n (the identity is in Z∗

n).

3. Let a ∈ Z∗
n, then (the greatest common divisor of a and n) GCD(a, n) = 1 which implies

∃ b, c ∈ Z such that ab + nc = 1 ⇒ ab = 1 − nc ⇒ ab = 1 (mod n) ⇒ b = a−1 ∈ Z∗
n.
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Exercise 3.11.1

Solve the following exercises from the book at pages 64 - 65:

• 11.1 − 11.8.

Exercise 3.11.2

Prove or disprove the following statements:

• (Z∗
4, ⊙) is a group.

• (Z∗
5, ⊙) is a group.
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Section 3.12: Greatest Common Divisor. The Euclidean Algorithm

The Euclidean Algorithm

Let a, b ∈ Z with a > b > 0. Then to find the GCD(a, b), we do:

a = b q1 + r1, 0 ≤ r1 < b.

If r1 = 0, then GCD(a, b) = b. Otherwise,

b = r1 q2 + r2, 0 ≤ r2 < r1.

If r2 = 0, then GCD(a, b) = r1. Otherwise, we go on as follows

a = b q1 + r1, 0 ≤ r1 < b

b = r1 q2 + r2, 0 ≤ r2 < r1

r1 = r2 q3 + r3, 0 ≤ r3 < r2

r2 = r3 q4 + r4, 0 ≤ r4 < r3

and so on. At some point for some k, rk+1 = 0 so that

rk−2 = rk−1 qk + rk, 0 ≤ rk < rk−1

rk−1 = rk qk+1.

Therefore, GCD(a, b) = rk.

Example 3.12.1

Compute the GCD(12, 5) by The Euclidean Algorithm, and write it as a linear combination

of 12 and 5.

Solution:

Following the Euclidean Algorithm, we get:

12 = 5 · 2 + 2,

5 = 2 · 2 + 1,

2 = 2 · 1
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Therefore, GCD(12, 5) = 1. To write 1 as a linear combination of 12 and 5, we go back as

follows:

1 = 5 − 2 · 2

= 5 − 2 · (12 − 5 · 2)

= 5 · 5 − 12 · 2.

Thus, 1 = 5 · 5 − 12 · 2.

Example 3.12.2

Compute the GCD(1001, 357) by The Euclidean Algorithm, and write it as a linear combina-

tion of 1001 and 357. Do the same thing for GCD(252, 105)? =?21.

Solution:

Following the Euclidean Algorithm, we get:

1001 = 357 · 2 + 287,

357 = 287 · 1 + 70,

287 = 70 · 4 + 7,

70 = 7 · 10.

Therefore, GCD(1001, 357) = 7. To write 7 as a linear combination of 1001 and 357, we go

back as follows:

7 = 287 − 70 · 4

= (1001 − 357 · 2) − (357 − 287 · 1) · 4

= (1001 − 357 · 2) − (357 − (1001 − 357 · 2)) · 4

= (1001 − 357 · 2) − 357 · 4 + (1001 − 357 · 2) · 4

= 1001 · 5 − 357 · 14.

Thus, 7 = 1001 · 5 − 357 · 14.
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Remark 3.12.1

Two integers a and b are said to be relatively prime if GCD(a, b) = 1. For instance, 4 and 9

are relatively prime integers.

Example 3.12.3: Exercise 12.7 at page 69

Find the GCD(−90, 1386) and write it as a linear combination of −90 and 1386.

Solution:

Following the Euclidean Algorithm for 1386 and 90, we get:

1386 = 90 · 15 + 36,

90 = 36 · 2 + 18,

36 = 18 · 2

Therefore, GCD(−90, 1386) = 18. To write 18 as a linear combination of −90 and 1386, we

go back as follows:

18 = 90 − 36 · 2

= 90 − (1386 − 90 · 15) · 2

= 90 · 31 − 1386 · 2

= (−90) · (−31) − 1386 · 2

Thus, 18 = (−90) · (−31) − 1386 · 2.

Example 3.12.4: Exercise 12.21 at page 69

Prove that if GCD(a, m) = 1, then there is a solution (for x) to the congruence ax ≡

b (mod m).

Solution:

Since GCD(a, m) = 1, we have au + mv = 1 for some u, v ∈ Z. Then

a(ub) + m(vb) = b ⇒ a(ub) ≡ b (mod m).

That is x = ub is a solution.
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Exercise 3.12.1

Solve the following exercises from the book at page 69:

• 12.1 − 12.7,

• 12.21.
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Section 3.13: Factorization. Euler’s Phi-Function

Theorem 3.13.1

If a, b, c ∈ Z, with a | bc and GCD(a, b) = 1, then a | c.

Proof:

Since GCD(a, b) = 1, then there is m, n ∈ Z such that am + bn = 1. Thus, amc + bnc = c.

Clearly a | amc and a | bnc because a | bc. Thus, a | (amc + bnc) = c.

Theorem 3.13.2: Fundamental Theorem of Arithmetic

Each integer n > 1 can be written as a product of primes in one way. That is n = pe1
1 pe2

2 · · · pek
k

where p1 < p2 < · · · < pk are primes and e1, e2, · · · , ek are positive integers.

Definition 3.13.1

For each integer n > 1, let ϕ(n) denote the number of positive integers that are less than n

and relatively prime to n. Also, let ϕ(1) = 1. The function ϕ is called the Euler phi-function.

Example 3.13.1

Find ϕ(n) for n = 5, 6, and 7.

Solution:

• n = 5, ϕ(5) = 4, since 5 is relatively prime (and less than) to the set {1, 2, 3, 4}.

• n = 6, ϕ(6) = 2, since 6 is relatively prime (and less than) to the set {1, 5}.

• n = 7, ϕ(7) = 6, since 7 is relatively prime (and less than) to the set {1, 2, 3, 4, 5, 6}.

Theorem 3.13.3

Assume that p is a prime and r is a positive integer. Then

ϕ(pr) = pr − pr−1 = pr(1 − 1
p

).

In particular, ϕ(p) = p − 1.



3.13. FACTORIZATION. EULER’S PHI-FUNCTION 61

Theorem 3.13.4

If p and q are distinct primes, then

ϕ(pq) = (p − 1)(q − 1).

Theorem 3.13.5

If m, n ∈ Z+ with GCD(m, n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Theorem 3.13.6

If n = pe1
1 pe2

2 · · · pek
k with p1 < p2 < · · · < pk are primes and e1, e2, · · · , ek are positive integers,

then

ϕ(n) = (pe1
1 − pe1−1

1 )(pe2
2 − pe2−1

2 ) · · · (pek
k − pek−1

k )

= n(1 − 1
p1

)(1 − 1
p2

) · · · (1 − 1
pk

).

Example 3.13.2

Find ϕ(12).

Solution:

Clearly, 12 = 22 · 3. That is

ϕ(12) = 12 · (1 − 1
2) (1 − 1

3) = 12 · 1
2 · 2

3 = 4.

That is because 12 is relatively prime (and less than) to the set {1, 5, 7, 11}.

Definition 3.13.2

For each positive integer n, let Un denote the set of congruence classes mod n defined as

follows:

Un = {[k] : 1 ≤ k < n and GCD(k, n) = 1} .
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Example 3.13.3

Find U6.

Solution:

Clearly 6 is relatively prime (and less than) to {1, 5} and hence U6 = {[1], [5]}.

Example 3.13.4

Find U9.

Solution:

Clearly 9 is relatively prime to {1, 2, 4, 5, 7, 8} and hence U9 = {[1], [2], [4], [5], [7], [8]}.

Theorem 3.13.7

(Un, ⊙) is an abelian group. The order of the group Un is ϕ(n).

Proof:

We first show that Un is closed under the operation ⊙. Let [a], [b] ∈ Un, then GCD(a, n) =

GCD(b, n) = 1. Hence there are r, s, t, u such that ar + ns = 1 and bt + nu = 1. Thus

(ar + ns)(bt + nu) = abrt + arnu + nsbt + n2su = 1

⇒ ab(rt) + n(aru + sbt + nsu) = 1 ⇒ GCD(ab, n) = 1.

That is [ab] ∈ Un. We now show that (Un, ⊙) is abelian group.

G1: ⊙ is associative and commutative on Zn and hence it is associative and commutative

on Un.

G2: Clearly, [1] ∈ Un is the identity element.

G3: Let [a] ∈ Un. Then GCD(a, n) = 1 and ar + ns = 1 for some r, s ∈ Z. That is

ar = 1 + (−s)n and ar ≡ 1 (mod n). Therefore, [a] ⊙ [r] = [ar] = [1] which implies that

[r] is the inverse of [a].

The order of Un is ϕ(n) by the definition of Un and ϕ(n).
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Example 3.13.5

Find the inverse of [37] in U50.

Solution:

Clearly, GCD(37, 50) = 1, then 37r + 50s = 1 for some r, s ∈ Z. That is 37r = 1 + (−s)50

which implies that 37r ≡ 1 (mod 50). Therefore,

50 = 37 · 1 + 13

37 = 13 · 2 + 11

13 = 11 · 1 + 2

11 = 2 · 5 + 1

2 = 1 · 2

Therefore,

1 = 11 − 2 · 5

= 11 − (13 − 11 · 1) · 5

= −13 · 5 + 11 · 6

= −13 · 5 + (37 − 13 · 2) · 6

= −13 · 5 + 37 · 6 − 13 · 12

= 37 · 6 − 13 · 17

= 37 · 6 − (50 − 37 · 1) · 17

= (−17) · 50 + 37 · 6 + 37 · 17

= (−17) · 50 + 37 · (23).

Thus, the inverse of [37] is [23] in U50.
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Exercise 3.13.1

Solve the following exercises from the book at pages 72 - 73:

• 13.1 − 13.4,

• 13.7 − 13.10,

• 13.13 − 13.14.

Exercise 3.13.2

Find the least non-negative integer x so that:

1. 17x ≡ 3 (mod 29). Solution: Note that if a ≡ b (mod n) and c ≡ d (mod n), then

ac ≡ bd (mod n). Therefore, to find x, we do:

17x ≡ 3 (mod 29) ⇒ x ≡ 17−13 (mod 29).

We use Euclid’s Algorithm to find 17−1:

29 = 17 · 1 + 12

17 = 12 · 1 + 5

12 = 5 · 2 + 2

5 = 2 · 2 + 1

2 = 1 · 2

Therefore,

1 = · · · = (12)17 + 29(−7).

Therefore, 17−1 = 12 and hence x ≡ 12 · 3 (mod 29). That is x ≡ 36 (mod 29). There-

fore, x ≡ 7 (mod 29).

2. 17x ≡ 1 (mod 43). Solution: x ≡ (−5) ≡ 38 (mod 43).
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Groups

Section 4.14: Elementary Properties

Theorem 4.14.1

Let (G, ∗) be a group. Then:

a. If a, b, c ∈ G and a ∗ b = a ∗ c, then b = c. ”left cancelation law”

b. If a, b, c ∈ G and b ∗ a = c ∗ a, then b = c. ”right cancelation law”

c. If a, b ∈ G, then each of the equation a ∗ x = b and x ∗ a = b has a unique solution. In

the first, x = a−1 ∗ b; in the second, x = b ∗ a−1.

d. If a ∈ G, then (a−1)−1 = a.

e. If a, b ∈ G, then (a ∗ b)−1 = b−1 ∗ a−1.

Proof:

a. Assume that a ∗ b = a ∗ c for a, b, c ∈ G. We multiply both sides from left by a−1:

a−1 ∗ a ∗ b = a−1 ∗ a ∗ c

e ∗ b = e ∗ c

b = c.

b. Similar to part ”a.”.

c. Consider the equation a ∗ x = b and multiply both sides from left by a−1 ∈ G:

a−1 ∗ a ∗ x = a−1 ∗ b

e ∗ x = a−1 ∗ b

x = a−1 ∗ b.

Uniqueness: If x1 and x2 are two solutions to the equation a ∗ x = b, then

a−1 ∗ a ∗ x1 = a−1 ∗ b = a−1 ∗ a ∗ x2

e ∗ x1 = a−1 ∗ b = e ∗ x2

x1 = a−1 ∗ b = x2.

65
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The second equation ”x ∗ a = b” can be proved in a similar way by multiplying both

sides from right by a−1.

d. The inverse of a−1 is the unique element b ∈ G such that a−1 ∗ b = e. But clearly,

a−1 ∗ a = e; thus, b = a is the inverse of a−1.

e. Clearly,

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ (b ∗ b−1) ∗ a−1 = a ∗ a−1 = e, and

(b−1 ∗ a−1) ∗ (a ∗ b) = b−1 ∗ (a−1 ∗ a) ∗ b = b−1 ∗ b = e.

Thus, (a ∗ b)−1 = b−1 ∗ a−1.

Definition 4.14.1

Let G be a group and a ∈ G. Then we define the integral power as follows:

a0 = e, a1 = a, a2 = a ∗ a, · · · , an+1 = an ∗ a.

Moreover, a−n = (a−1)n for each positive integer n.

Remark 4.14.1

⋆ Multiplicative notation: ⋆ Additive notation

am an = am+n ma + na = (m + n)a

(am)n = amn n(ma) = (mn)a

(a−1)n = a−n n(−a) = (−n)a.

Example 4.14.1

Consider some powers for the elements of Z4 = {0, 1, 2, 3} with the operation ”+”.

Solution:
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Consider 1 for instance to get

11 = 1

12 = 1 + 1 = 2

13 = 1 + 1 + 1 = 3

14 = 1 + 1 + 1 + 1 = 4


all Z4 elements.

While
21 = 2

22 = 2 + 2 = 4 = 0

23 = 2 + 2 + 2 = 6 = 2


elements of {0, 2} in Z4.

For 3, we have

31 = 3

32 = 3 + 3 = 6 = 2

33 = 3 + 3 + 3 = 9 = 1

34 = 3 + 3 + 3 + 3 = 12 = 0


all Z4 elements.

Note that,

1−1 = 3

1−2 = 1−1 + 1−1 = 3 + 3 = 6 = 2

1−3 = 1−1 + 1−1 + 1−1 = 3 + 3 + 3 = 9 = 1

1−4 = 1−1 + 1−1 + 1−1 + 1−1 = 3 + 3 + 3 + 3 = 12 = 0


all Z4 elements.

Definition 4.14.2

Let G be a group and a ∈ G. Then ⟨ a ⟩ = {an : n ∈ Z}. That is

⟨ a ⟩ = {· · · , a−2, a−1, a0 = e, a1, a2, · · · }.

Definition 4.14.3

A group G is called cyclic if there is some element a ∈ G such that ⟨ a ⟩ = G.
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Definition 4.14.4

An element a of a group G generates G and is a generator of G if ⟨ a ⟩ = G.

Definition 4.14.5

The group ⟨ a ⟩ = {an : n ∈ Z} is the cyclic subgroup of G generated by a.

Theorem 4.14.2

Let G be a group with a ∈ G. Then ⟨ a ⟩ is a subgroup of G. In fact, it is the smallest

subgroup of G containing a.

Proof:

S1: Clearly, a ∈ ⟨ a ⟩ and hence ⟨ a ⟩ is nonempty.

S2: Let b, c ∈ ⟨ a ⟩, then b = am and c = an for some m, n ∈ Z. Clearly, m + n ∈ Z and thus

bc = aman = am+n ∈ ⟨ a ⟩. Therefore, ⟨ a ⟩ is closed.

S3: Let at ∈ ⟨ a ⟩ for some t ∈ Z. Then −t ∈ Z and a−t ∈ ⟨ a ⟩ where ata−t = e. Thus each

element in ⟨ a ⟩ has inverse.

Note that a ∈ ⟨ a ⟩ and since it is a subgroup of G,

aa = a2 ∈ ⟨ a ⟩, a2a = a3 ∈ ⟨ a ⟩, and so on.

That is a subgroup containing a must contain {an : n ∈ Z} = ⟨ a ⟩. Thus, it is the smallest

subgroup of G containing a.

Example 4.14.2

Example of some cyclic groups:

1. ⟨ 2 ⟩ = {· · · , −6, −4, −2, 0, 2, 4, 6, · · · } = 2Z ≤ Z is cyclic.

2. ⟨ 1 ⟩ = Z is cyclic.

3. ⟨ −1 ⟩ = Z is cyclic.

4. Z has only two generators which are 1 and −1.
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5. Z4 = ⟨ 1 ⟩ = ⟨ 3 ⟩ is cyclic.

6. ⟨ 2 ⟩ = {0, 2} ≤ Z4 is cyclic.

Theorem 4.14.3

Every cyclic group is abelian.

Proof:

Let G be a cyclic group and say G = ⟨ a ⟩ for some a ∈ G. Thus, for g, h ∈ G, there are

r, s ∈ Z such that g = ar and h = as. Then,

gh = aras = ar+s = as+r = asar = hg.

Thus G is abelian.

Definition 4.14.6

Let a be an element of a group G. If the cyclic subgroup ⟨ a ⟩ of G is finite, then the order

of a, denoted by o(a), is the order | ⟨ a ⟩ | of this cyclic subgroup. Otherwise, we say that a is

of infinite order.

Remark 4.14.2

If a ∈ G is of finite order m, then m is the smallest positive integer such that am = e. In that

case, ⟨ a ⟩ = {a0 = e, a, a2, · · · , am−1}.

Example 4.14.3

Let G = ⟨ a ⟩, a ∈ G and | G | = 5. So, a5 = e. Therefore, G = {e, a, a2, a3, a4}.

Remark 4.14.3

If G is a cyclic group with G = ⟨ a ⟩, then G = ⟨ a−1 ⟩.
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Example 4.14.4

S3 is not cyclic since there is no a ∈ S3 with ⟨ a ⟩ = S3. Moreover, if S3 is cyclic, then it is

abelian which is not the case.

Example 4.14.5

Compute A3 = ⟨ (1 3 2) ⟩ in S3.

Solution:

(1 3 2)0 = id

(1 3 2)1 = (1 3 2)

(1 3 2)2 = (1 3 2)(1 3 2) = (1 2 3)

(1 3 2)3 = (1 3 2)(1 3 2)(1 3 2) = id.

Thus, A3 = ⟨ (1 3 2) ⟩ = {id, (1 3 2), (1 2 3)}, and the order of (1 3 2) in S3 is 3.
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4.14.1 Solving Book Problems from Section 14

Exercise 4.14.1

Q.14.1: Solve the equation (1 2) x = (1 2 3) in S3.

Solution:

x = (1 2)−1(1 2 3)

= (1 2)(1 2 3) = (2 3).

Exercise 4.14.2

Q.14.14(a): Prove that if a and b are elements of an abelian group G with o(a) = m and

o(b) = n, then (ab)mn = e.

Solution:

We have o(a) = m and o(b) = n which implies that am = e and bn = e. Thus,

(ab)mn = ab · ab · · · · · ab, mn-times

= (amn) (bmn) = (am)n (bn)m, G is abelian

= en em = e.

Exercise 4.14.3

Q.14.18: Assume that a and b are elements of a group G.

1. Prove that ab = ba if and only if a−1b−1 = b−1a−1.

2. Prove that ab = ba if and only if (ab)2 = a2b2.

Solution:

(1.) Clearly, ab = ba ⇔ (ab)−1 = (ba)−1 ⇔ b−1a−1 = a−1b−1.

(2.) ” ⇒ ”: Assume that ab = ba, then

(ab)2 = (ab)(ab) = a b a b = a a b b = a2 b2.

” ⇐ ”: Assume that (ab)2 = a2b2. Thus, (�a b) (a ��b) =�a a b ��b, implies that ba = ab.
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Exercise 4.14.4

Q.14.23: Prove that a non-identity element of a group has order 2 if and only if it is its own

inverse.

Solution:

” ⇒ ”: Assume that a ̸= e such that o(a) = 2. Then,

a2 = e ⇔ a−1a2 = a−1e ⇔ a = a−1.

” ⇐ ”: If a = a−1, then a · a = a · a−1 and hence a2 = e. That is o(a) = 2.

Exercise 4.14.5

Q.14.24: Prove that every group of even order has an element of order 2.

Solution:

Assume that G is a group of even order. Let A = {a ∈ G : a ̸= a−1} ⊆ G. Clearly, e ̸∈ A

since e = e−1. Also, if a ∈ A, then a−1 ∈ A. Thus, {e} ∪ A has an odd number of elements,

but {e} ∪ A ⫋ G ”because | G | is even”. Therefore there exists x ∈ G such that x ̸= e and

x ̸∈ A with x = x−1. Thus, x2 = e which means o(x) = 2.

Exercise 4.14.6

Q.14.29: Prove that a group G is abelian if each of its non-identity elements has order 2.

Solution:

Suppose that G is a group so that if a ∈ G and a ̸= e, then o(a) = 2. Thus, a2 = e and

a = a−1. If a, b ∈ G, then ab ∈ G and hence ab = (ab)−1 = b−1a−1 = ba.

Exercise 4.14.7

Q.14.33: Prove or give a counterexample: If a group G has a subgroup of order n, then G

has an element of order n.

Solution:

False. Consider S3 ≤ S3 where both are of order 3! = 6 but no element in S3 has order 6.
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Exercise 4.14.8

Q.14.34: Prove that if a group G has no subgroup other than G and {e}, then G is cyclic.

Solution:

Let a ∈ G so that a ̸= e. Then ⟨ a ⟩ is a subgroup of G. Then ⟨ a ⟩ = e or ⟨ a ⟩ = G. But since

a ̸= e, we have ⟨ a ⟩ ≠ e. Therefore, ⟨ a ⟩ = G and hence G is a cyclic group.

Exercise 4.14.9

Q.14.38: Prove that if A and B are subgroups of a group G, and A ∪ B is also a subgroup

of G, then A ⊆ B or B ⊆ A.

Solution:

A proof by contradiction: Assume that A ̸⊆ B and B ̸⊆ A. Then, there is x ∈ (A − B) and

there is y ∈ (B − A). But x, y ∈ A ∪ B (which is a subgroup). Thus, xy ∈ A ∪ B. Hence,

xy ∈ A or xy ∈ B.

Case 1: xy ∈ A where x ∈ A. Then x−1 ∈ A and hence x−1xy = y ∈ A (contradiction).

Case 1: xy ∈ B where y ∈ B. Then y−1 ∈ B and hence xyy−1 = x ∈ B (contradiction).

Therefore, A ⊆ B or B ⊆ A.
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Exercise 4.14.10

Solve the following exercises from the book at pages 79 - 81:

• 14.1 − 14.6,

• 14.13,

• 14.14(a),

• 14.18,

• 14.23 − 14.26,

• 14.28 − 14.30,

• 14.33 − 14.34,

• 14.38.
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Section 4.15: Direct Products

Definition 4.15.1

Let G and H be two groups. Then G × H is the (Cartesian) product of G and H and is

defined by

G × H = {(g, h) : g ∈ G and h ∈ H} .

Theorem 4.15.1

If G and H are groups, then G × H is a group with the operation defined by

(g1, h1) (g2, h2) = (g1 g2, h1 h2)

for all g1, g2 ∈ G and h1, h2 ∈ H. The group G × H is called the direct product of G and

H.

Remark 4.15.1

To prove the previous theorem, we need to note that:

1. The identity element of G × H is (eG, eH) where eG is the identity element of G and eH

is the identity element of H.

2. The inverse of the element (g, h) ∈ G × H is the element (g−1, h−1) ∈ G × H.

Remark 4.15.2

Note that in Z × Z we have (a, b)(c, d) = (a + c, b + d) for all a, b, c, d ∈ Z.

Remark 4.15.3

Note that if A and B are finite, then so is A × B with | A × B | = | A | · | B |.

Example 4.15.1

Compute Z3 × S2 and compute ([1], (1 2))([2], e) in Z3 × S2.

Solution:
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Note that Z3 = {[0], [1], [2]} and S2 = {e, (1 2)}. Thus,

Z3 × S2 = {([0], e), ([0], (1 2)), ([1], e), ([1], (1 2)), ([2], e), ([2], (1 2))}.

Moreover,

([1], (1 2))([2], e) = ([1] ⊕ [2], (1 2)e) = ([0], (1 2)).

Example 4.15.2

Simplify ([2], (1 2 3))−1 ([1], (2 4)) ([2], (1 2 3)) in Z4 × S4.

Solution:

([2], (1 2 3))−1 ([1], (2 4)) ([2], (1 2 3)) = ([2], (1 3 2)) ([3], (1 4 2 3))

= ([1], (1 4)).

Example 4.15.3: Exercise 15.17 at page 84

Let G and H be two groups. Show that G×{eH} and {eG}×H are both subgroups of G×H.

Solution:

Note that G × {eH} = {(g, eH) : g ∈ G}. Thus

S1: Clearly, (eG, eH) ∈ G × {eH} and hence G × {eH} is nonempty.

S2: Let (g1, eH), (g2, eH) ∈ G × {eH}. Then

(g1, eH)(g2, eH) = (g1g2, eH) ∈ G × {eH} since g1g2 ∈ G.

S3: Let (g, eH) ∈ G × {eH}. Then g−1 ∈ G since g ∈ G and hence

(g, eH)(g−1, eH) = (gg−1, eH) = (eG, eH).

That is (g−1, eH) is the inverse of (g, eH) and it is in G × {eH}.

Therefore, G × {eH} is a subgroup of G × H. The other part can be preved in a similar way.
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Example 4.15.4: Exercise 15.18 at page 84

Let G and H be two groups. Show that G × H is abelian group if and only if both G and H

are abelian.

Solution:

” ⇒ ”: Assume that G × H is abelian group and let g1, g2 ∈ G and h1, h2 ∈ H. Then

(g1g2, h1h2) = (g1, h1) (g2, h2)

= (g2, h2) (g1, h1) = (g2g1, h2h1).

Thus, g1g2 = g2g1 and G is abelian; and h1h2 = h2h1 and H is abelian.

” ⇐ ”: Assume that G and H are abelian groups and that (g1, h1), (g2, h2) ∈ G × H. Then,

(g1, h1) (g2, h2) = (g1g2, h1h2)

= (g2g1, h2h1) = (g2, h2) (g1, h1).

Thus, G × H is abelian.
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Exercise 4.15.1

Solve the following exercises from the book at pages 84 - 85:

• 15.9,

• 15.16 − 15.18,

• 15.20 − 15.21.

Exercise 4.15.2

Simplify ([2], (1 2 3))−1([1], (2 4))([2], (1 2 3)) in Z4 × S4.
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Section 4.16: Cosets

Recall that if n ∈ Z, then ⟨ n ⟩ is the subgroup consisting of all multiples of n. Because

a ≡ b (mod n) ⇔ n | a − b ⇔ a − b = kn, for some k ∈ Z.

Thus, a ≡ b (mod n) ⇔ a − b ∈ ⟨ n ⟩.

Theorem 4.16.1

Let H be a subgroup of a group G and define a relation ∼ on G by a ∼ b if and only if

ab−1 ∈ H. Then ∼ is an equivalence relation on G.

Proof:

Reflexive: If a ∈ G, then a ∼ a because a a−1 = e ∈ H.

Symmetric: If a ∼ b, then ab−1 ∈ H and so is (ab−1)−1 = ba−1 ∈ H because H contains the

inverse of any of its elements. Thus b ∼ a.

Transitive: If a ∼ b and b ∼ c, then ab−1, bc−1 ∈ H. Since H is a subgroup of G, it contains

the product of ab−1 and bc−1. Thus, ab−1 · bc−1 = ac−1 ∈ H. Hence a ∼ c. Therefore, ∼ is an

equivalence relation on G.

Definition 4.16.1

Let G be a group with a subgroup H. For any a ∈ G, define:

1) the left coset of H in G by aH = {ah : h ∈ H},

2) the right coset of H in G by Ha = {ha : h ∈ H}.

Note that, if the group operation is +, then H + a and a + H is used instead of Ha and aH,

respectively.

Example 4.16.1

Let G = Z and H = ⟨ 7 ⟩. Compute H + 3

Solution:

H + 3 = ⟨ 7 ⟩ + 3 = {· · · , −14, −7, 0, 7, 14, · · · } + 3 = {· · · , −11, −4, 3, 10, 17, · · · }.

Note that H + 3 is the congruence class [3] in Z7. In Z7, [3] = {k : k ≡ 3(mod7) iff 7 | 3 − k}.
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Example 4.16.2

Let G = S3 and H = {e, (1 2)}. Compute He, H(1 2 3), and H(1 3 2).

Solution:

He = {ee, (1 2)e} = {e, (1 2)}

H(1 2 3) = {e(1 2 3), (1 2)(1 2 3)} = {(1 2 3), (2 3)}

H(1 3 2) = {e(1 3 2), (1 2)(1 3 2)} = {(1 3 2), (1 3)}

Note that these three sets form a partition of G.

Example 4.16.3

Let G = S3 and H = {e, (1 3)}. Find (1 2)H, H(1 2), and (1 3 2)H.

Solution:

S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. So,

(1 2)H = {(1 2), (1 3 2)} H(1 2) = {(1 2), (1 2 3)}, and

(1 3 2)H = {(1 3 2), (1 2)}.

Remark 4.16.1

Considering the previous example, we conclude:

1. Cosets are not subgroups in general.

2. aH might be the same as bH even though a ̸= b. For instance, (1 2)H = (1 3 2)H in

the previous example.

3. aH need not be equal to Ha, in general. From the previous example we conclude that

(1 2)H = {(1 2), (1 3 2)} is not the same as H(1 2) = {(1 2), (1 2 3)}.

4. Cosets have the same number of elements as H, i.e. | aH | = | H | = | Ha | for any a ∈ G.
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Theorem 4.16.2

If H is a subgroup of a group G, and a, b ∈ G, then the following conditions are equivalent:

1. a−1b ∈ H.

2. b = ah for some h ∈ H.

3. b ∈ aH.

4. bH = aH.

Proof:

We show that the conditions are equivalent by showing that 1 → 2, 2 → 3, 3 → 4, and 4 → 1.

a. 1 → 2: Let a−1b = h ∈ H, then aa−1b = ah and hence b = ah with h ∈ H.

b. 2 → 3: If b = ah for some h ∈ H, then b ∈ aH by the definition of aH.

c. 3 → 4: If b ∈ aH, then b = ah for some h ∈ H. We show that bH ⊆ aH and aH ⊆ bH.

First, Let s ∈ bH with s = br for some r ∈ H. Then

s = br = (ah)r = a(hr) with hr ∈ H.

Therefore,

s ∈ aH, and hence bH ⊆ aH.

Now, let t ∈ aH with t = as for some s ∈ H. Note that b = ah implies that a = bh−1.

Thus

t = as = (bh−1)s = b(h−1s) with h−1s ∈ H.

Therefore,

t ∈ bH, and hence aH ⊆ bH.

Therefore, aH = bH.

d. 4 → 1: If bH = aH, then b = ah for some h ∈ H. Hence a−1b = a−1ah and hence

a−1b = h ∈ H.



82 CHAPTER 4. GROUPS

Remark 4.16.2

To compute all of the right cosets of a subgroup H in a finite group G, we do the following:

1. First write H as H = He.

2. Next choose a1 ∈ G − H and compute Ha1.

3. Next choose a2 ∈ G − (H ∪ Ha1) and compute Ha2.

4. Continue in this way until the elements of G have been considered.

5. Finally G = H ∪ Ha1 ∪ Ha2 ∪ · · · ∪ Han for some n.

Example 4.16.4

Let G = Z9 and H = ⟨ 3 ⟩. Find all right cosets of H in G.

Solution:

H = H + 0 = {3, 6, 0}, H + 1 = {4, 7, 1},

H + 2 = {5, 8, 2}.

Note that G = Z9 = H ∪ H + 1 ∪ H + 2.

Theorem 4.16.3

Let H be a subgroup of a group G and let a, b ∈ G. Then

1. a ∈ aH.

2. aH = H if and only if a ∈ H.

3. It is either aH = bH or aH ∩ bH = ϕ.

4. aH = bH if and only if a−1b ∈ H.

5. | aH | = | H | for finite subgroup H.

6. aH = Ha if and only if H = aHa−1.

7. aH is a subgroup of G if and only if a ∈ H.
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Proof:

1. Clearly e ∈ H, then ae = a ∈ aH.

2. ” ⇒ ” By 1, we have a ∈ aH = H, then a ∈ H.

” ⇐ ” Assume that a ∈ H. For any h ∈ H, we have ah ∈ aH (by definition of aH).

But also ah ∈ H (since H is a subgroup) and hence aH ⊆ H.

Let h ∈ H. If a ∈ H, then a−1 ∈ H (H is a subgroup) and hence a−1h ∈ H. Therefore,

a(a−1h) = h ∈ aH (by definition of aH). That is H ⊆ aH and hence aH = H.

3. Assume that there is x ∈ aH ∩ bH, then x ∈ aH and x ∈ bH. That is ah1 = x = bh2

and hence bh2 ∈ aH and ah1 ∈ bH which implies that aH = bH. Otherwise, there is

no x ∈ aH ∩ bH and hence aH ∩ bH = ϕ.

4. aH = bH if and only if a−1bH = H if and only if a−1b = h ∈ H (by (2)).

5. There is a bijection α : H → aH which is defined by α(h) = ah.

6. Clearly, aH = Ha if and only if aHa−1 = H.

7. ” ⇒ ”: Since a ∈ aH (by (1)), then a2 ∈ aH and hence a2 = ah for some h ∈ H and

hence a = h ∈ H.

” ⇐ ”: If a ∈ H, then aH = H (by (2)). Thus aH ≤ G.
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4.16.1 Solving Book Problems from Section 16

Exercise 4.16.1

Q.16.1: Determine the right cosets of ⟨ 4 ⟩ in Z8.

Solution:

Note that ⟨ 4 ⟩ = {4, 0}. Therefore,

⟨ 4 ⟩ = {4, 0}, ⟨ 4 ⟩ + 1 = {5, 1},

⟨ 4 ⟩ + 2 = {6, 2}, ⟨ 4 ⟩ + 3 = {7, 3}.

Thus, Z8 = ⟨ 4 ⟩ ∪ ⟨ 4 ⟩ + 1 ∪ ⟨ 4 ⟩ + 2 ∪ ⟨ 4 ⟩ + 3.

Exercise 4.16.2

Q.16.5: Determine the right cosets of ⟨ (1 2 3) ⟩ in S3.

Solution:

Let H = ⟨ (1 2 3) ⟩ = {e, (1 2 3), (1 3 2)}. Therefore,

H = {e, (1 2 3), (1 3 2)} and H(1 2) = {(1 2), (1 3), (2 3)}.

Thus, S3 = H ∪ H(1 2).

Exercise 4.16.3

Q.16.11: If H is a subgroup of a group G and a, b ∈ G, then the following four conditions

are equivalent:

1. a−1b ∈ H.

2. b = ah for some h ∈ H.

3. b ∈ aH.

4. aH = bH.

Solution:
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We proof that the four conditions are equivalent by showing that 1 implies 2, 2 implies 3, 3

implies 4, and 4 implies 1.

1. Suppose that a−1b ∈ H. Then, there is h ∈ H with a−1b = h and hence b = ah.

2. Assume that b = ah for some h ∈ H. Therefore, b ∈ aH.

3. Suppose that b ∈ aH. Then, there is h ∈ H with b = ah. Thus a−1b = h ∈ H. Hence

a−1b ∈ H and a−1bH = H which implies that aH = bH.

4. Assume that aH = bH. Thus, H = a−1bH, and hence a−1b ∈ H.

Exercise 4.16.4

Q.16.12: Verify that if H is a subgroup of an abelian group G, and a ∈ G, then aH = Ha.

Solution:

First, ah ∈ aH and hence (since G is abelian) ha ∈ aH but ha ∈ Ha. Thus, aH ⊆ Ha.

Second, ha ∈ Ha and hence (since G is abelian) ah ∈ Ha, but ah ∈ aH. Then Ha ⊆ aH.

Therefore, aH = Ha.

Exercise 4.16.5

Q.16.17: Compute the left cosets (or right) of ⟨ ((1 2), 1) ⟩ in S3 × Z2.

Solution:

Let H = ⟨ ((1 2), 1) ⟩ = {(e, 0), ((1 2), 1)}. Then the left cosets are:

H = {(e, 0), ((1 2), 1)}

(e, 1)H = {(e, 1), ((1 2), 0)},

((1 3), 0)H = {((1 3), 0), ((1 2 3), 1)},

((1 3), 1)H = {((1 3), 1), ((1 2 3), 0)},

((2 3), 0)H = {((2 3), 0), ((1 3 2), 1)},

((2 3), 1)H = {((2 3), 1), ((1 3 2), 0)},
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Hence

S3 × Z2 = H ∪ (e, 1)H ∪ ((1 3), 0)H ∪ ((1 3), 1)H ∪ ((2 3), 0)H ∪ ((2 3), 1)H.

Exercise 4.16.6

Q.16.18: Compute the left cosets (or right) of ⟨ (1 2) ⟩ × ⟨ 1 ⟩ in S3 × Z2.

Solution:

Let H = ⟨ (1 2) ⟩ × ⟨ 1 ⟩ = {e, (1 2)} × {0, 1} = {(e, 0), (e, 1), ((1 2), 0), ((1 2), 1)}. Then

the left cosets are:

H = {(e, 0), (e, 1), ((1 2), 0), ((1 2), 1)},

((1 3), 0)H = {((1 3), 0), ((1 3), 1), ((1 2 3), 0), ((1 2 3), 1)},

((2 3), 0)H = {((2 3), 0), ((2 3), 1), ((1 3 2), 0), ((1 3 2), 1)}.

Hence

S3 × Z2 = H ∪ ((1 3), 0)H ∪ ((2 3), 0)H.

Exercise 4.16.7

Q.16.21: Prove that if H and K are subgroups of a group G, then any left (right, respectively)

coset of H ∩ K in G is the intersection of a left (right) coset of H in G and a left (right) coset

of K in G.

Solution:

First note that since H and K are both subgroups of G, then H ∩ K is also a subgroup of G.

Assume that a(H ∩ K) be any left coset of H ∩ K in G. Then

w ∈ a(H ∩ K) ⇔ a−1w ∈ H ∩ K (this is by Q.16.11)

⇔ ∃h ∈ H and ∃k ∈ K such that a−1w = h = k

⇔ ∃h ∈ H and ∃k ∈ K such that w = ah = ak

⇔ w ∈ aH and w ∈ aK

⇔ w ∈ aH ∩ aK.

Therefore, a(H ∩ K) = aH ∩ aK.
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Exercise 4.16.8

Solve the following exercises from the book at pages 87 - 88:

• 16.1 − 16.2,

• 16.5 − 16.6,

• 16.12 − 16.12,

• 16.17 − 16.18,

• 16.21.
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Section 4.17: Lagrange’s Theorem. Cyclic Groups

Definition 4.17.1

If G is a finite group and H is a subgroup of G, then the number of distinct left cosets of H

in G, denoted by
[
G : H

]
, is called the index of H in G.

Theorem 4.17.1: Lagrange’s Theorem

If G is a finite group and H is a subgroup of G, then | H | divides | G |. Moreover
[
G : H

]
=

| G |
| H |

.

Proof:

Recall that two left cosets of H in G are either equal or disjoint. That is, the left cosets of

H, being equivalence classes, form a partition of G. Note that | aH | = | H |. Thus all cosets

have the same number of elements as H. Thus, G = a1H ∪ a2H ∪ · · · ∪ arH, where r = | G |
| H |

as {a1H, . . . , arH} is a partitioning of G. Therefore,

| G | = | a1H | + | a2H | + · · · + | arH |

= | H | + | H | + · · · + | H |

= r | H | .

Hence| H | divides | G |.

Theorem 4.17.2

If G is a finite group and a ∈ G, then o(a) divides | G |.

Proof:

Clearly, o(a) = | ⟨ a ⟩ | where ⟨ a ⟩ ≤ G. Thus, by Lagrange’s Theorem, o(a) divides | G |.

Theorem 4.17.3

If G is a finite group and a ∈ G, then a| G | = e.

Proof:
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Clearly, o(a) | | G |, then | G | = k · o(a) for some k ∈ Z. Therefore, a| G | = ak·o(a) = (ao(a))k =

ek = e.

Theorem 4.17.4: Euler’s Theorem

If n is a positive integer and a and n are relatively prime, then aϕ(n) ≡ 1 (mod n).

Proof:

Note that the group Un has order ϕ(n). Thus, [a]ϕ(n) = [1] in Un. But [a]ϕ(n) = [aϕ(n)], which

implies that aϕ(n) ≡ 1 (mod n).

Theorem 4.17.5: Fermat’s Little Theorem

Assume that p is a prime. If p ∤ a, then ap−1 ≡ 1 (mod p). For all a, ap ≡ a (mod p).

Proof:

If p-prime and p ∤ a, then ϕ(p) = p − 1 and GCD(a, p) = 1. By Euler’s Theorem, we have

ap−1 ≡ 1 (mod p). Multiplying a in both sides we get ap ≡ a (mod p). Note that if p | a, then

ap ≡ 0 (mod p) and a ≡ 0 (mod p).

Theorem 4.17.6

A group G of a prime order contains no subgroups other than {e} and G.

Proof:

Let H ≤ G, then by Lagrange’s Theorem | H | divides | G | = p, and p is a prime. Then,

| H | = 1 or | H | = | G |. That is H = {e} or H = G.

Theorem 4.17.7

Every group of prime order is cyclic, generated by one of its non-identity elements.

Proof:

If a ∈ G ̸= {e} (since it has a prime order) and a ̸= e then ⟨ a ⟩ ̸= {e}. Thus ⟨ a ⟩ = G (by

the previous Theorem).
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Example 4.17.1

Show that any non-abelian group has at least six elements. That is, any group of order less

than 6 is an abelian group.

Solution:

We show the statement by showing that all groups of order at most 5 are abelian.

• order 1: Then G = {e} which is abelian.

• prime order: If the order is 2, 3, or 5, then the order is a prime and hence G is abelian.

• order 4: Then | G | = 4 and hence (by Lagrange’s Theorem) if a ̸= e ∈ G then o(a) =

1, 2, or 4. Case 1: If o(a) = 4 then G is cyclic since G = ⟨ a ⟩. Case 2: Note that

o(a) ̸= 1 since a ̸= e. Case 3: If o(a) = 2, then a2 = e which means that a = a−1 and

hence ab = (ab)−1 = b−1a−1 = ba. Thus G is abelian.

Example 4.17.2

Suppose that G is a non-abelian group of order 14. Show that G has an element of order 7.

Solution:

Let a ̸= e in G. Then by Lagrange’s Theorem o(a) = 7 or 2 (this is because a ̸= e so o(a) ̸= 1

and o(a) ̸= 14 since G is not cyclic as it is not abelian). If all a ∈ G is of order 2, then G is

abelian which is not the case. Therefore, there is a ̸= e in G with o(a) = 7.

Theorem 4.17.8: Fundamental Theorem of Finite Cyclic Groups

Let G be a cyclic group of a finite order n with G = ⟨ a ⟩ = {e, a, a2, . . . , an−1}. Then

1. Every subgroup of G is cyclic.

2. If 1 ≤ k < n, then ak generates a subgroup of order n
gcd(k,n) .

3. If 1 ≤ k < n, then ak is a generator of G if and only if gcd(k, n) = 1. [How many

generators we have].

4. For each positive divisor d of n, G has exactly one subgroup of order d.
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Example 4.17.3

Consider Z24. Find the orders of ⟨ 3 ⟩, ⟨ 4 ⟩, ⟨ 5 ⟩, and ⟨ 9 ⟩.

Solution:

• | ⟨ 3 ⟩ | = 24
gcd(3,24) = 24

3 = 8.

• | ⟨ 4 ⟩ | = 24
gcd(4,24) = 24

4 = 6.

• | ⟨ 5 ⟩ | = 24
gcd(5,24) = 24

1 = 24.

• | ⟨ 9 ⟩ | = 24
gcd(9,24) = 24

3 = 8.

Example 4.17.4

If G is a cyclic group of order 10, find the generators of G and find the orders of all subgroups

of G.

Solution:

Assume that a is a generator for G. That is, G = ⟨ a ⟩. If 1 ≤ k < 10 is the order of a

generator, then it must satisfies gcd(k, 10) = 1. That is, a1, a3, a7, and a9 are the generators

of G. The order of any subgroup of G must divides the order of G which is 10. Therefore,

the orders of all subgroups are 1, 2, 5, and 10.

Example 4.17.5

List all subgroups of Z12.

Solution:

Z12 is a cyclic group and hence it has exactly one cyclic subgroup of order k > 0 where k | 12.

That is k = 1, 2, 3, 4, 6, or 12.
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4.17.1 Solving Book Problems from Section 17

Exercise 4.17.1

Q.17.1: Find
[
S3 : ⟨ (1 2) ⟩

]
.

Solution:

Clearly, ⟨ (1 2) ⟩ = {e, (1 2)}. Thus | ⟨ (1 2) ⟩ | = 2. Therefore,
[
S3 : ⟨ (1 2) ⟩

]
= | S3 |

| ⟨ (1 2) ⟩ | =
6
2 = 3.

Exercise 4.17.2

Q.17.3: Find the index of ⟨ [2] ⟩ in Z10, i.e.
[
Z10 : ⟨ 2 ⟩

]
.

Solution:

Clearly ⟨ 2 ⟩ = {2, 4, 6, 8, 0} and hence | ⟨ 2 ⟩ | = 5. Thus,
[
Z10 : ⟨ 2 ⟩

]
= |Z10 |

| ⟨ 2 ⟩ | = 10
5 = 2.

Exercise 4.17.3

Q.17.24: Prove that if G is a group of order p2 (p-prime) and G is not cyclic, then ap = e

for each a ∈ G.

Solution:

Let a ∈ G, then by Lagrange’s Theorem o(a) = 1, o(a) = p, or o(a) = p2. Clearly o(a) ̸= p2

because G is not cyclic. Thus o(a) = 1 or o(a) = p and hence ap = e for any a ∈ G.

Exercise 4.17.4

Q.17.18: Assume that G is a cyclic group of order n, that G = ⟨ a ⟩, that k | n, and that

H = ⟨ ak ⟩. Find
[
G : H

]
.

Solution:

Note that (ak)
n

gcd(k,n) = an = e. Then, since | G | = n, we have

| H | =
∣∣∣ ⟨ ak ⟩

∣∣∣ = n

gcd(k, n) .
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Thus
[
G : H

]
= | G |

| H |
= n

n
gcd(k,n)

= gcd(k, n) = k.

Exercise 4.17.5

Q.17.30: If H is a subgroup of a group G and
[
G : H

]
= 2, then the right cosets of H in G

are the same as the left cosets of H in G. Why?

Solution:

Since
[
G : H

]
= 2, the left cosets of H in G are: H and aH for a ∈ G − H. Also, the right

cosets of H in G are: H and Ha for a ∈ G.

Hence G = H ∪ aH = H ∪ Ha which implies that aH = G − H and that Ha = G − H.

Therefore, aH = Ha.

Exercise 4.17.6

Q.17.32: Prove that if H is a subgroup of a finite group G, then the number of right cosets

of H in G equals the number of left cosets of H in G.

Solution:

The number of right cosets of H in G is
[
G : H

]
which is equal to the number of left cosets

of H in G and both are equal to | G |
| H | .

Exercise 4.17.7

Use Fermat’s Little Theorem to find the least non-negative integer x so that:

1. 350 ≡ x (mod 7). Solution: 350 = (36)8 ·32 ≡ 18 ·9 ≡ 9(mod 7) ≡ 2(mod 7). Therefore,

x = 2.

2. 352 ≡ x (mod 11). Solution: 352 = (310)5 · 32 ≡ 15 · 9 ≡ 9(mod 11). Therefore, x = 9.

3. 3123 ≡ x (mod 11). Solution: 3123 = (310)12 · 33 ≡ 112 · 27 ≡ 27(mod 11) ≡ 5(mod 11).

Therefore, x = 5.
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Exercise 4.17.8

Solve the following exercises from the book at pages 92 - 93:

• 17.1 − 17.4,

• 17.7 − 17.8,

• 17.13,

• 17.17 − 17.18,

• 17.24,

• 17.30,

• 17.32.
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Section 4.18: Isomorphism

Example 4.18.1

Discuss the similarities between the groups ⟨ (1 2 3) ⟩ and Z3.

Solution:

Note that ⟨ (1 2 3) ⟩ = {e, (1 2 3), (1 3 2)} under the composition operation, and Z3 =

{[0], [1], [2]} under the addition operation. These two groups are alike given the corresponding

e ⇔ [0], (1 2 3) ⇔ [1], and (1 3 2) ⇔ [2].

◦ e (1 2 3) (1 3 2)

e e (1 2 3) (1 3 2)
(1 2 3) (1 2 3) (1 3 2) e

(1 3 2) (1 3 2) e (1 2 3)

⊕ [0] [1] [2]

[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

Definition 4.18.1

Let G be a group with operation ∗ and let H be a group with operation #. An isomorphism

of G onto H is a mapping θ : G → H that is one-to-one and onto and satisfies

θ(a ∗ b) = θ(a) # θ(b) for all a, b ∈ G.

If there is such a mapping then we say that G and H are isomorphic and we write G ≈ H.

Moreover, θ is called an isomorhism.

Remark 4.18.1

The condition θ(a ∗ b) = θ(a)#θ(b) is sometimes described by saying that θ preserves the

operation. That is, it makes no difference whether we operate in G first and then apply θ, or

apply θ first and then operate in H. In either way, we get the same result.
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•

•

•
a

b

a ∗ b
•

•

•
θ(a)

θ(b)

θ(a ∗ b) = θ(a)#θ(b)

Example 4.18.2

Show that ⟨ (1 2 3) ⟩ ≈ Z3.

Solution:

Consider the mapping θ : ⟨ (1 2 3) ⟩ → Z3 defined by θ(e) = [0]; θ((1 2 3)) = [1]; and

θ((1 3 2)) = [2]. Then clearly, θ is a bijection. Moreover, for any a, b ∈ ⟨ (1 2 3) ⟩, we have

θ(a ◦ b) = θ(a) ⊕ θ(b), for instance

θ((1 2 3)(1 3 2)) = θ(e) = [0] = [1] ⊕ [2] = θ((1 2 3)) ⊕ θ((1 3 2)).

There are 9 (3 · 3) equations to be checked. Can you do it?

Example 4.18.3

Show that Z ≈ 3Z.

Solution:

Let θ : Z → 3Z given by θ(a) = 3a for all a ∈ Z. This mapping is clearly one-to-one and onto

3Z. Moreover, it preserves addition:

θ(a + b) = 3(a + b) = 3a + ab = θ(a) + θ(b).

Therefore, θ is an isomorphism and Z ≈ 3Z.

Example 4.18.4

Show that Z is isomorphic to the multiplicative group of all rational numbers of the form 2m

for m ∈ Z.

Solution:
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Let α : Z → H, where H = {2m : m ∈ Z}. Onto: Let x ∈ H, then x = 2n for some n ∈ Z.

That is α(n) = 2n = x Thus α is onto H. One-to-one: Let α(a) = α(b) for some a, b ∈ Z.

Then 2a = 2b and hence a = b. Thus α is 1-1. Finally, note that for any a, b ∈ Z we have

α(a + b) = 2a+b = 2a · 2b = α(a) · α(b).

Therefore, α is an isomorphism and Z ≈ H.

Theorem 4.18.1

If G and H are isomorphic groups and G is abelian, then H is abelian.

Proof:

Let ∗ and # be the operations of G and H, respectively, and let θ : G → H be an isomorphism.

If x, y ∈ H, there are elements a, b ∈ G such that θ(a) = x and θ(b) = y. Since θ preserves

the operation (meaning that θ(a ∗ b) = θ(a) # θ(b)) and G is abelian,

x # y = θ(a) # θ(b) = θ(a ∗ b) = θ(b ∗ a) = θ(b) # θ(a) = y # x.

That is H is abelian.

Theorem 4.18.2

If G and H are isomorphic groups and G is cyclic, then H is cyclic.

Proof:

Exercise: Try to show that if G = ⟨ a ⟩, then H = ⟨ θ(a) ⟩ for an isomorphism θ.

Theorem 4.18.3

Let G and H be groups with operations ∗ and #, respectively, and let θ : G → H be a

mapping such that θ(a ∗ b) = θ(a) # θ(b) for all a, b ∈ G. Then,

1. θ(eG) = eH ,

2. θ(a−1) = θ(a)−1 for each a ∈ G,

3. θ(ak) = θ(a)k for each a ∈ G and each k ∈ Z,
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4. θ(G) = {θ(g) : g ∈ G}, the image of θ, is a subgroup of H, and

5. if θ is one-to-one, then G ≈ θ(G).

Proof:

1. Clearly, θ(eG)θ(eG) = θ(eGeG) = θ(eG) ∈ H. Thus θ(eG) = θ(eG)eH and then

θ(eG)θ(eG) = θ(eG)eH . By left cancelation law, θ(eG) = eH .

2. eH = θ(eG) = θ(aa−1) = θ(a)θ(a−1) for each a ∈ G. Thus, θ(a−1) = (θ(a))−1.

3. Consider three cases of k ∈ Z: Case 1: k = 0, then θ(eG) = eH . Case 2: k > 0: Using

induction if k = 1, then θ(a1) = θ(a)1 which is true. Assume that θ(ak) = θ(a)k for

some k. Then θ(ak+1) = θ(ak · a) = θ(ak) · θ(a) = θ(a)k · θ(a) = θ(a)k+1. Case 3: k < 0:

Use same idea as in case 2, but for the negative integers.

4. We show that θ(G) ≤ H by showing the following three conditions:

S1: (Closure of θ(G)) Let θ(g1), θ(g2) ∈ θ(G) for any g1, g2 ∈ G. Then

θ(g1)θ(g2) = θ(g1g2) ∈ θ(G) since g1g2 ∈ G.

S2: (identity) θ(eG) = eH by part 1.

S3: (inverse of θ(g)) Let θ(g) ∈ θ(G) for g ∈ G, then g−1 ∈ G and hence θ(g−1) =

θ(g)−1 ∈ θ(G).

5. θ(G) is 1-1 is given. Note that θ(ab) = θ(a)θ(b) by the assumption. Also, considering

θ as a mapping from G to θ(G) shows that θ is onto. Therefore, θ : G → θ(G) is an

isomorphism.

Definition 4.18.2

Let G and H be groups with operations ∗ and #, respectively. Then θ : G → H is a

homomorphism if

θ(a ∗ b) = θ(a) # θ(b) for all a, b ∈ G.



4.18. ISOMORPHISM 99

Example 4.18.5

Let θ : (R, +) → (R+, ·) defined by θ(x) = ex. Show that θ is an isomorphism.

Solution:

1 − 1: Let x, y ∈ R with θ(x) = θ(y), then ex = ey and hence ex−y = 1 which implies x − y = 0

and hence x = y.

onto: Let y ∈ R+, then y = ex for some x ∈ R. Then ln (y) = x and hence θ(ln (y)) = eln (y) =

y.

hom.: Let x, y ∈ R, then θ(x + y) = ex+y = exey = θ(x)θ(y). Therefore θ is homomorphism.

Therefore θ is an isomorphism, and (R, +) ≈ (R+, ·).
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Exercise 4.18.1

Solve the following exercises from the book at pages 96 - 97:

• 18.1 − 18.6,

• 18.9 − 18.12.
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Section 4.19: More On Isomorphism

Theorem 4.19.1

Isomorphism, denoted by ≈, is an equivalence relation on the class of all groups.

Proof:

We simply show that ≈ is reflexive, symmetric, and transitive as follows.

1. Reflexive: If G is a group, then the identity mapping I : G → G is an isomorphism and

thus G ≈ G.

2. Symmetric: Assume that G ≈ H. Then there is an isomorphism f : G → H which

is a bijection. But then f−1 is a bijection as well. So, we need to show that f−1 is

a homomorphism mapping. That is, f−1(ab) = f−1(a)f−1(b) for any a, b ∈ H. Let

f−1(a) = x and f−1(b) = y, then a = f(x) and b = f(y) and hence ab = f(x)f(y) =

f(xy). That is f−1(ab) = xy = f−1(a)f−1(b). Therefore, H ≈ G.

3. Transitive: Let G ≈ H and H ≈ K with f : G → H and g : H → K are two

isomorphisms. That is f and g are both bijection and hence g ◦f : G → K is a bijection

as well. Also, for any a, b ∈ G, we have

(g ◦ f)(ab) = g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)) = (g ◦ f)(a) (g ◦ f)(b).

That is G ≈ K.

Therefore, ≈ is an equivalence relation on the class of all groups.

Theorem 4.19.2

If p is a prime and G is a group of order p, then G is isomorphic to Zp.

Proof:

Let a be a nonidentity element of G. Then ⟨ a ⟩ ̸= {e} is a subgroup of G. By Lagrange’s

Theorem, ⟨ a ⟩ = G and hence G = {e, a, a2, . . . , ap−1}. Define θ : G → Zp by θ(ak) = [k]. We

next show that θ is an isomorphism.
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1. θ is one-to-one: Let θ(ak1) = θ(ak2), then

[k1] = [k2] iff k1 ≡ k2 (mod p) iff p | (k1 − k2) iff ak1−k2 = e iff ak1 = ak2 .

2. θ is onto: Let [k] ∈ Zp, then by the Division Algorithm k = p · q + r; 0 ≤ r < p. Thus

ak = (ap)qar = ar ∈ G. Then θ(ak) = θ(ar) = [r] = [k] ∈ Zp.

3. Let am, an ∈ G, then

θ(am an) = θ(am+n) = [m + n] = [m] ⊕ [n] = θ(am) ⊕ θ(an).

Therefore, θ is an isomorphism and hence G ≈ Zp.

Theorem 4.19.3

Every cyclic group of order n is isomorphic to Zn.

Proof:

Assume that G is a cyclic group of order n. Let G = ⟨ a ⟩ = {e, a, a2, · · · , an−1}. Define

θ : G → Zn by θ(ak) = [k]. Clearly, θ is a bijection. Furthermore,

θ(ak ah) = θ(ak+h) = [k + h] = [k] ⊕ [h] = θ(ak) ⊕ θ(ah).

Therefore, ta is homomorphism and hence G ≈ Zn.

Theorem 4.19.4

Every cyclic group of infinite order is isomorphic to Z.

Proof:

Assume that G is a cyclic group of infinite order. There is a ∈ G with G = ⟨ a ⟩. Define

θ : G → Z by θ(ak) = k. Clearly, θ is a bijection. Furthermore,

θ(ak ah) = θ(ak+h) = k + h = θ(ak) ⊕ θ(ah).

Therefore, θ is homomorphism and hence G ≈ Z.
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Theorem 4.19.5: Fundamental Theorem of Finite Abelian Groups

If G is a finite abelian group, then G is the direct product of cyclic groups of prime power

order.

Moreover, if G ≈ A1 × A2 × · · · × As and G ≈ B1 × B2 × · · · × Bt, where each Ai and each

Bj is cyclic of prime order, then s = t and after suitable relabeling of subscripts, | Ai | = | Bi |

for 1 ≤ i ≤ s.

Example 4.19.1

If p is a prime, then there are five isomorphism classes of abelian groups of order p4. Give

one group from each class.

Solution:

Clearly, p4 = p3 · p = p2 · p2 = p2 · p · p = p · p · p · p. Thus, we have

Zp4 ;Zp3 × Zp;Zp2 × Zp2 ;Zp2 × Zp × Zp; and Zp × Zp × Zp × Zp.

Example 4.19.2

List the isomorphism class representatives of abelian groups of order 125.

Solution:

Clearly, 125 = 53 = 52 · 5 = 5 · 5 · 5. Thus, we have

Z53 ;Z52 × Z5; and Z5 × Z5 × Z5.

Example 4.19.3

List the isomorphism class representatives of abelian groups of order 200.

Solution:

Clearly, 200 = 23 · 52 = 23 · 5 · 5 = 22 · 2 · 52 = 22 · 2 · 5 · 5 = 2 · 2 · 2 · 52 = 2 · 2 · 2 · 5 · 5. Thus,

we have

Z23 × Z52 ; Z23 × Z5 × Z5; Z22 × Z2 × Z52 ; Z22 × Z2 × Z5 × Z5;

Z2 × Z2 × Z2 × Z52 ; and Z2 × Z2 × Z2 × Z5 × Z5.



104 CHAPTER 4. GROUPS

Exercise 4.19.1

Solve the following exercises from the book at pages 101:

• 19.15 − 19.18.
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Chapter

Group Homomorphisms

Section 5.21: Homomorphism of Groups. Kernels

Remark 5.21.1

Every isomorphism is a homomorphism, but not (necessary) vice versa.

Definition 5.21.1

If θ : G → H is a homomorphism, then the kernel of θ is the set of all elements a ∈ G such

that θ(a) = eH . That is

ker θ = {a ∈ G : θ(a) = eH} .

Example 5.21.1

Let θ : Z → Z be defined by θ(a) = 2a for all a ∈ Z. Discuss 1) homomorphismity of θ. 2) Is

θ onto, 3) Is θ 1-1, and 4) Find ker θ.

Solution:

1. Clearly, θ(a + b) = 2(a + b) = 2a + 2b = θ(a) + θ(b) and hence θ is a homomorphism.

2. θ is not onto Z since there is no element a ∈ Z with θ(a) = 3 for instance.

3. θ(a) = θ(b) implies 2a = 2b and hence a = b. Thus, θ is 1-1.

4. ker θ = {a ∈ Z : θ(a) = 2a = 0} = {0}.

Example 5.21.2

For any positive integer n, define θ : Z → Zn by θ(a) = [a] for each a ∈ Z. Show that θ is a

homomorphism, find ker θ, and is θ an isomorphism? Explain.

105
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Solution:

Clearly for any a, b ∈ Z we have θ(a + b) = [a + b] = [a] ⊕ [b] = θ(a) ⊕ θ(b).

Thus, θ is a homomorphism. Also, ker θ = {a ∈ Z : θ(a) = [a] = [0]} = {k · n : k ∈ Z}.

Moreover, θ is not isomorphism since it is not one-to-one, for instance θ(0) = θ(n) = [0].

Theorem 5.21.1

If θ : G → H is a homomorphism and A ≤ G, then θ(A) ≤ H where θ(A) = {θ(a) : a ∈ A},

the image of A under θ.

Proof:

We prove the statement by showing the three conditions of a subgroup as follows:

S1: Closure: Let θ(a), θ(b) ∈ θ(A), then θ(a)θ(b) = θ(ab) ∈ θ(A) since ab ∈ A.

S2: Identity: θ(eG) = eH ∈ θ(A) since eG ∈ A.

S3: Inverse: Let θ(a) ∈ θ(A), then θ(a−1) = θ(a)−1 ∈ θ(A) since a−1 ∈ A.

Therefore, θ(A) ≤ H.

Exercise 5.21.1

Q.21.10: If θ : G → H is a homomorphism and B ≤ H, then θ−1(B) ≤ G, where θ−1(B) =

{g ∈ G : θ(g) ∈ B}, the inverse image of B under θ.

Solution:

S1: Closure: Let g1, g2 ∈ θ−1(B), then θ(g1), θ(g2) ∈ B. Thus

θ(g1)θ(g2) = θ(g1g2) ∈ B ⇒ g1g2 ∈ θ−1(B).

S2: Identity: Clearly θ(eG) = eH ∈ H and hence eG ∈ θ−1(B).

S3: Inverse: Let g ∈ θ−1(B), then θ(g) ∈ B. Therefore, θ(g)−1 = θ(g−1) ∈ B. Hence

g−1 ∈ θ−1(B).

Therefore, θ−1(B) ≤ G.
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Theorem 5.21.2

If θ : G → H is a homomorphism, then ker θ ≤ G. Moreover, θ is 1-1 if and only if

ker θ = {eG}.

Proof:

We show the three conditions of a subgroup as follows:

S1: Closure: Let a, b ∈ ker θ, then a, b ∈ G with θ(a) = θ(b) = eH . Thus, θ(ab) = θ(a) θ(b) =

eH eH = eH . Thus ab ∈ ker θ.

S2: Identity: Clearly eG ∈ ker θ since θ(eG) = eH .

S3: Inverse: Let a ∈ ker θ then a, a−1 ∈ G. Thus

θ(a−1) = θ(a)−1 = e−1
H = eH ⇒ a−1 ∈ ker θ.

Therefore, ker θ ≤ G. Next We show the if and only if statement:

” ⇒ ”: Assume that θ is 1-1. Since eG ∈ ker θ ≤ G and the identity is unique then ker θ =

{eG}.

” ⇐ ”: Assume that ker θ = {eG}. If a, b ∈ G with θ(a) = θ(b), then θ(a)θ(b)−1 = eH and

hence θ(a)θ(b−1) = eH and thus θ(ab−1) = eH . Therefore, ab−1 ∈ ker θ which implies that

ab−1 = eG. Hence a = b. Therefore θ is 1-1.

Example 5.21.3

Consider the homomorphism θ : Z10 → Z10 defined by θ(x) = 8x for all x ∈ Z10. Find the

ker θ.

Solution:

ker θ = {0, 5} since θ(0) = θ(5) = 40 = 0 while for instance θ(3) = 24 = 4 ̸= 0 and hence

3 ̸∈ ker θ.

Definition 5.21.2

A subgroup N of a group G is called normal subgroup of G if gng−1 ∈ N for all n ∈ N

and all g ∈ G. In that case, we write N � G.
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Example 5.21.4

Show that every subgroup of an abelian group is a normal subgroup.

Solution:

If N is a subgroup of an abelian group G, then for all n ∈ N and for all g ∈ G,

gng−1 = gg−1n = n ∈ N.

Thus N � G.

Theorem 5.21.3

If G and H are groups and θ : G → H is a homomorphism, then ker θ � G.

Proof:

Recall that ker θ ≤ G. Let n ∈ ker θ and g ∈ G, then θ(n) = eH . So

θ(gng−1) = θ(g)θ(n)θ(g−1) = θ(g)eHθ(g−1) = θ(g)θ(g−1) = eH .

Thus gng−1 ∈ ker θ and hence ker θ � G.

Remark 5.21.2

Let H be a subgroup of a group G. Then H is normal subgroup of G iff for all g ∈ G

gH = Hg ⇔ gHg−1 = H ⇔ H = g−1Hg.

Example 5.21.5

Let H = {e, (1 2)} ≤ S3. Is H � S3? Explain.

Solution:

Note that,

eH = {e, (1 2)} = He = {e, (1 2)}

(1 2)H = {e, (1 2)} = H(1 2) = {e, (1 2)}

(1 3)H = {(1 3), (1 2 3)} ≠ H(1 3) = {(1 3), (1 3 2)}
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Therefore, H is not a normal subgroup of S3.

Exercise 5.21.2

Show that H = {e, (1 2 3), (1 3 2)} � S3. [Hint: Simply show that for all g ∈ S3, we

have gH = Hg].

Example 5.21.6

Show that H = {0, 3} � (Z6, +).

Solution:

One way to show the statement: H is a subgroup of Z6 which is an abelian group and hence

H is normal subgroup.

Another way to show the statement: Show that H is a normal subgroup by showing that

g + H = H + g for all g ∈ Z6.
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Exercise 5.21.3

Solve the following exercises from the book at pages 109 - 110:

• 21.2,

• 21.5 − 21.10,

• 21.34.



5.22. QUOTIENT GROUPS 111

Section 5.22: Quotient Groups

Theorem 5.22.1

Let H be a subgroup of a group G. The left cosets of H in G with multiplication is well

defined by aH bH = ab H if and only if aH = Ha for all a, b ∈ G.

Theorem 5.22.2

Let N be a normal subgroup of a group G, and let G/N denote the set of all left cosets of

N in G. Then G/N = {gN : g ∈ G} under the binary operation (g1N)(g2N) = g1g2N is a

group.

This group is called the quotient group (or factor group) of G by N . Moreover,

| G/N | = | G |
| N |

:=
[
G : H

]
.

Proof:

We show that G/N is a group by showing the following three conditions:

G1: Associative: If a, b, c ∈ G, then

aN(bNcN) = aN(bcN) = (a(bc))N = ((ab)c)N = (ab)NcN = (aNbN)cN.

G2: Identity: Clearly, the identity element is eN ∈ G/N .

G3: Inverse: For any element gN ∈ G/N , the inverse is g−1N ∈ G/N .

Example 5.22.1

Let H = ⟨ 2 ⟩. Show that H � Z12. Find the order of Z12/H. Is Z12/H ≈ Z2? Explain.

Solution:

Note that H = {0, 2, 4, 6, 8, 10}.

• Since Z12 is abelian, then H � Z12.

• Note that Z12/H is a quotient group and hence |Z12/H | = 12
6 = 2.

• Clearly Z12/H = {a + H : a ∈ Z12} = {H, 1 + H} ≈ Z2.
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Example 5.22.2

Consider N = {e, (1 2 3), (1 3 2)} � S3. Find S3/N .

Solution:

Clearly, S3/N = {aN : a ∈ S3}, but since | S3/N | = 6
3 = 2, we conclude that

S3/N = {N, (1 2)N}, where (1 2)N = {(1 2), (1 3), (2 3)}.

Theorem 5.22.3

If G is a group with a normal subgroup N , then the mapping θ : G → G/N defined by

θ(a) = aN for each a ∈ G is a homomorphism of G onto G/N , and ker θ = N . It is called

the natural homomorphism.

Proof:

Clearly the mapping θ is well defined and onto G/N . If a, b ∈ G, then

θ(ab) = abN = aNbN = θ(a)θ(b).

Thus θ is a homomorphism. Finally, if a ∈ G, then

a ∈ ker θ ⇔ θ(a) = aN = eN = N,

because eN is the identity element of G/N . Therefore, a ∈ ker θ if and only if aN = N and

hence if and only if a ∈ N .

Theorem 5.22.4

Let G be a group with a normal subgroup N . Let G/N be a quotient group. Then,

1. If G is finite, then | G/N | = | G |
| N | .

2. If G is cyclic, then G/N is cyclic.

3. If G is abelian, then G/N is abelian.

4. If a has a finite order in G, then the order of aN in G/N divides the order of a.
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Theorem 5.22.5

Every quotient group of a cyclic group is cyclic.

Proof:

Let G/N be a quotient group of a cyclic group G. Assume that G = ⟨ a ⟩ for some a ∈ G.

If g ∈ G, then g = an for some n ∈ Z since G is cyclic. Hence gN = anN = (aN)n for any

element gN ∈ G/N . Thus, G/N = ⟨ aN ⟩ and so G/N is cyclic.

Theorem 5.22.6

If H and K are normal subgroups of a group G, then H ∩ K � G.

Proof:

For all g ∈ G and for all x ∈ H ∩ K, we have x ∈ H and x ∈ K; hence gxg−1 ∈ H and

gxg−1 ∈ K and hence gxg−1 ∈ H ∩ K. Therefore, H ∩ K is normal.

Theorem 5.22.7

If H and K are normal subgroup of a group G and H ∩ K = {e}, then hk = kh for all h ∈ H

and k ∈ K.

Proof:

Let g = hkh−1k−1 ∈ G. But K is normal and hence hkh−1 ∈ K and k−1 ∈ K and thus

g = hkh−1k−1 ∈ K. Also H is normal and hence h−1 ∈ H which implies that kh−1k−1 ∈ H

and hence g = hkh−1k−1 ∈ H. Therefore, g ∈ H ∩ K = {e}; hence g = e and hence hk = kh

for all h ∈ H and k ∈ K.

Example 5.22.3

Prove that if N � G and H is any subgroup of G, then N ∩ H � H.

Solution:

Note that N ∩ H ≤ G and N ∩ H ⊆ H implies that N ∩ H ≤ H. Let h ∈ H and x ∈ N ∩ H.

Then x ∈ N and x ∈ H and h−1 ∈ H and hence hxh−1 ∈ H since H ≤ G. Also hxh−1 ∈ N

since N � G. Therefore, hxh−1 ∈ N ∩ H. That is N ∩ H � H.
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Theorem 5.22.8: The Fundamental Homomorphism Theorem

Let G and H be groups and let θ : G → H be a homomorphism from G onto H with

ker θ = K. Then the mapping Φ : G/K → H defined by Φ(aK) = θ(a) for each aK ∈ G/K

is an isomorphism of G/K onto H. Therefore, G/K ≈ H.

Proof:

Onto: Clearly Φ is onto H since θ is onto H. For any h ∈ H there is a ∈ G such that

θ(a) = h = Φ(aK) for aK ∈ G/K.

1-1: We show that Φ is 1-1 iff ker Φ = {eK}. Let aK ∈ ker Φ, then Φ(aK) = θ(a) = eH and

hence a ∈ ker θ = K iff aK = K = eK. Thus, ker Φ = {eK} and hence Φ is 1-1.

homomorphism: For any a, b ∈ G, we have:

Φ(aK bK) = Φ(ab K) = θ(ab) = θ(a) θ(b) = Φ(aK) Φ(bK).

Therefore, G/K ≈ H.

Example 5.22.4

For integer n ≥ 2, show that Z/nZ ≈ Zn; or similarly Z/⟨ n ⟩ ≈ Zn.

Solution:

Let G = Z and H = Zn and K = nZ = ⟨ n ⟩. Let θ : Z → Zn be defined by θ(a) = [a] which is

onto homomorphism. Also, we know that ker θ = {x ∈ Z : [x] = [0]} = {nk : k ∈ Z} = nZ =

⟨ n ⟩ = K. Therefore, by the Fundamental Homomorphism Theorem, we get G/K ≈ H.
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Exercise 5.22.1

Solve the following exercises from the book at pages 114:

• 22.5 − 22.6.
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