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Chapter

Review

Section 0.1: Groups

Definition 0.1.1

A (binary) operation ∗ on a set S is a mapping from S × S to S so that for all a, b ∈ S,

(a, b) 7→ a ∗ b. In that case, we say that S is closed under ∗. Moreover,

• ∗ is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ S.

• ∗ is commutative if a ∗ b = b ∗ a, for all a, b ∈ S.

• An element e ∈ S is called the identity of S with respect to ∗ if a ∗ e = a = e ∗ a, for

all a ∈ S.

• If a and b are two elements in S such that b ∗ a = e = a ∗ b, then we say that b is the

inverse of a in S with respect to ∗.

Remark 0.1.1

In a set S with some operation ∗, we write a−1 for the multiplicative inverse so that aa−1 =

e = a−1a. While, we write −a for the additive inverse with a+ (−a) = O = (−a) + a.

Definition 0.1.2

A group (G, ∗) is a set G closed under the operation ∗ satisfying the following conditions:

G1: ∗ is associative.

G2: there is an identity e ∈ G such that a ∗ e = a = e ∗ a for all a ∈ G.

G3: for each a ∈ G, there is a−1 ∈ G such that aa−1 = e = a−1a.

Moreover, G is said to be abelian group if ∗ is a commutative operation.
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2 Chapter 0. Review

Definition 0.1.3

A subset H of a group G is a subgroup of G if H itself is a group with respect to the

operation on G. In that case, we write H ≤ G.

Theorem 0.1.1

If G is a group and H is a nonempty subset of G, i.e. φ 6= H ⊆ G, then H is a subgroup of

G iff if a, b ∈ H, then a ∗ b−1 ∈ H.

The Division Algorithm in Z

If a, b ∈ Z with b > 0, then there exist unique integers (quotient) q and (remainder) r such

that

a = b · q + r; 0 ≤ r < b.

That is, a ≡ r (mod b).

For example, 25 ≡ 1 (mod 3) since 25 = 3 · 8 + 1.

Notation:

For any integers m and n, we write (m,n) and [m,n] to denote their greatest common

divisor and least common multiple, respectively.

Two integers m and n are said to be relatively prime (or coprime) if (m,n) = 1. For instance,

4 and 9 are coprime but 4 and 8 are not.

Definition 0.1.4

A group G is called cyclic if there is a ∈ G with G = 〈 a 〉 = {an : n ∈ Z}.

Theorem 0.1.2

• A group G of order p (p is prime) is isomorphic to Zp. That is, G ≈ Zp.

• A group G is cyclic group of order m is isomorphic to Zm. That is, G ≈ Zm.

• A group G is cyclic of infinite order is isomorphic to Z. That is, G ≈ Z.
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The group Zm × Zn ≈ Zmn iff (m,n) = 1. Moreover, for any n ∈ Z+, there is a cyclic group

of order n and each cyclic group of order n is isomorphic to (Zn,+).

Note that Z2×Z4 is not cyclic and it is not isomorphic to Z8 since (2, 4) = 2 6= 1. While Z2×Z3

is a cyclic group isomorphic to Z6.

Remark 0.1.2

• If a ∈ Zn = {0, 1, · · · , n− 1} with (a, n) = 1, then Zn = 〈 a 〉 = 〈−a 〉.

• Moreover, if G is a cyclic with G = 〈 a 〉 for some a ∈ G, then G = 〈 a−1 〉. In that case,

we say that a is a generator for G.

• A subgroup of a cyclic group is cyclic.

• If G is a cyclic group, then G is an abelian group. The converse is not true in general,

for instace Z2 × Z2 (The Klein 4-group) is abelian group which is not cyclic.

• The subgroup of Z under addition are precisely nZ = {0,±n,±2n, · · ·} = 〈n 〉 = 〈−n 〉

for any n ∈ Z.
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Ring Theory

Section 1.1: Rings

Definition 1.1.1

A ring (R,+, ·) is a set R together with two (binary) operations + and ·, which are called

addition and multiplication, defined on R such that:

R1: (R,+) is an abelian group.

R2: Multiplication is associative: (a · b) · c = a · (b · c), for all a, b, c ∈ R.

R3: For all a, b, c ∈ R, the following (distribution laws) hold:

– Left distribution law: a · (b+ c) = (a · b) + (a · c), and

– right distribution law: (a+ b) · c = (a · c) + (b+ c).

A commutative ring is a ring with a commutative multiplication operation.

Remark 1.1.1

We note that the group formed by R with addition, namely (R,+), is referred to as the

additive group of R. Its identity 0 is the zero of R, and the additive inverse for each a ∈ R,

is denoted by (−a).

Definition 1.1.2

An element e (or written as 1) in a ring R is called unity (or identity) for R if ea = a = ae

for each a ∈ R. It is simply the multiplicative identity in R. Note that, 1 is the unity of Z,

while 2Z has no unity.
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Theorem 1.1.1

Let R be a ring and a, b, c ∈ R. Then:

1. The zero element of R is unique.

2. Each element of R has a unique negative.

3. The left cancellation laws: If a+ b = a+ c then b = c.

4. The right cancellation laws: If a+ c = b+ c then a = b.

5. Each of the equations a+ x = b and x+ a = b has a unique solution.

6. −(−a) = a and −(a+ b) = (−a) + (−b).

7. If m,n ∈ Z, then (m+ n)a = ma+ na, m(a+ b) = ma+mb, and m(na) = (mn)b.

Theorem 1.1.2

Let R be a ring, 0 the zero of R, and a, b, c ∈ R. Then:

1. 0a = a0 = 0.

2. a(−b) = (−a)b = −(ab).

3. (−a)(−b) = ab.

4. a(b−c) = ab−ac and (a−b)c = ac−bc.

Proof:

1. Clearly, 0a + 0a = (0 + 0)a = 0a = 0a + 0 and by the left cancellation law, we get

0a = 0. The proof of a0 = 0 is similar.

2. The equation x + ab = 0 has a unique solution x = −(ab). but a(−b) + ab = a(−b +

b) = a0 = 0 implies that x = a(−b) is another solution. By uniqueness of x, we get

−(ab) = a(−b). The proof of −(ab) = (−a)b is similar.

3. Each element in R has a unique negative. By Part(2), (−a)(−b) = (−(−a))(b) = ab.

4. By Part(2), a(b− c) = a(b + (−c)) = ab + a(−c) = ab + (−(ac)) = ab− ac. The proof

of (a− b)c = ac− bc is similar.
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Example 1.1.1

Each of the set (Z,+, ·), (2Z,+, ·), (Q,+, ·), (R,+, ·), and (C,+, ·) are commutative rings.

Solution:

We only show that Z is a commutative ring. Note that (Z,+) is an abelian group. Also,

(a b) c = a (b c) for all a, b, c ∈ Z. That is · is associative on Z. Finally, for each a, b, c ∈ Z,

we have

a (b+ c) = ab+ ac & (a+ b) c = ac+ bc.

Moreover, ab = ba for any a, b ∈ Z. Therefore, (Z,+, ·) is a commutative ring.

Example 1.1.2

Show that (Zn,⊕,�) is a commutative ring.

Solution:

We first show that (Zn,⊕) is an abelian group. This part is an exercise for YOU.

Note that for any [a], [b], [c] ∈ Zn, we have:

([a]� [b])� [c] = [ab]� [c] = [(ab)c] = [a(bc)] = [a]� [bc] = [a]� ([b]� [c]),

where (ab)c = a(bc) in Z. Hence � is associative on Zn.

We now prove the left distribution laws: Let [a], [b], [c] ∈ Zn, then

[a]� ([b]⊕ [c]) = [a]� ([b+ c]) = [a(b+ c)] = [ab+ ac]

= [ab]⊕ [ac] = [a]� [b]⊕ [a]� [c],

where the distribution laws are hold in Z. The proof of right distribution law is similar.

Moreover, [a] � [b] = [ab] = [ba] = [b] � [a] since ab = ba in Z. Therefore, � is commutative

in Zn, and hence (Zn,⊕,�) is a commutative ring.

Example 1.1.3

Let F deonte all the functions on R. Define

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)
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for f, g ∈ F and for any x ∈ R. Show that F is a commutative ring with respect to these

addition and multiplication operations.

Solution:

Let f, g, h ∈ F . Then • We first show that (F ,+) is an abelian group.

G1: + is associative on F :

[(f + g) + h](x) = [f + g](x) + h(x) = [f(x) + g(x)] + h(x) = f(x) + [g(x) + h(x)]

= f(x) + [g + h](x) = [f + (g + h)](x).

G2: The zero element in F defined by O(x) = 0 for each x ∈ F , since

(f +O)(x) = f(x) +O(x) = f(x) + 0 = f(x) = 0 + f(x) = O(x) + f(x) = (O + f)(x).

G3: Additive inverse: If f ∈ F , then the negative (additive inverse) of f is −f defined by

(−f)(x) = −f(x) as

(f + (−f))(x) = f(x) + (−f)(x) = f(x) + (−(f(x))) = 0 = O(x).

Therefore, (F ,+) is a group. For any f, g ∈ F , we have

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

Thus, (F ,+) is an abelian group.

• We now show that · is associative on R.

[(fg)h](x) = [(fg)(x)]h(x) = [f(x)g(x)]h(x) = f(x)[g(x)h(x)]

= f(x)[(gh)(x)] = [f(gh)](x).

Moreover, (fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x). Therefore, · is associative and commu-

tative on F .

• We now prove the left distribution law:

[f(g + h)](x) = f(x)[(g + h)(x)] = f(x)[g(x) + h(x)]

= f(x)(g) + f(x)h(x) = [fg](x) + [fh](x) = [fg + fh](x).

The proof of right distribution law is similar. Therefore, F is a commutative ring.
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Definition 1.1.3

If R and S are two rings, then the Cartesian product R × S = {(r, s) : r ∈ R and s ∈ S},

where for any (r1, s1), (r2, s2) ∈ R× S, we have

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), and (r1, s1)(r2, s2) = (r1r2, s1s2),

for any r1, r2 ∈ R and any s1, s2 ∈ S.

Example 1.1.4

Let R and S be two rings. Show that R× S is a ring.

Solution:

Let r1, r2, r3 ∈ R and s1, s2, s3 ∈ S and hence (r1, s1), (r2, s2), (r3, s3) ∈ R× S. Then

• We first show that (R× S,+) is an abelian group.

G1: + is associative on R× S: Note that + is associative on R and S.

[(r1, s1) + (r2, s2)] + (r3, s3) = (r1 + r2, s1 + s2) + (r3, s3)

= ((r1 + r2) + r3, (s1 + s2) + s3) = (r1 + (r2 + r3), s1 + (s2 + s3))

= (r1, s1) + [(r2 + r3, s2 + s3)] = (r1, s1) + [(r2, s2) + (r3, s3)].

G2: The zero element in R× S is (0R, 0S), since for any (r, s) ∈ R× S, we have

(r, s) + (0R, 0S) = (r + 0R, s+ 0S) = (r, s) = (0R + r, 0S + s) = (0R, 0S) + (r, s).

G3: Additive inverse: If (r, s) ∈ R × S, then the negative (additive inverse) of (r, s) is

(−r,−s) as (r, s) + (−r,−s) = (r − r, s− s) = (0R, 0S).

Therefore, (R× S,+) is a group.

• We now show that · is associative on R× S. Note that · is associative on R and S.

[(r1, s1)(r2, s2)](r3, s3) = (r1r2, s1s2)(r3, s3) = ((r1r2)r3, (s1s2)s3) = (r1(r2r3), s1(s2s3))

= (r1, s1)[(r2r3, s2s3)] = (r1, s1)[(r2, s2)(r3, s3)].
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• We now prove the left distribution law: Note that left distribution law hold on R and S.

(r1, s1)[(r2, s2) + (r3, s3)] = (r1, s1)[(r2 + r3, s2 + s3)] = (r1(r2 + r3), s1(s2 + s3))

= (r1r2 + r1r3, s1s2 + s1s3) = (r1r2, s1s2) + (r1r3, s1s3)

= (r1, s1)(r2, s2) + (r1, s1)(r3, s3).

The proof of right distribution law is similar. Therefore, R× S is a commutative ring.

Theorem 1.1.3

If R1, R2, · · · , Rn are rings, then the direct product R = R1 × R2 × · · · × Rn is a ring where

R = {(a1, · · · , an) : ai ∈ Ri for i = 1, 2, · · · , n}. Moreover,

• 0R = (0R1 , 0R2 , · · · , 0Rn) and −(a1, a2, · · · , an) = (−a1,−a2, · · · ,−an).

• R is commutative iff Ri is commutative for all i = 1, 2, · · · , n.

• eR = (eR1 , eR2 , · · · , eRn) is a unity for R iff eRi is a unity for Ri for all i = 1, 2, · · · , n.

• Ri ≈ {0R1} × {0R2} × · · · ×Ri × · · · × {0Rn} ≤ R for each i = 1, 2, · · · , n.

Example 1.1.5: #24.16 @page : 125

Show that a2 − b2 = (a+ b)(a− b) for all a and b in a ring R iff R is commutative.

Solution:

Let a, b ∈ R (a ring). Then,

(a+ b)(a− b) = a(a+ (−b)) + b(a+ (−b)) = a2 + a(−b) + ba+ b(−b)

= a2 − ab+ ba− b2.

Note that a2 − ab+ ba− b2 = a2 − b2 iff ab = ba, that is R is commutative.
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Exercise 1.1.1

Show that (Mn(R),+, ·) is a ring, where Mn(R) is the set of all n × n matrices with real

entries. The same result can be proved for Mn(Z) and Mn(Q).

Solution:

Clearly, (Mn(R),+) is an abelian group. Also, from Math-111, we know that (AB)C =

A(BC) for any A,B,C ∈Mn(R).

For any A,B,C ∈Mn(R), we have: The distribution laws hold:

A (B+C) = AB+AC & (A+B)C = AC +BC.

Thus, (Mn(R),+, ·) is a ring. It is not a commutative ring since AB 6= BA in general.

Exercise 1.1.2

Let R = Z[
√

2] =
{
a+ b

√
2 : a, b ∈ Z

}
. Then show that:

1. R is closed under the addition.

2. R is closed under the multiplication.

3. (R,+, ·) is a commutative ring.

Solution:

Let a+ b
√

2, c+ d
√

2 ∈ R. Then

1. (a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2 ∈ R. Thus R is closed under addition.

2. (a + b
√

2) + (c + d
√

2) = ac + ad
√

2 + bc
√

2 + 2bd = (ac + 2bd) + (ad + bc)
√

2 ∈ R.

Therefore, R is closed under multiplication.

3. We show the three conditions of a ring: Let a+ b
√

2, c+ d
√

2,m+ n
√

2 ∈ R, then

• We first show that (R,+) is an abelian group.
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G1: + is associative on R:
[
(a+ b

√
2) + (c+ d

√
2)
]

+ (m+ n
√

2) =
[
(a+ c) + (b+ d)

√
2
]

+ (m+ n
√

2)

= [(a+ c) +m] + [(b+ d) + n]
√

2

= [a+ (c+m)] + [b+ (d+ n)]
√

2

= (a+ b
√

2) + [(c+m) + (d+ n)]
√

2

= (a+ b
√

2) +
[
(c+ d

√
2) + (m+ n

√
2)
]
.

G2: There is a zero element in R: 0 = 0 + 0
√

2 ∈ R.

G3: Additive inverse: If a+ b
√

2 ∈ R, then (−a) + (−b)
√

2 ∈ R, and

(a+ b
√

2) +
[
(−a) + (−b)

√
2
]

= 0 + 0
√

2 = 0.

Therefore, (R,+) is a group. For any a+ b
√

2, c+ d
√

2 ∈ R, we have

(a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2 = (c+ a) + (d+ b)
√

2 = (c+ d
√

2) + (a+ b
√

2).

Thus, (R,+) is an abelian group.

• We now show that · is associative on R.
[
(a+ b

√
2)(c+ d

√
2)
](
m+ n

√
2
)

=
[
(ac+ 2bd) + (ad+ bc)

√
2
](
m+ n

√
2
)

= [m(ac+ 2bd) + 2n(ad+ bc)] + [n(ac+ 2bd) +m(ad+ bc)]
√

2

= [acm+ 2bdm+ 2adn+ 2bcn] + [acn+ 2bdn+ adm+ bcm]
√

2

= [a(cm+ 2dn) + 2b(dm+ cn)] + [a(cn+ dm) + b(cm+ 2dn)]
√

2

= (a+ b
√

2)
[
(cm+ 2dn) + (cn+ dm)

√
2
]

= (a+ b
√

2)
[
(c+ d

√
2)(m+ n

√
2)
]
.

Therefore, · is associative on R.

• We now prove the left distribution law:
[
a+ b

√
2
][

(c+ d
√

2) + (m+ n
√

2)
]

=
[
a+ b

√
2
][

(c+m) + (d+ n)
√

2
]

= [a(c+m) + 2b(d+ n)] + [a(d+ n) + b(c+m)]
√

2

=
[
(ac+ 2bd) + (ad+ bc)

√
2
]

+
[
(am+ 2bn) + (2bn+ bm)

√
2
]

=
[
(a+ b

√
2)(c+ d

√
2)
]

+
[
(a+ b

√
2)(m+ n

√
2)
]
.
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The proof of right distribution law is similar. Therefore, R is a ring.

(
a+ b

√
2
)(
c+ d

√
2
)

= (ac+ 2bd) + (ad+ bc)
√

2

= (ca+ 2db) + (cb+ da)
√

2 =
(
c+ d

√
2
)(
a+ b

√
2
)
.

Therefore, R is a commutative ring.

Exercise 1.1.3: #24.10 @page : 124

Let F deonte all the functions on R. Define (f+g)(x) = f(x)+g(x), and (f ◦g)(x) = f(g(x))

for f, g ∈ F and for any x ∈ R. Show that (F ,+, ◦) is not a ring.

Solution:

the left distribution law is not satisfied:

[f ◦ (g + h)](x) = f((g + h)(x)) = f(g(x) + h(x))

6= f(g(x)) + f(h(x)) = [(f ◦ g) + (f ◦ h)](x).

Check for instance if f(x) = sin x, g(x) = π
2 , and h(x) = π

2 , where

(f ◦ (g + h))(x) = f(g(x) + h(x)) = f(π) = sin π = 0, while

((f ◦ g) + (f ◦ h))(x) = f(g(x)) + f(h(x)) = f
(
π

2

)
+ f

(
π

2

)
= sin π2 + sin π2 = 2.

Exercise 1.1.4: #24.14 @page : 125

Show that a ring has at most one unity.

Solution:

Assume that e1 and e2 are two unities for a ring R. Then,

e1 = e2e1 = e1e2 = e2.

Exercise 1.1.5: #24.15 @page : 125

Let E denote the set of even integers. Show that with the usual addition and with multipli-

cation defined by m ∗ n = 1
2mn, E is a commutative ring. Is there a unity.
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Solution:

Clearly, (E,+) is an abelian group since it is exactly (2Z,+). Moreover,

(a ∗ b) ∗ c =
(1

2ab
)
∗ c = 1

2

(1
2abc

)
= 1

2a
(1

2bc
)

= 1
2a(b ∗ c) = a ∗ (b ∗ c).

Further, a ∗ b = 1
2ab = 1

2ba = b ∗ a. Thus, ∗ is associative and commutative on E.

The left distribution law:

a ∗ (b+ c) = 1
2a(b+ c) = 1

2ab+ 1
2ac = (a ∗ b) + (a ∗ c).

The proof of the right distribution law is similar. Therefore, E is a commutative ring.

The unity is 2 since 2 ∗ a = 1
22a = a = 1

2a2 = a ∗ 2.

Exercise 1.1.6: #24.17 @page : 125

Show that (a+ b)2 = a2 + 2ab+ b2 for all a and b in a ring R iff R is commutative.

Solution:

Let a, b ∈ R (a ring). Then,

(a+ b)2 = (a+ b)(a+ b) = a2 + ab+ ba+ b2.

Observe that a2 + ab+ ba+ b2 = a2 + 2ab+ b2 iff ab = ba, that is R is commutative.

Exercise 1.1.7: #24.18 @page : 125

Show that if A is an abelian group with addition as the operation, and an operation ∗ is

defined on A by a ∗ b = 0 for all a, b ∈ A, then (A,+, ∗) is a commutative ring.

Solution:

Note that it is given that (A,+) is an abelian group. Let a, b, c ∈ A. Then

(a ∗ b) ∗ c = 0 ∗ c = 0 = a ∗ 0 = a ∗ (b ∗ c).

Thus, ∗ is associative on A. Further, a ∗ b = 0 = b ∗ a and hence ∗ is commutative on A.

a ∗ (b+ c) = 0 = 0 + 0 = (a ∗ b) + (a ∗ c).
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Thus, the left distribution law (and right distribution law as well) is satisfied. Hence A is a

commutative ring.
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Section 1.2: Subrings

Definition 1.2.1

A subset S of a ring R is called a subring of R if S itself is a ring with respect to the

operations of R.

For example, nZ is a subring of Z, even integer is a subring of Z. But the odd integer is not a

subring of Z. Moreover, the set {0, 2, 4} and {0, 3} are two subrings of Z6.

In general, if R is a ring, then {0} and R are two subrings of R.

Theorem 1.2.1

A subset S of a ring (R,+, ·) is a subring of R iff S satisfies the following conditions:

S1: S is not empty.

S2: if a, b ∈ S, then a− b ∈ S.

S3: if a, b ∈ S, then ab ∈ S.

or

S1: S is not empty.

S2: if a, b ∈ S, then a+ b, ab ∈ S.

S3: if a ∈ S, then −a ∈ S.

Proof:

”⇒ ”: Clearly if S is a subring of R, then the Conditions S1,S2, and S3 are satisfied.

” ⇐ ”: Assume that the Conditions S1,S2, and S3 are satisfied. Then + is associative and

commutative on S ⊆ R. Also · is associative on S ⊆ R. If a ∈ S (S 6= φ), then S2 implies

that a − a = 0 ∈ S. Then 0, a ∈ S implies that 0− a = (−a) ∈ S by S2. Therefore, S is an

abelian group under the addition and the multiplication is associative on S. We need further

to prove the distribution laws: But since the distribution laws hold in R, they hold in S as

well since S ⊆ R. Therefore, (S,+, ·) is a ring contained in R and hence it is a subring of R.

Example 1.2.1

Let F denote the ring of all functions f : R → R, where (f + g)(x) = f(x) + g(x) and

(fg)(x) = f(x)g(x) for all f, g ∈ F for each x ∈ R. Show that S = {f ∈ F : f(1) = 0} is a

subring of F .

Solution:

Clearly,
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1. The zero mapping OF(1) = 0 and hence OF ∈ S is not empty.

2. Let f, g ∈ S. Then f(1) = 0 = g(1) and hence (f − g)(1) = f(1) − g(1) = 0 − 0 = 0.

Thus, f − g ∈ S.

3. Let f, g ∈ S. Then f(1) = 0 = g(1) and hence (fg)(1) = f(1)g(1) = 0 · 0 = 0. Thus,

fg ∈ S.

Therefore, S is a subring of F .

Example 1.2.2

The center of a ring R is defined to be Z(R) = {x ∈ R : ax = xa for all a ∈ R}. Show that

Z(R) is a subring of R.

Solution:

1. 0R ∈ Z(R) since 0a = a0 = 0 for all a ∈ R. Thus Z(R) 6= φ.

2. Let x, y ∈ Z(R), then we have xa = ax and ya = ay for all a ∈ R. Hence (x − y)a =

xa− ya = ax− ay = a(x− y). That is, x− y ∈ Z(R).

3. Let x, y ∈ Z(R), then we have xa = ax and ya = ay for all a ∈ R. Hence (xy)a =

x(ya) = x(ay) = (xa)y = (ax)y = a(xy). That is, xy ∈ Z(R).

Therefore, Z(R) is a subring of R.
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Exercise 1.2.1

Decide whether S =


a b

0 c

 : a, b, c ∈ Z

 is a subring of M2(Z). How about T =
a b
c 0

 : a, b, c ∈ Z

?

Solution:

We simply prove the three conditions of Theorem 1.2.1.

1. Clearly,
0 0

0 0

 ∈ S and so S 6= φ.

2. If
a b

0 c

 ,
x y

0 z

 ∈ S, then

a b
0 c

−
x y

0 z

 =
a− x b− y

0 c− z

 ∈ S.

3. If
a b

0 c

 ,
x y

0 z

 ∈ S, then

a b
0 c

x y
0 z

 =
ax ay + bz

0 cz

 ∈ S.
Therefore, S is a subring of M2(Z).

However,
a b
c 0

 ,
x y
z 0

 ∈ T , while
a b
c 0

 ,
x y
z 0

 =
ax+ bz ay

cx cy

 6∈ T . Thus, T is

not a subring of M2(Z).

Exercise 1.2.2

Decide whether S =


 a a+ 2b
a+ 2b b

 : a, b ∈ Z

 is a subring of M2(Z).

Solution:

If a = 1, b = 0 ∈ Z, then clearly S is not a subring of M2(Z), as1 1
1 0

 ∈ S while
1 1

1 0

1 1
1 0

 =
2 1

1 1

 6∈ S.
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Exercise 1.2.3

Show that S =


 a b
−b a

 : a, b ∈ R

 is a subring of M2(R). Try to get back to this problem

(after the isomorphism section) to show that S ≈ C.

Solution:

Exercise 1.2.4

Prove that if C denotes any collection of subrings of a ring R, then the intersection of all of

the rings in C is also a subring of R. What about the union of subrings of R?

Solution:

Let C = {S1, S2, · · · , Sk} be a collection of subrings of R, for some k ∈ N, and let S =
k⋂
i=1

Si.

1. All subrings in C contains 0R and hence the intersection of subrings is not empty.

2. Let x and y be elements in S. Then x, y ∈ Si and hence x− y ∈ Si for all i. Therefore,

x− y ∈ S.

3. Let x and y be elements in S. Then x, y ∈ Si and hence xy ∈ Si for all i. Therefore,

xy ∈ S.

Therefore, S is a subring of R.

On the other hand, the union is not a subring of R. For instance, 2Z and 3Z are both subrings

of Z. 2, 3 ∈ 2Z ∪ 3Z however 3− 2 = 1 6∈ 2Z ∪ 3Z.
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Section 1.3: Integral Domains

Note that, in the usual system of numbers, if ab = 0, then we conclude that either a = 0 or b = 0.

This is not the case, in general, in rings.

Definition 1.3.1

Let R be a ring, and let a ∈ R. Then

• If a 6= 0, then a is called a zero divisor (or divisor of zero), if there exists 0 6= b ∈ R

such that ab = 0.

• If R has a unity, then a is called a unit if it has a multiplicative inverse in R.

For example, Z has no zero divisors, while [2] and [3] are two zero divisors in Z6.

Theorem 1.3.1

In the ring Zn, the zero divisors are precisely those elements that are not coprime to n.

Proof:

Let 0 6= m ∈ Zn, and let (m,n) = d 6= 1. Then m
(
n
d

)
=
(
m
d

)
n = 0 as

(
m
d

)
n is a multiple of

n. Thus, m
(
n
d

)
= 0 in Zn, while m, n

d
6= 0. Thus, m is a zero divisor in Zn.

On the other hand, let m ∈ Zn with (m,n) = 1. If for s ∈ Zn, ms = 0, then n | ms. But

since (m,n) = 1, we have n | s and hence s = 0 in Zn.

Corollary 1.3.1

If p is a prime, then Zp has no zero divisors.

As an example, the zero divisors in Z12 are S = {2, 3, 4, 6, 8, 9, 10} since (12, i) 6= 1 for any i ∈ S.

Furthermore, 1, 5, 7, and 11 are units in Z12.

Definition 1.3.2

A commutative ring D with unity e 6= 0 and no zero divisors is called an integral domain.

Consequently, the set of nonzero elements in D is closed under multiplication.
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Example 1.3.1

• Z,Q,R, and C are integral domains.

• 2Z has no unity and hence it is not an integral domain.

• Z6 has [2] and [3] as zero divisors and hence Z6 is not an integral domain.

• M2(R) is not an integral domain as it is not commutative. Moreover, M2(R) has zero

divisors such as
0 0

1 0

 and
0 0

0 1

, since
0 0

1 0

0 0
0 1

 =
0 0

0 0

.

Theorem 1.3.2

Let D be a commutative ring with unity e 6= 0, and let a, b, c ∈ D. Then D is an integral

domain iff a 6= 0, and ab = ac implies b = c. That is, D is an integral domain iff the

cancellation laws hold.

Proof:

” ⇒ ”: Assume that D is an integral domain. Then D has no zero divisors and hence for

a 6= 0, ab = ac implies ab − ac = a(b − c) = 0 which impies that b − c = 0. That is b = c.

Thus the left cancellation law holds (similarly, we can use right cancellation law).

” ⇐ ”: Assume that the left cancellation law holds in D. Then we only need to show that

D has no zero divisors. Assume that a 6= 0 and ab = 0. Then ab = 0 = a0. By the left

cancellation law, b = 0. Thus D has no zero diviros and hence it is an integral domain.

Remark 1.3.1

An integral domain is a commutative ring with unity e 6= 0 satisfying the cancellation laws.

Theorem 1.3.3

Zp is an integral domain iff p is prime.

Proof:

” ⇒ ”: By contrapositive, assume that p is not a prime. Then there are a, b ∈ Zp so that

ab = p where 1 ≤ a, b < p. That is [a][b] = [ab] = [p] = [0]. Thus [a] and [b] are zero divisors

in Zp and hence Zp is not an integral domain. Which is not the case.

” ⇐ ”: Assume that p is a prime. Then we can simply use Corollary 1.3.1 to prove the
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statement. Or: If [a][b] = [ab] = [0] in Zp, then p | ab. As p is prime, we have p | a or p | b

(or both). Thus, either [a]p = [0]p or [b]p = [0]p (or both). Therefore, Zp has no zero divisors

and thus it is an integral domain.

Theorem 1.3.4

Let S be a subring of a ring R. Then if R is an integral domain, then so is S.

Proof:

Since S is contained in R, if S has zero divisors, then so is R. Contradiction.

Example 1.3.2

Show that Z
(√

2
)

=
{
a+ b

√
2 : a, b ∈ Z

}
is an integral domain.

Solution:

Z
(√

2
)

is an integral domain since it is a subring of R which is an integral domain.

Example 1.3.3

Let F denote the ring of all functions f : R → R, where (f + g)(x) = f(x) + g(x) and

(fg)(x) = f(x)g(x) for all f, g ∈ F for each x ∈ R. Show that F is not an integral domain.

Solution:

Let f, g ∈ F defined by

f(x) =


1, if x = 0

0, otherwise
, and g(x) =


1, for x = 1

0, otherwise

Then, f(x)g(x) = 0 for all x, yet f(x) 6= O(x) 6= g(x). Thus F is not an integral domain.

Example 1.3.4

Describe the units in Z, Z× Z, Q, and in Z4 and Z5.
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Example 1.3.5

Show that a zero divisor a in a commutative ring R with unity can have no multiplicative

inverse.

Solution:

Let a ∈ R be a zero divisor. Then there is b ∈ R such that b 6= 0 and ab = 0. Assume that

a−1 exists in R, then a−1ab = a−10 = 0, and hence b = 0 which is not the case. Thus a−1

does not exist.

Example 1.3.6

Show that D =
1 2

2 4

 is a zero divisor in M2(Z).

Solution:

Simply find a matrix A =
a b
c d

 such that AD = 0 or DA = 0. Thus, if A =
 2 0
−1 0

, we

have DA = 0.

Example 1.3.7

Solve the equation x2 + x = 0 in Z5.

Solution:

Clearly, x2 + x = x(x + 1) = 0. So trying all elements in Z5 = {0, 1, 2, 3 = −2, 4 = −1}, we

get x2 + x = 0 only for x = 0 and x = 4.

Example 1.3.8

Solve the equation x2 − 3 = 0 in Z5.

Solution:

Simply trying all possibility of x : 0, 1, 2,−1,−2 we get no solution.
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Example 1.3.9

Solve the equation x2 + 3x+ 3 = 0 in Z7.

Solution:

Note that x2 + 3x + 3 = x2 − 4x + 3 = (x − 1)(x − 3) = 0. Then trying all possibilities of

x : 0, 1, 2, 3,−3,−2,−1, we only get x = 1 and x = 3 as the solutions.
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Exercise 1.3.1

Solve the equation x2 − 4 = 0 in Z5.

Solution:

Note that x2 − 4 = (x − 2)(x + 2) = 0. Then trying all possibilities of x : 0, 1, 2,−2,−1, we

only get x = 2 and x = 3 as the solutions.

Exercise 1.3.2

Solve the equation x2 + 2x+ 4 = 0 in Z6.

Solution:

Trying all possibilities of x : 0, 1, 2, 3,−2,−1, we only get x = 2 as the only solution.

Exercise 1.3.3

Let p be a prime. Show that in the ring Zp, we have (a+ b)p = ap + bp for all a, b ∈ Zp.

Solution:

Using the binomial expansion, we get

(a+ b)p =
p∑
i=0

(
p

i

)
ai bp−i.

Not that the coefficients
(
p
i

)
are all multiples of p for 1 ≤ i ≤ p − 1. Hence

(
p
i

)
= 0 for all

i = 1, 2, · · · , p− 1. Therefore the only terms in the expansion whose coefficient is nonzero are

ap and bp with coefficients
(
p
0

)
=
(
p
p

)
= 1.
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Section 1.4: Fields

Definition 1.4.1

Let R be a ring with unity e 6= 0.

• An element a ∈ R with the property a2 = a is called an idempotent.

• If an = 0, for some n ∈ Z+, then a is called a nilpotent .

• If every nonzero elements of R is a unit, then R is called a division ring.

• A commutative division ring is called a field.

• A noncommutative division ring is called a skew field.

Remark 1.4.1

(F,+, ·) is a field if: (F,+) is an abelian group with identity 0, (F ∗, ·) is an abelian group

with identity e and the distribution law a(b+ c) = ab+ ac holds for all a, b, c ∈ F .

Example 1.4.1

Show that a division ring contains exactly two idempotent elements.

Solution:

Since R is a division ring, e ∈ R. Then a2 = a implies that a2−a = a(a− e) = 0. Thus a = 0

(and hence a2 = 0) or a = e (and hence a2 = e).

Example 1.4.2

Let R be a commutative ring. Show that if a and b are nilpotent elements in R, then so is

a+ b.

Solution:

We have an = 0 and bm = 0 for some n,m ∈ Z+. Hence, using the binomial expansion (valid

in commutative rings), we have

(a+ b)m+n =
m+n∑
i=0

(
m+ n

i

)
ai bm+n−i.

Thus, if i ≥ n, we get ai = 0. Otherwise, if i < n, then m+ n− i > m and hence bm+n−i = 0.
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Therefore, the terms of the sum are all zero.

Example 1.4.3

Let R be a commutative ring. Show that the set of all idempotent elements in R is closed

under multiplication.

Solution:

Let a, b ∈ R be two idempotents. Then a2 = a and b2 = b. Hence

(ab)2 = abab = aabb = a2b2 = ab.

Example 1.4.4

(Z,+, ·) is not a field since for instance 2 has no multiplicative inverse in Z. However, Q, R,

and C are fields since each nonzero element a has its multiplicative inverse 1
a
.

Note that an integral domain (R,+, ·) has no zero divisors and hence its set of nonzero elements,

say S, is closed under multiplication. Also, multiplication is associative on S since S ⊆ R. R has its

unity e 6= 0 and hence e ∈ S. Therefore, (S, ·) is a group unless there is a ∈ S which is not a unit.

Fields ⊂ integral domains ⊂ commutative rings ⊂ rings.

Theorem 1.4.1

Every field F is an integral domain.

Proof:

Let a, b ∈ F and suppose that a 6= 0. Then if ab = 0, we have a−1(ab) = a−10 = 0 which

implies that b = 0. Thus, there is no zero divisors in F and hence it is an integral domain.

Theorem 1.4.2

Every finite integral domain D is a field.

Proof:
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We show that every nonzero element in D is a unit. Let 0 6= a ∈ D, define a mapping

f : D → D by f(x) = ax. We now show that f is onto which implies that for e ∈ D, there

is b ∈ D such that f(b) = ab = e. But since D is finite, f is onto iff f is one-to-one. For any

x, y ∈ D, f(x) = f(y) implies ax = ay which implies that x = y (by left cancellation law).

Thus, f is onto and there is b ∈ D such that ab = e. Therefore, each nonzero element in D

is a unit and hence D is a field.

Theorem 1.4.3

Zp is a field iff p is a prime.

Proof:

If Zp is a field, then it is an integral domain (by Theorem 1.4.1) and hence p is prime by

Theorem 1.3.3. On the other hand, if p is a prime, then Zp is an integral domain by Theorem

1.3.3. Since Zp is finite, Theorem 1.4.2 implies that Zp is a field.

Proof 2:

This is another proof of the same statement. ” ⇒ ”: By contrapositive: Assume that p ≥ 2

is not a prime. Then we can write p = rq with r, q ≥ 2. Hence in Zp, we have [r][q] = [rq] =

[p] = [0]. Thus, Zp is not a field which is not the case.

”⇐ ”: Assume that p is a prime. Let m ∈ Zp = {0, 1, · · · , p− 1} with no inverse. Then none

of the numbers m0,m1, · · · ,m(p − 1) is 1. So this list must contains two equal numbers in

Zp. Hence we have mi ≡ mj (mod p) which implies m(i− j) ≡ 0 (mod p) for some i and j

with 0 < i − j < p. Therefore, one of i − j or m is a multiple of p. Since 0 < i − j < p, we

get m is a multiple of p. Thus, m = 0 in Zp and the only element in Zp with no inverse is the

zero element. That is Zp is a field.

Definition 1.4.2

A subset S of a field F is a subfield of F if S itself is a field with respect to the operations

on F .
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Theorem 1.4.4

A subset K of a field F is a subfield of F iff the following conditions hold:

1. K contains the zero and unity of F ,

2. if a, b ∈ K, then ab, a− b ∈ K, and

3. if 0 6= a ∈ K, then a−1 ∈ K.

Proof:

”⇒ ”: If K is a field, then clearly the conditions are satisfied.

” ⇐ ”: Assume that K is a subset of F satisfying the three conditions. Then, K is clearly

closed under addition and multiplication. Moreover, + is associative and commutative on F

and hence on K. If a ∈ K, then 0− a = −a ∈ K and hence (K,+) is an abelian group. Also

· is associative and commutative on F and hence on K. Further the distribution laws hold

for F and hence for K. Thus, (K,+, ·) is a commutative ring. By definition, F has no zero

divisors and hence K has none as well. The last condition implies that each nonzero element

of K has an inverse. Therefore, K is a field.

Example 1.4.5

Consider the integral domain Z
(√

2
)

=
{
a+ b

√
2 : a, b ∈ Z

}
.

1. Compute (−2 +
√

2)−1 in Z
(√

2
)
.

2. Is Z
(√

2
)

a field? Explain.

3. Is Q
(√

2
)

=
{
a+ b

√
2 : a, b ∈ Q

}
a field? Explain.

Solution:

1. Consider
(
−2 +

√
2
)(
a+ b

√
2
)

= 1 + 0
√

2 (the unity of Z
(√

2
)
). Thus, −2a + 2b = 1

and a− 2b = 0 which implies that a = −1 and b = −1
2 . Therefore,

(−2 +
√

2)−1 =
(
−1− 1

2
√

2
)
6∈ Z

(√
2
)
.

2. Clearly Z
(√

2
)

is not a field as
(
−2 +

√
2
)

has no inverse in Z
(√

2
)
.

3. Yes. The unity is 1 and the inverse of a nonzero element a+ b
√

2 is computed as(
a+ b

√
2
)−1

= 1
a+ b

√
2

= 1
a+ b

√
2
· a− b

√
2

a− b
√

2
= a

a2 − 2b2 + −b
a2 − 2b2

√
2,

which is indeed in Q
(√

2
)
.
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Section 1.5: Isomorphism

Definition 1.5.1

Let R and S be two rings. A mapping θ : R → S is a ring homomorphism if for all

a, b ∈ R, we have:

1. θ(a+ b) = θ(a) + θ(b), and

2. θ(ab) = θ(a)θ(b).

Note that the operation a+ b and ab are both in R while θ(a) + θ(b) and θ(a)θ(b) are in S.

Remark 1.5.1

The trivial homomorphism is φ0 : R→ S defined by φ0(r) = 0S for all r ∈ R.

Definition 1.5.2

An isomorphism of a ring R onto a ring S is a mapping θ : R→ S that is a bijection (one-

to-one and onto) and a homomorphism. In that case, we say that R and S are isomorphic

rings denoted R ≈ S.

Example 1.5.1

Show that if R and S are two rings, θ : R → S is an isomorphism, and e is the unity of R,

then θ(e) is the unity of S.

Solution:

Let b ∈ S. Then there is a ∈ R with θ(a) = b. Then, b = θ(a) = θ(ae) = θ(a)θ(e) = bθ(e). In

a similar way, we can prove that b = θ(e)b. Therefore, θ(e) is the unity of S.

Example 1.5.2

Show that Z 6≈ 2Z.

Solution:

Clearly, 1 is the unity in Z while 2Z has no unity.
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Remark 1.5.2

In order to show that two rings are isomorphic, we find an isomorphism mapping from one

to the other.

On the other hand, to show that two rings are not isomorphic, it is enough to find a property

that is preserved by isomorphism and in the same time the two rings do not share it. Examples

for such properties are commutativity, existance of unity, and some other properties we will

introduce later.

Example 1.5.3

Let θ : Z→ 2Z be defined by θ(a) = 2a. Show that θ is not a ring homomorphism.

Solution:

Note that for a, b ∈ Z, we have θ(a+ b) = 2(a+ b) = 2a+ 2b = θ(a) + θ(b). However,

θ(ab) = 2(ab) = 2ab 6= θ(a)θ(b) = 2a 2b = 4ab.

Thus, θ is not homomorphism.

Definition 1.5.3

Let R be a ring. If there is a positive integer n such that na = 0 for each a ∈ R, then the least

such integer is called the characteristic of R. Otherwise, R is said to have characteristic 0.

Theorem 1.5.1

Isomorphism relation on the calss of all rings is an equivalence relation.

Remark 1.5.3

Rings (unity e): Z,Q,R,C (e = 1), Zn (e = [1]), Z×Zn (e = (1, [1])), M2(R) (e = I2). While

the rings: 2Z, 3Z, 2Z×Q are examples of rings with no unity.
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Theorem 1.5.2

Show that Zmn ≈ Zm × Zn iff (m,n) = 1.

Proof:

”⇒ ”: Assume that (m,n) = d > 1. Then mn
d
< mn and it is a multiple of both m and n (it

is the least common multiple). Consider (r, s) ∈ Zm × Zn, then

mn

d
(r, s) =

(
n

d
mr,

m

d
ns
)

= (0, 0).

Thus, all elements of Zm × Zn have order less than mn (the order of the group), so none can

be a generator for Zm × Zn. Contradiction.

” ⇐ ”: Define θ : Zmn → Zm × Zn by θ([a]mn) = ([a]m, [a]n). We show that θ is an

isomorphism:

• θ is a ring homomorphism: Let [a]mn, [b]mn ∈ Zmn. Then

θ([a]mn + [b]mn) = θ([a+ b]mn) = ([a+ b]m, [a+ b]n)

= ([a]m + [b]m, [a]n + [b]n) = ([a]m, [a]n) + ([b]m, [b]n)

= θ([a]mn) + θ([a]mn),

and

θ([a]mn[b]mn) = θ([ab]mn) = ([ab]m, [ab]n)

= ([a]m[b]m, [a]n[b]n) = ([a]m, [a]n)([b]m, [b]n)

= θ([a]mn)θ([b]mn),

Thus, θ is a homomorphism.

• θ is a bijection: We first show that θ is one-to-one: Suppose that θ([a]mn) = θ([b]mn), then

([a]m, [a]n) = ([b]m, [b]n). That is, a ≡ b (mod m) and a ≡ b (mod n) and hence m | a− b

and n | a− b. But since (m,n) = 1, then mn | a− b. That is, a ≡ b (mod mn). Thus,

[a]mn = [b]mn. Therefore, θ is one-to-one. Note that θ is then a bijection since it is a mapping

from a finite set to a same (finite) size set.

Therefore, θ is an isomorphism and hence Zmn ≈ Zm × Zn.
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Example 1.5.4: #27.3 @page : 134

Prove that if R and S are isomorphic rings and R is an integral domain, then S is an integral

domain as well.

Solution:

Let θ : R→ S be an isomorphism and R be an integral domain. Then R has no zero divisors

and θ(0R) = 0S since θ is a homomorphism. Let x, y ∈ S with x 6= 0 and xy = 0. Then there

are a, b ∈ R such that θ(a) = x and θ(b) = y (θ is onto). Thus,

xy = θ(a)θ(b) = θ(ab) = 0S.

Thus, ab = 0R. Since R has no zero divisors, a = 0 or b = 0. but a 6= 0R since θ(a) = x 6= 0.

Thus, b = 0R and hence θ(b) = θ(0R) = 0S = y. Thus S has no zero divisors. Moreover S is

commutative ring with unity θ(eR). Therefore, S is an integral domain.

Example 1.5.5: #27.15 @page : 135

Prove that if R and S are isomorphic rings, then their characteristic are equal.

Solution:

Let θ : R → S be an isomorphism and assume that char(R) = m. Then for any r ∈ R,

mr = 0R. For x ∈ S, there is a ∈ R such that θ(a) = x (θ is onto). Thus,

mx = mθ(a) = θ(ma) = θ(0R) = 0S.

Hence mx = 0S and thus char(S) = m.
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Exercise 1.5.1: #27.2 @page : 134

Prove that if R and S are isomorphic rings and R is commutative, then S is commutative as

well.

Solution:

Let θ : R→ S be an isomorphism and R be commutative. For any x, y ∈ S, there are a, b ∈ R

such that θ(a) = x and θb = y (θ is onto). Thus,

xy = θ(a)θ(b) = θ(ab) = θ(ba) = θ(b)θ(a) = yx.

Hence S is commutative.

Exercise 1.5.2: #27.4 @page : 134

Prove that if R and S are isomorphic rings and R is a field, then S is a field as well.

Solution:

Let θ : R→ S be an isomorphism and R be a field. Then R is an integral domain and hence

S is an integral domain as well. So we need to show that every nonzero element in S is a

unit.

Let 0 6= x ∈ S, then there is 0 6= a ∈ R such that θ(a) = x (θ is onto). Thus a−1 ∈ R (R is a

field). Thus θ(a−1) = θ(a)−1 = x−1 ∈ S. Therefore, S is a field.

Exercise 1.5.3: #27.9 @page : 135

Prove that if R and S are fields, θ : R → S is an isomorphism, and a ∈ R, a 6= 0, then

θ(a−1) = θ(a)−1.

Solution:

Let 0 6= a ∈ R. Then aa−1 = eR implies θ(aa−1) = θ(eR) = eS. But since θ is a homomor-

phism,

θ(aa−1) = θ(a)θ(a−1) = eS.

That is θ(a−1) = θ(a)−1.
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Exercise 1.5.4: #27.23 @page : 135

Let R =
{
a+ b

√
2 : a, b ∈ Q

}
and S =

{
a+ b

√
3 : a, b ∈ Q

}
be two subfields of R. Verify

that θ : R→ S defined by θ
(
a+ b

√
2
)

= a+b
√

3 is not a ring isomorphism (homomorphism).

Solution:

Clearly,

θ
(
a+ b

√
2
)
θ
(
c+ d

√
2
)

=
(
a+ b

√
3
)(
c+ d

√
3
)

= (ac+ 3bd) + (ad+ bc)
√

3,

which is not equal to

θ
[(
a+ b

√
2
)(
c+ d

√
2
)]

= θ
[
(ac+ 2bd) + (ad+ bc)

√
2
]

= (ac+ 2bd) + (ad+ bc)
√

3.
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Section 1.6: The Field of Quotients of Integral Domain

Recall that an integral domain (e.g. Z) is not a field (e.g. Q) if it has an element with no multiplicative

inverse (e.g. 2 in Z).

In this section, we construct (show how) that every integral domain can be regarded as being

contained in a certain (minimal) field, a field of quotients of the integral domain.

The construction procedure of a field of quotient of an integral domain is exactly the same as the

construction of the rational numbers (field) from the integer numbers (integral domain).

? The Construction

Let D be an integral domain that we desire to enlarge to a field of quotient F .

• Step #1: Elements of F :

Let D be a given integral domain and consider D×D = {(a, b) : a, b ∈ D}. Here (a, b) is representing

a/b. That is if D = Z, (2, 3) represents 2
3 . Let S ⊆ D ×D∗ given by S = {(a, b) : a, b ∈ D, b 6= 0}.

This is to ensure that elements like (2, 0) is not in F . But then (2, 3) and (4, 6) are representing the

same element in S.

Definition 1.6.1

Two elements (a, b) and (c, d) in S = {(x, y) ∈ D ×D∗} are said to be equivalent, denoted

(a, b) ∼ (c, d), iff ad = bc.

Lemma 1.6.1

The relation ∼ on S ⊆ D ×D∗ is an equivalence relation.

Proof:

• reflexive: Clearly (a, b) ∼ (a, b) since ab = ba as D is a commutative ring.

• symmetric: Let (a, b) ∼ (c, d) in S. Then ad = bc and hence cb = da which implies

(c, d) ∼ (a, b). Thus (c, d) ∼ (a, b).
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• transitive: Let (a, b) ∼ (c, d) and (c, d) ∼ (m,n) in S. Then ad = bc and cn = dm.

Thus

(an)d = (ad)n = (bc)n = b(cn) = b(dm) = (bm)d.

Since d ∈ D∗, we conclude that an = bm and hence (a, b) ∼ (m,n).

Therefore, ∼ is an equivalence relation on S.

We remark that [(a, b)] denotes the equivalence class of (a, b) in S. Then, F = {[(a, b)] : (a, b) ∈ S}.

That is if D = Z, then [(a, b)] is viewed as
(
a
b

)
∈ Q.

• Step #2: Binary operations + and · on F :

Lemma 1.6.2

Let [(a, b)] and [(c, d)] be any two elements in F , then the equations

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] and [(a, b)][(c, d)] = [(ac, bd)],

are well defined operations of addition and multiplication on F .

• Step #3: F is a field:

1. Additive in F is commutative: Clearly

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] = [(cb+ da, db)] = [(c, d)] + [(a, b)]

2. Additive in F is associative: Clearly

([(a, b)] + [(c, d)]) + [(m,n)] = [(ad+ bc, bd)] + [(m,n)] = [((ad+ bc)n+ (bd)m, (bd)n)]

= [(a(dn) + b(cn+ dm), b(dn))] = [(a, b)][(cn+ dm, dn)]

= [(a, b)] + ([(c, d)] + [(m,n)]).

3. 0 = [(0, 1)] is the additive zero in F : Clearly [(a, b)] + [(0, 1)] = [(a, b)] = [(0, 1)] + [(a, b)].

4. [(a, b)]−1 = [(−a, b)] in F : Clearly [(a, b)]+[(−a, b)] = [(ab− ab, b2)] = [(0, b2)], where [(0, b2)] =

[(0, 1)] as equivalence classes.
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Therefore, (F,+) is an abelian group.

Example 1.6.1

Show that in F , we have [(a,−b)] = [(−a, b)].

Solution:

We simply show that (a,−b) ∼ (−a, b). But this is true since ab = (−a)(−b).

5. Multiplication is associative on F : Clearly

([(a, b)][(c, d)])[(m,n)] = [(ac, bd)][(m,n)] = [((ac)m, (bd)n)]

= [(a(cm), b(dn))] = [(a, b)][(cm, dn)] = [(a, b)]([(c, d)][(m,n)]).

6. Distribution laws are hold in F : Clearly (FOR YOU)

[(a, b)]([(c, d)] + [(m,n)]) = [(a, b)][(c, d)] + [(a, b)][(m,n)].

By commutativity, the right distribution law holds as well.

7. Multiplication in F is commutative: Clearly

[(a, b)][(c, d)] = [(ac, bd)] = [(ca, db)] = [(c, d)][(a, b)].

Therefore, (F,+, ·) is a commutative ring.

8. e = [(1, 1)] is the unity in F : Clearly

[(a, b)][(1, 1)] = [(a, b)] = [(1, 1)][(a, b)].

9. For each 0 6= [(a, b)] ∈ F , we have [(a, b)]−1 = [(b, a)]: If 0 6= [(a, b)] ∈ F , then [(a, b)] 6=

[(0, 1)]. That is a, b 6= 0. Then

[(a, b)][(b, a)] = [(ab, ab)] = [(1, 1)].

Therefore, F is a field.

• Step #4: F contains a subdomain isomorphic to (integral domain) D:
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Theorem 1.6.1

The map θ : D → F given by θ(a) = [(a, 1)] is an isomorphism of D onto a subdomain of F ,

namely θ(D).

Proof:

Clearly, θ(a + b) = [(a+ b, 1)] = [(a · 1 + 1 · b, 1)] = [(a, 1)] + [(b, 1)] = θ(a) + θ(b) and

θ(ab) = [(ab, 1)] = [(a, 1)][(b, 1)] = θ(a)θ(b). Thus θ is a homomorphism onto θ(D) (the onto

part is clear by the definition of θ(D)).

To show that θ is 1-1, we assume that θ(a) = θ(b) which implies that [(a, 1)] = [(b, 1)]. That

is (a, 1) ∼ (b, 1) which implies that a · 1 = b · 1. Thus a = b and hence θ is 1-1 and therefore

it is an isomorphism.

Theorem 1.6.2: Uniqueness

If D is an integral domain, then there exists a field F , the field of qoutients of D, such that:

1. F contains an integral domain isomorphic to D.

2. If K is any field containing an integral domain isomorphic to D, then K contains a field

isomorphic to F .

Note that we say that an integral domain D can be embedded (or enlarged) to a field F . This

field is the field of quotients of D.

Example 1.6.2

Describe the field of quotients F of the integral domain D = {a+ bi : a, b ∈ Z} of C. ”De-

scribe” here means give the elements of C that make up the field F .

Solution:

The field of quotients of D (elements of F is then (a + bi, c + di) ∈ D × D∗) will be of the

field containing all complex number of the form a+ bi

c+ di
for a, b, c, d ∈ Z. Thus,

a+ bi

c+ di
· c− di
c− di

= (a+ bi)(c− di)
c2 + d2 .

Since c2 +d2 ∈ Z, then the complex number reduces to one of the form x+ yi where x, y ∈ Q.

Thus F = {x+ yi : x, y ∈ Q}.
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Example 1.6.3

Describe the field of quotients F of the integral domain D =
{
a+ b

√
2 : a, b ∈ Z

}
of R.

”Describe” here means give the elements of R that make up the field F .

Solution:

Looking for elements of the form a+ b
√

2
c+ d

√
2

where a, b, c, d ∈ Z. Thus

a+ b
√

2
c+ d

√
2

· c− d
√

2
c− d

√
2

=

(
a+ b

√
2
)(
c− d

√
2
)

c2 − 2d2 .

Since c2 − 2d2 ∈ Z∗, we get F =
{
x+ y

√
2 : x, y ∈ Q

}
.
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Section 1.7: Fermat’s and Euler’s Theorem

Math-261

Recall: (Z∗p,�) is a group off p is a prime. Note that Z∗p = {1, 2, · · · , p− 1} with
∣∣∣Z∗p ∣∣∣ = p−1.

Moreover, the order of element a in a group G is the smallest positive integer n such that

an = e (if such n exists).

Theorem 1.7.1: Fermat’s Little Theorem

Assume that p is a prime. If p - a, then ap−1 ≡ 1 (mod p).

Corollary 1.7.1

Assume that p is a prime. For all a ∈ Z, ap ≡ a (mod p).

Example 1.7.1

Find x if 214 ≡ x (mod 7).

Solution:

By Fermat’s Little Theorem, 26 ≡ 1 (mod 7). Thus 214 = ((26)2)22 ≡ 12 · 4 ≡ 4 (mod 7).

Example 1.7.2

Find x if 8103 ≡ x (mod 13).

Solution:

Note that 8103 = (23)103 = 2309, and 309 = 12 · 25 + 9. Thus,

8103 = 2309 = (212)25 · 29 ≡ 125 · (24)2 · 2 ≡ 32 · 2 ≡ 18 ≡ 5 (mod 13).

Example 1.7.3

Show that 211,213 − 1 is not divisible by 11.

Solution:
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We simply show that 211,213 − 1 6≡ 0 (mod 11), or that 211,213 6≡ 1 (mod 11). Note that

11, 213 = 10 · 1, 121 + 3. Thus

211,213 − 1 = (210)1,121 · 23 − 1 ≡ 11,121 · 8− 1 ≡ 7 (mod 11) 6≡ 0 (mod 11).

Definition 1.7.1

Let n be a positive integer. Let φ(n) be defined as the number of positive integers less than

n and relatively prime to n.

Remark 1.7.1

By Theorem 1.3.1, φ(n) is the number of elements in Zn that are not zero divisors. It is called

the ”Euler phi-function”.

Definition 1.7.2

Let Gn denote the set of nonzero elements of Zn that are not zero divisors. That is Gn =

{k : 1 ≤ k < n and (k, n) = 1}.

Theorem 1.7.2

For n > 1, (Gn, ·) is a group and |Gn | = φ(n).

Math-261

Recall: φ(p) = p−1 for any prime number p. For any positive integer n, with n = pe1
1 p

e2
2 · · · pekk

where pe1
1 < pe2

2 < · · · < pekk are primes and e1, e2, · · · , ek are positive integer, we have

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

Example 1.7.4

Compute φ(10) and φ(40).

Solution:
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Note that 10 = (2)(5) and 40 = (23)(5). Thus

φ(10) = 10
(

1− 1
2

)(
1− 1

5

)
= 10

(1
2

)(4
5

)
= 4 , and

φ(40) = 40
(

1− 1
2

)(
1− 1

5

)
= 40

(1
2

)(4
5

)
= 16 , and

Theorem 1.7.3

If a ∈ Gn, then aφ(n) − 1 is divisible by n. That is if (a, n) = 1 and 1 ≤ a < n, then

aφ(n) ≡ 1 (mod n).

Example 1.7.5

Find x for 74 ≡ x (mod 12).

Solution:

Note that 12 is not a prime, but (7, 12) = 1. Hence 7φ(12) ≡ 1 (mod 12). But, φ(12) =

12
(
1− 1

2

)(
1− 1

3

)
= 4. Therefore, 7φ(12) ≡ 1 (mod 12) and hence x = 1.

Example 1.7.6

Solve the equation: 1723 ≡ x (mod 12).

Solution:

Clearly 17 ≡ 5 (mod 12). Thus, we consider 523 ≡ x (mod 12). Note that 12 is not a prime,

but (5, 12) = 1 and by Euler’s Theorem, 5φ(12) ≡ 54 ≡ 1 (mod 12). Thus,

523 ≡
(
520
)(

53
)
≡
(
54
)5(

53
)
≡ 1 · 25 · 51 ≡ 1 · 5 ≡ 5 (mod 12).

Thus, x = 5.

Example 1.7.7

Use Fermat’s Little Theorem to find the remainder of 347 when it is divisible by 23.

Solution:
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347 ≡
(
322
)2
· 3312 · 27 ≡ 4 (mod 23).
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Chapter

Ring of Polynomials

Section 2.1: Polynomials

Definition 2.1.1

Let R be a ring. A polynomial, f(x), in indeterminate x over R is an expression
∞∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n + · · · , (2.1.1)

where ai ∈ R and ai = 0 for all but a finite number of values of i. The set of all polynomials

in x over R will be denoted by R[x].

The ai are the coefficients of f(x). The degree of f(x) is the largest value of i for which

ai 6= 0. If all ai = 0, then the degree of f(x) is undefined, and f(x) is the zero element of R.

An element of R of degree 0 is a constant polynomial, f(x) = a ∈ R.

Remark 2.1.1

For simplicity, if ai = 0 for all i > n, then we write

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, (2.1.2)

and omit all terms 0xk for any k > n. In that case, we say that an is the leading coefficient

of f(x). If furthermore an = 1, we say that f(x) is a monic polynomial. For instance,

x3 − x+ 1, 1 + 4x2, 5, 2 + x are all examples of polynomials.

Definition 2.1.1: Operation for R[x]

For m,n ≥ 0, let f(x) = a0 + a1x+ · · ·+ anx
n, g(x) = b0 + b1x+ · · ·+ bmx

m be two elements

in R[x] for some ring R. Then for addition, we have:

f(x) + g(x) = c0 + c1x+ c2x
2 + · · ·+ ckx

k,

where k = maximum(n,m), and ci = ai + bi. For multiplication, we have:

f(x)g(x) = c0 + c1x+ c2x
2 + · · ·+ ckx

k,

45
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where k = n + m and ci = a0bi + a1bi−1 + a2bi−2 + · · ·+ aib0 =
i∑

j=0
ajbi−j. Note that if R is

not commutative, we get
i∑

j=0
ajbi−j 6=

i∑
j=0

bjai−j.

Example 2.1.1

Compute f(x) + g(x) and f(x)g(x) in what follows:

1. f(x) = x2 + 1 and g(x) = x+ 3 in R[x].

2. f(x) = 2 + 2x and g(x) = 2 + 3x− x2 in Z4[x].

Solution:

1. • f(x) + g(x) = (1 + 3) + (0 + 1)x+ (1 + 0)x2 = 4 + x+ x2.

•

f(x)g(x) = (1 + 0 · x+ 1 · x2)(3 + 1 · x)

= (1)(3) + [(1)(1) + (0)(3)]x+ [(1)(0) + (0)(1) + (1)(3)]x2

+ [(1)(0) + (0)(0) + (1)(1) + (0)(3)]x3

= 3 + x+ 3x2 + x3.

2. • f(x) + g(x) = 4 + 5x− x2 = 0 + x+ 3x2 = x+ 3x2.

• f(x)g(x) = 4 + (6 + 4)x+ (−2 + 6)x2 + (−2)x3 = 2x+ 2x3.

Theorem 2.1.1

The set R[x], polynomial rings, is a ring with respect to addition and multiplication defined

above.

Example 2.1.2

Let f(x) = x+ 1. Find (f(x))2 and 2f(x) = f(x) + f(x) in Z2[x].

Solution:

• (f(x))2 = (1 + x)(1 + x) = 1 + 2x+ x2 = 1 + x2.

• 2f(x) = f(x) + f(x) = (1 + x) + (1 + x) = 2 + 2x = 0.
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Remark 2.1.2

Note that R[x],Q[x],Z[x],Z3[x] are all examples of polynomial rings. Moreover,

• If R is a commutative ring, then R[x] is commutative.

• If R has a unity e, then e is also a unity for R[x].

• If D is an integral domain, then D[x] is also an integral domain.

• The units of D[x] are precisely the units of D. This is because any polynomial in D[x]

of degree at least 1 multiplied by any other nonzero element in D[x] must be of degree

at least 1 which is not the unity e (whose degree is 0).

• If F is a field, F [x] is an integral domain (not a field). Note that 1 ∈ R (field), then

1 · x = x ∈ R[x], but x−1 = 1
x
6∈ R[x] since it is not a polynomial.

Example 2.1.3

Prove that if p is a zero divisor for every element of R, then it is a zero divisor for every

element of R[x].

Solution:

Let p be a zero divisor for every element of R. Then for any r ∈ R, we have pr = 0. Thus,

for any f(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x] of degree n, we have

p · f(x) = pa0 + pa1x+ · · ·+ panx
n = 0 + 0 + · · ·+ 0 = 0.

That is pf(x) = 0, and hence p is a zero divisor of R[x].

Exercise 2.1.1: #34.11 @page : 164

Prove that in any commutative ring R, characteristic of R equals the characteristic of R[x].

Solution:

The zero and the unity in R and R[x] are the same. Since R is a ring it is closed under

repeated addition of this unity. Thus n · e in R[x] is the same as n · e in R. Therefore, the

characteristics of R[x] and R are the same.
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Example 2.1.4

Prove that if R is a commutaive ring with unity e. Then, R is an integral domain iff R[x] is

an integral domain.

Solution:

Note that if R is a commutative ring with unity e, then R[x] is also a commutative ring with

unity e.

”⇒ ”: Assume that R is an integral domain. Let f(x) = a0+· · ·+anxn, g(x) = b0+· · ·+bmxm

be any two nonzero elements in R[x] so that an, bm 6= 0. Then the leading coefficient of

f(x)g(x) is anbm 6= 0 since an, bm ∈ R and R is an integral domain. Thus, f(x)g(x) 6= 0 in

R[x]. Therefore, R[x] is an integral domain.

” ⇐ ”: Assume that R[x] is an integral domain. Let a and b be any two nonzero elements

in R. Clearly, a, b ∈ R[x] (constant polynomials) and hence ab 6= 0 since R[x] is an integral

domain. Therefore, R is an integral domain.
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Exercise 2.1.2

Find the sum and the product of the following polynomials in the given polynomial ring:

1. f(x) = 4x− 5, g(x) = 2x2 − 4x+ 2 in Z8[x].

2. f(x) = x+ 1, g(x) = x+ 1 in Z2[x].

3. f(x) = 2x2 + 3x+ 4, g(x) = 3x2 + 2x+ 3 in Z6[x].

Solution:

1. f(x) + g(x) = 2x2 + 5 and f(x)g(x) = 6x2 + 4x+ 6.

2. f(x) + g(x) = 0 and f(x)g(x) = x2 + 1.

3. f(x) + g(x) = 5x2 + 5x+ 1 and f(x)g(x) = x3 + 5x.

Exercise 2.1.3

There are four different polynomials of degree 2 in Z2[x]. List them all.

Solution:

Any polynomial in Z2[x] is of the form ax2 + bx+ c, where a, b, c ∈ Z2 and a 6= 0. Thus, a = 1

and b and c each has two options: 0 or 1. That is, the polynomials in Z2[x] are:

x2;x2 + 1;x2 + x;x2 + x+ 1.
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Section 2.2: The Division Algorithm

The Division Algorithm

If f(x) and g(x) are polynomials over a field F , with g(x) 6= 0, then there exist unique

polynomials q(x) and r(x) over F such that

f(x) = g(x) q(x) + r(x), with r(x) = 0 or deg(r(x)) < deg (g(x)). (2.2.1)

The polynomials q(x) and r(x) are called the quotient and remainder, respectively, in the

division of f(x) by g(x).

Example 2.2.1

Let f(x) = 2x4 + x2 − x + 1 and g(x) = 2x − 1 be two polynomials over R. Find q(x) and

r(x) using the Division Algorithm.

Solution:

We simply apply the long division to get q(x) = x3 + 1
2x

2 + 3
4x−

1
8 and r(x) = 7

8 .

x3 + 1
2x

2 + 3
4x −

1
8

2x− 1 2x4 + x2 − x + 1

2x4 − x3

x3 + x2 − x + 1

x3 − 1
2x

2

3
2x

2 − x + 1
3
2x

2 − 3
4x

− 1
4x + 1

− 1
4x + 1

8
7
8

Remark 2.2.1

Let f(x) = a0 + a1x + · · · + anx
n ∈ F [x]. For c ∈ F , we say that f(c) is the substitution of

c for x in f(x). That is, f(c) = a0 + a1c+ · · ·+ anc
n ∈ F . Moreover, if f(x) = g(x) in F [x],
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then f(c) = g(c) in F .

Example 2.2.2

Determine q(x) and r(x) when applying the Division Algorithm for: f(x) = 3 + x− 3x4 and

g(x) = x− 2 in Z5[x]. Find f(2).

Solution:

We have q(x) = 2x3 + 4x2 + 3x+ 2, r(x) = 2, and f(2) = 3 + 2− 3(24) = −3 = 2.

2x3 + 4x2 + 3x + 2

x− 2 −3x4 + x + 3

2x4 − 4x3

4x3 + x + 3

4x3 − 3x2

3x2 + x + 3

3x2 − x

2x + 3

2x − 4

2

Theorem 2.2.1: The Remainder Theorem

If f(x) ∈ F [x] and c ∈ F , then the remainder in the division of f(x) by x− c is f(c).

Proof:

Note that deg(x − c) = 1. By the Division Algorithm, the remainder in the division of f(x)

by (x− c) must be either 0 or of degree 0. Thus, for some q(x) ∈ F [x],

f(x) = (x− c)q(x) + r, with r ∈ F.

Thus, f(c) = (c− c)q(c) + r = r.
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Definition 2.2.1

If f(x), g(x) ∈ F [x], with g(x) 6= 0, then f(x) is divisible by g(x) over F if f(x) = g(x)q(x)

for some q(x) ∈ F [x]. That is, the remainder in the Division Algorithm is zero. Furthermore,

we say that g(x) is a factor of f(x) over F .

Theorem 2.2.2: The Factor Theorem

If f(x) ∈ F [x] and c ∈ F , then x− c is a factor of f(x) iff f(c) = 0.

Definition 2.2.2

An element c ∈ F is called a root (or a zero) of a polynomial f(x) ∈ F [x] if f(c) = 0.

Consequently, c is a root of f(x) iff x− c is a factor of f(x).

Example 2.2.3

Use the Remainder Theorem to determine the remainder when f(x) = 2x5 − 3x3 + 2x+ 1 is

divided by x− 2 in Z7[x].

Solution:

By the Remainder Theorem, we simply compute f(2). Thus,

f(2) = 26 − 3(8) + 4 + 1 = 1 + 4(1) + 4 + 1 = 3.

Example 2.2.4

Is x− 3 a factor of f(x) = 3x3 − 9x2 − 7x+ 21 in Q[x]? Explain your answer.

Solution:

By the Factor Theorem, Theorem 2.2.2, we can simply compute f(3):

f(3) = 3(33)− 9(32)− 7(3) + 21 = 34 − 34 − 21 + 21 = 0.

Therefore, x− 3 is a factor of f(x).



2.2. The Division Algorithm 53

Example 2.2.5

Use the Factor Theorem to construct a polynomial f(x) ∈ Z5[x] such that every element of

Z5 is a root for f(x).

Solution:

Note that Z5 is a cyclic group of order 5. Thus, [a]6 = [a] for any [a] ∈ Z5. That is

f(a) = a5 − a = 0 for any a. Therefore, every a ∈ Z5 is a root for f(x) = x5 − x.

Theorem 2.2.3

A nonzero polynomial f(x) ∈ F [x] of degree n can have at most n roots in a field F .

Proof:

By the Factor Theorem, if a1 ∈ F is a root of f(x), then f(x) = (x − a1)q1(x), where q1(x)

is of degree n − 1. A root a2 ∈ F of q1(x) implies that f(x) = (x − a1)(x − a2)q2(x), where

q2(x) is of degree n− 2. Continuing in this way, we get

f(x) = (x− a1)(x− a2) · · · (x− ar)qr(x),

where qr(x) has no further roots in F . Since deg(f) = n, at most n factors x− ai can appear.

So r ≤ n. Also, if b 6= ai for i = 1, 2, · · · , r and b ∈ F , then

f(b) = (b− a1)(b− a2) · · · (b− ar)qr(b) 6= 0

since F has no zero divisors and none of b − ai or qr(b) are zero by construction. Hence the

ai for i = 1, 2, · · · , r ≤ n are all zeros in F of f(x).
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Exercise 2.2.1

Find q(x) and r(x) when dividing f(x) = x4 + x2 + 3x+ 1 by g(x) = x2 + 2x+ 3 in Z5[x].

Solution:

Applying the Division Algorithm we get q(x) = x2 + 3x+ 2 and r(x) = 0.

x2 + 3x + 2

x2 + 2x+ 3 x4 + x2 + 3x + 1

x4 + 2x3 + 3x2

3x3 + 3x2 + 3x + 1

3x3 + x2 + 4x

2x2 + 4x + 1

2x2 + 4x + 1

0

Exercise 2.2.2

Divide f(x) = 2x4 + x2 − x+ 1 by g(x) = 2x− 1 in Z5[x].

Solution:

Note that in Z5, we have 1−1 = 1, 2−1 = 3, 3−1 = 2, and 4−1 = 4. Moreover, (−1) = 4,

(−2) = 3, (−3) = 2, and (−4) = 1. Thus, applying the Division Algorithm we get q(x) =

x3 + 3x2 + 2x+ 2 and r(x) = 4.

x3 + 3x2 + 2x + 3

2x− 1 2x4 + x2 − x + 1

2x4 − x3

x3 + x2 − x + 1

x3 − 3x2

4x2 − x + 1

4x2 − 2x

x + 1

x − 3

4
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Exercise 2.2.3

Determine q(x) and r(x) when applying the Division Algorithm for f(x) = x3 − 2x2 + 2 and

g(x) = x− 3 in R[x]. Find f(3).

Solution:

We have q(x) = x2 + x+ 3, r(x) = 11, and f(3) = 33 − 2(32) + 2 = 27− 18 + 2 = 11.

x2 + x + 3

x− 3 x3 − 2x2 + 2

x3 − 3x2

x2 + 2

x2 − 3x

3x + 2

3x − 9

11

Exercise 2.2.4

Find q(x) and r(x) when dividing f(x) = x4 − 1 by g(x) = −x2 + 2 in Q[x].

Solution:

Applying the Division Algorithm we get q(x) = −x2 − 2 and r(x) = 3.

−x2 − 2

−x2 + 2 x4 − 1

x4 − 2x2

2x2 − 1

2x2 − 4

3

Exercise 2.2.5

Find q(x) and r(x) when dividing f(x) = 3x4 + 2x2 − 1 by g(x) = 2x2 + 4x in Z5[x].

Solution:
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Applying the Division Algorithm we get q(x) = 4x2 + 2x+ 2 and r(x) = 2x+ 4.

9x2 − 3x + 2

2x2 + 4x 3x4 + 2x2 − 1

18x4 + 36x3

−x3 + 2x2 − 1

−6x3 − 12x2

4x2 − 1

4x2 + 8x

−3x − 1

Exercise 2.2.6

Use the Remainder Theorem to determine the remainder when f(x) = 2x5 − 3x3 + 2x+ 1 is

divided by x− 2 in R[x].

Solution:

By the Remainder Theorem, we simply compute f(2). Thus,

f(2) = 26 − 3(23) + 4 + 1 = 23(23 − 3) + 5 = 8(5) + 5 = 45.

Exercise 2.2.7

Is x+ i a factor of f(x) = ix9 + 3x7 + x6 − 2ix+ 1 in C[x]? Explain your answer.

Solution:

By the Factor Theorem, Theorem 2.2.2, we can simply compute f(−i):

f(−i) = i(−i)9 + 3(−i)7 + (−i)6 − 2i(−i) + 1

= −(i)10 − 3(i)7 − 1− 2 + 1

= 1 + 3i− 3 + 1 = 3i− 1 6= 0.

Therefore, x+ i is not a factor of f(x).
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Exercise 2.2.8

Divide f(x) = x4 + 5x3 − 3x2 by g(x) = 5x2 − x+ 2 in Z11[x].

Solution:

Applying the Division Algorithm we get q(x) = 9x2 + 5x+ 10 and r(x) = 2.

9x2 + 5x + 10

5x2 − x+ 2 x4 + 5x3 − 3x2

x4 − 9x3 + 7x2

3x3 + x2

3x3 − 5x2 + 10x

6x2 + x

6x2 − 10x + 9

2

Exercise 2.2.9

Is f(x) = x3 + 2x+ 3 an irreducible polynomial of Z5[x]? If not, then express it as a product

of irreducible polynomials of Z5[x].

Solution:

By inspection, −1 is a root of f(x) in Z5[x], so f(x) is reducible in Z5[x]. Dividing (long

division) f(x) by x + 1, we get f(x) = (x + 1)(x2 − x + 3). Again by inspection, we get −1

and 2 are two roots of x2 − x+ 3. Hence

f(x) = (x+ 1)(x2 − x+ 3) = (x+ 1)(x+ 1)(x− 2) = (x+ 1)(x+ 1)(x+ 3).
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Section 2.3: Factorization of Polynomials

Theorem 2.3.1: Greatest Common Divisors of Two Polynomials

If a(x) and b(x) are two polynomials over a field F , not both the zero polynomial, then there

is a unique polynomial d(x) over F such that

1. d(x) | a(x) and d(x) | b(x), and

2. if c(x) is a polynomial such that c(x) | a(x) and c(x) | b(x), then c(x) | d(x).

The polynomial d(x) is called the greatest common divisors of a(x) and b(x). Such a

polynomial can be computed by the Euclidean Algorithm for polynomials.

Theorem 2.3.2

If a(x) and b(x) are polynomials over a field F , not both the zero polynomial, and

(a(x), b(x)) = d(x), then there exist polynomials u(x) and v(x) over F such that d(x) =

a(x)u(x) + b(x)v(x).

Example 2.3.1

Use the Euclidean Algorithm to compute (a(x), b(x)), where a(x) = x4 − x3 − x2 + 1, and

b(x) = x3 − 1 in Q[x].

Solution:

We simply apply the Division Algorithm to compute (a(x), b(x)) by dividing a(x) by b(x):

x4 − x3 − x2 + 1 = (x3 − 1)(x− 1) + (−x2 + x)

x3 − 1 = (−x2 + x)(−x− 1) + (x− 1)

−x2 + x = (x− 1)(−x).

Thus, (a(x), b(x)) = x−1. Note that x3−1 diveded

by −x2 +x results in −x−1 with a remainder x−1.

x − 1

x3 − 1 x4 − x3 − x2 + 1

x4 − x

−x3 − x2 + x + 1

−x3 + 1

−x2 + x
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Definition 2.3.1

• Two polynomial are said to be associates if f(x) = cg(x) for some nonzero elements

c ∈ F . For instance, f(x) = 6x− 4 and g(x) = 3x− 2 are associates since f(x) = 2g(x)

• A nonconstant polynomial (of degree ≥ 1) f(x) ∈ F [x] is called irreducible (or prime)

over F if f(x) cannot be expressed as a product g(x)h(x) of two polynomials in F [x] with

0 < deg g(x), deg h(x) < deg f(x). That is, if f(x) = g(x)h(x) and f(x) is irreducible,

then one of g(x) and h(x) is of zero degree and the other is an associate of f(x).

If f(x) is not irreducible, then we say that f(x) is reducible.

For example, x2 + 1 is irreducible in R[x]. It is reducible in C[x] as x2 + 1 = (x− i)(x+ i) in C[x].

Theorem 2.3.3

If F is a field, a(x), b(x), p(x) ∈ F [x], p(x) is irreducible, and p(x) | a(x)b(x), then either

p(x) | a(x) or p(x) | b(x).

Proof:

Assume that p(x) - a(x), then (p(x), a(x)) = e (the unity of F ). Then there are polynomials

u(x) and v(x) such that e = p(x)u(x) + a(x)v(x). Multiplying both sides by b(x), we get

b(x) = p(x)u(x)b(x) + a(x)v(x)b(x). Since p(x) | p(x) and p(x) | a(x)b(x), we get

p(x) | [p(x)u(x)b(x) + a(x)v(x)b(x)] = b(x).

Corollary 2.3.1

If p(x), a1(x), a2(x), · · · , an(x) are polynomials over F , with p(x) irreducible and p(x) |

a1(x) · · · an(x), then p(x) | ai(x) for some i, where i = 1, 2, · · · , n.

Theorem 2.3.4: Unique Factorization Theorem

Each polynomial of degree at least one over a field F can be written as an element of F times

a product of irreducible polynomials (each with leading coefficient e) over F , and, except for

the order in which these irreducible polynomials are written, this can be done in only way.
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Theorem 2.3.5

Suppose that f(x) ∈ F [x] is of degree 2 or 3. Then f(x) is reducible over F iff f(x) has a

root in F .

Proof:

”⇒ ”: Assume that f(x) is reducible. Then f(x) = g(x)h(x), where

0 < deg g(x), deg h(x) < deg f(x) = 2 or 3.

Then, one of g(x) or h(x) is of degree 1 taking the form x− a for some a ∈ F . By the Factor

Theorem, f(a) = 0 and hence f(x) has a root in F .

”⇐ ”: If a ∈ F is a root of f(x), then by the Factor theorem x− a is a factor of f(x). Then

f(x) is reducible.

Example 2.3.2

Determine whether f(x) = x3 + x+ 1 is irreducible over Z5.

Solution:

Note that f(x) is of degree 3. Thus, it is reducible over Z5 iff f(x) has a root in Z5. Thus

f(0) = 1 6= 0, f(1) = 3 6= 0, f(2) = 8 + 2 + 1 = 1 6= 0, f(3) = 27 + 3 + 1 = 1 6= 0,

and f(4) = 64 + 4 + 1 = 4 6= 0.

Therefore, f(x) is irreducible over Z5.

Example 2.3.3

Determine whether f(x) = x4 + x2 + x+ 1 is irreducible over Z5.

Solution:

Note that f(0) = 1, f(1) = 4, f(2) = 3, f(3) = 4, and f(4) = 2. Since none of these is zero,

f(x) has no factor x− a for any a ∈ Z5. Assume that f(x) = (x2 + ax + b)(x2 + cx + d) for

some a, b, c, d ∈ Z5. Thus

f(x) = x4 + x2 + x+ 1 = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd.
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Hence, a + c = 0 which implies that a = −c and bd = 1. Thus (b, d) = (1, 1), (2, 3), (3, 2), or

(4, 4). Also, (ad + bc) = a(d − b) = 1. Therefore, (b, d, a) = (2, 3, 1) or (3, 2, 4). But in both

cases ac+ b+ d = 4 6= 1. Therefore, f(x) is irreducible over Z5.

Example 2.3.4

Factor f(x) = x3 + 2x+ 2 in Z7[x].

Solution:

We first try to find a root for f(x) in Z7. Clearly, f(2) = 14 = 0. Thus, x− 2 is a factor for

f(x). We now use the Division Algorithm to divide f(x) by x− 2:

Thus, f(x) = (x− 2)(x2 + 2x+ 6). Let g(x) = x2 + 2x+ 6.

We further look for a root of g(x). Clearly, g(2) = 14 = 0.

Thus, 2 is a root of g(x), and hence g(x) = (x− 2)(x+ 4).

Therefore,

f(x) = (x− 2)2(x+ 4) = (x+ 4)(x+ 5)2.

x2 + 2x + 6

x− 2 x3 + 2x + 2

x3 − 2x2

2x2 + 2x + 2

2x2 − 4x

6x + 2

6x − 12

0

Example 2.3.5

Factor f(x) = x4 + 2 in Z3[x].

Solution:

Clearly,

f(x) = x4 + 2 = x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x2 + 1).

x2 + 1 is irreducible in Z3[x] as it has no roots in Z3. Therefore,

f(x) = (x− 1)(x+ 1)(x2 + 1) = (x+ 1)(x+ 2)(x2 + 1).
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Theorem 2.3.6: Eisenstein’s Irreducibility Criterion

Assume that p is a prime, f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x], p | ai for 0 ≤ i ≤ n− 1, p2 - a0

and p - an. Then f(x) is irreducible over Z.

Example 2.3.6: #36.23 @page : 172

Show that each of the following polynomials is irreducible in Z[x]:

1. f(x) = x3 + 6x2 + 3x+ 3, and

2. g(x) = x5 − 5x3 + 15.

Solution:

1. Take p = 3, p | 3, 3, 6 and p2 - 3 and p - 1. Hence f(x) is irreducible over Z.

2. Take p = 5, p | 15,−5 and p2 - 15 and p - 1. Hence g(x) is irreducible over Z.

Theorem 2.3.7

If f(x) ∈ Z[x], then f(x) factors into a product of two polynomials of lower degrees m and n

in Q[x] if and only if it has such a factorization with polynomials of the same degrees m and

n in Z[x].

Corollary 2.3.2

If f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x] with a0 6= 0, and if f(x) has a zero in Q, then it has a

zero m in Z, and m must divide a0.

Example 2.3.7

Show that f(x) = x4 − 2x2 + 8x+ 1 is irreducible over Q.

Solution:

Assume that f(x) has a zero in Q (linear factor), then f(x) has a zero m in Z that divides

+1. Thus, the only two possibilities are ±1. But f(1) = 8 and f(−1) = −8. That is f(x)

has no linear factor in Q[x].

If we assume that f(x) can be factored in two quadratic factors in Q[x], then it has a fac-
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torization Then if f(x) = (x2 + ax + b)(x2 + cx + d) ∈ Z[x]. Equating the coefficients, we

get

bd = 1, ad+ bc = 8, ac+ b+ d = 2, and a+ c = 0,

for integer a, b, c, d ∈ Z. Since bd = 1 then b = d = 1 or b = d = −1 in either cases, we have

b = d. Hence, ad+ bc = b(a+ c) = 8. But this is impossible since a+ c = 8. Therefore, f(x)

can not be factored in two quadratic polynomials.

Therefore, f(x) is irreducible in Q[x].
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Exercise 2.3.1

Use the Euclidean Algorithm to compute (f(x), g(x)), where f(x) = x3 − 3x2 + 3x − 2, and

g(x) = x2 − 5x+ 6 over Q.

Solution:

We first apply the Division Algorithm to compute (f(x), g(x)) by dividing f(x) by g(x):

x + 2

x2 − 5x+ 6 x3 − 3x2 + 3x − 2

x3 − 5x2 + 6x

2x2 − 3x − 2

2x2 − 10x + 12

7x + 14

Thus,

x3 − 3x2 + 3x− 2 = (x2 − 5x+ 6)(x+ 2) + (7x− 14)

x2 − 5x+ 6 = (7x− 14)(1
7x−

1
73) = (x− 2)(x− 3).

Thus, (f(x), g(x)) = x− 2.

Exercise 2.3.2

Use the Euclidean Algorithm to compute (f(x), g(x)), where f(x) = x4 + x3 − 4x2 − 2x+ 4,

and g(x) = x2 + x− 1 over Q.

Solution:

We first apply the Division Algorithm to compute (f(x), g(x)) by dividing f(x) by g(x):

x2 − 3

x2 + x− 1 x4 + x3 − 4x2 − 2x + 4

x4 + x3 − x2

−3x2 − 2x + 4

−3x2 − 3x + 3

x + 1
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Thus,

x4 + x3 − 4x2 − 2x+ 4 = (x2 + x− 1)(x2 − 3) + (x+ 1)

x2 + x− 1 = (x+ 1)(x)− 1

x+ 1 = −1(−x− 1).

Thus, (f(x), g(x)) = −1.

Exercise 2.3.3

Prove or disprove: a polynomial ax+ b is irreducible in R[x], where R is a ring.

Solution:

Disprove. f(x) = 6x+ 1 in Z8[x] with 6x+ 1 = (2x+ 1)(4x+ 1). Note that Z8 is not a field.

Exercise 2.3.4

Show that f(x) = x3 + 2x2 + 3 is irreducible in Z5[x].

Solution:

The degree of f(x) is 3, so we need only to show that f(x) has no roots over Z5.

f(0) = 3, f(1) = 1, f(2) = 4, f(3 = −2) = 3, f(4 = −1) = −1 = 4.

As none of these is zero, f(x) has no roots over Z5 and hence it is irreducible.

Exercise 2.3.5

Express f(x) = x4 + x as a product of irreducible polynomials in Z5[x].

Solution:

f(x) = x4 + x = x(x3 + 1) = x(x+ 1)(x2 − x+ 1). Note that g(x) = x2 − x+ 1 is irreducible

in Z5[x] as it has no roots in Z5. g(0) = 1, g(1) = 1, g(2) = 3, g(−2) = 2, and g(−1) = 3.

Therefore, f(x) = x(x+ 1)(x2 − x+ 1) is a product of irreducible polynomials in Z5[x].
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Exercise 2.3.6

Use the Euclidean Algorithm to compute (f(x), g(x)), where f(x) = x3 − 2x+ 1, and g(x) =

x2 − x− 2 over Z5.

Solution:

We first apply the Division Algorithm to get f(x) = (x2 − x− 2)(x+ 1) + (x+ 3). Note that

in Z5[x], have x+ 3 = x− 2. Hence, x2 − x− 2 = (x− 2)(x+ 1).

Therefore, (f(x), g(x)) = x− 2 = x+ 3.

x + 1

x2 − x− 2 x3 − 2x + 1

x3 − x2 − 2x

x2 + 1

x2 − x − 2

x + 3

Exercise 2.3.7

Factor f(x) = x4 + 1 over Z2.

Solution:

f(x) = x4 + 1 = x4 − 1 = (x2 − 1)(x2 + 1) =
(
x2 − 1

)2

= ((x− 1)(x+ 1))2 =
(
(x+ 1)2

)2
= (x+ 1)4.

Exercise 2.3.8

Let F be a field, and f(x) ∈ F [x]. Show that f(x) is irreducible over F iff f(x + c) is

irreducible over F , for any c ∈ F . You may use a contrapositive proof in both directions.

Solution:

”⇒ ”: Assume that f(x+ c) = p(x)q(x) is reducible where 0 < deg p(x), deg q(x) < deg f(x).

If we replace x by x− c, we get f((x− c) + c) = f(x) = p(x− c)q(x− c), which cannot be as

f(x) is irreducible. Thus, f(x+ c) is irreducible.
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”⇐ ”: Assume that f(x) = p(x)q(x) is reducible where 0 < deg p(x), deg q(x) < deg f(x). If

we replace x by x + c, we get f(x + c) = p(x + c)q(x + c), which cannot be as f(x + c) is

irreducible. Thus, f(x) is irreducible.

Exercise 2.3.9: #36.24 @page : 173

Use Eisenstein’s Irreducibility Criterion to show that if p is a prime, then the

f(x) = xp − 1
x− 1 = xp−1 + xp−2 + · · ·+ x+ 1,

is irreducible over Z. ”Try to substitute x = y + 1”.

Solution:

Let x = y + 1, then

f(x) = f(y + 1) = (y + 1)p − 1
y

= 1
y

[(y + 1)p − 1]

= 1
y

[ p∑
k=0

(
p

k

)
yk − 1

]
=

p∑
k=0

(
p

k

)
yk−1 − 1

y

=
p∑

k=1

(
p

k

)
yk−1,

where at k = 0, we have
(
p
0

)
y−1 = 1

y
. We have p |

(
p
k

)
for 1 ≤ k < p, and p -

(
p
p

)
= 1.

Furthermore, P 2 -
(
p
1

)
= p. Thus, f(x) is irreducible in Z[x].

Exercise 2.3.10

Show that f(x) = x2 + 8x− 2 is irreducible over Q.

Solution:

Simply, f(x) satisfies the Eisenstein’s Conditions for irreducibility over Q with p = 2. There-

fore, f(x) is irreducible over Q.
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Exercise 2.3.11

Show that f(x) = x3 + 3x2 − 8 is irreducible over Q.

Solution:

If f(x) is reducible over Q, then it factors in Z[x] and hence it must has a linear factor of

the form x − a in Z[x]. Then a is a root of f(x) and it must divides −8. Thus, a might be

±1,±2,±4, or ±8. Compting f(x) at these eight values, we find none of them is a zero of

f(x). Therefore, f(x) is irreducible over Q.

Exercise 2.3.12

Show that f(x) = x4 − 22x2 + 1 is irreducible over Q.

Solution:

If f(x) is reducible over Q, then it factors in Z[x] and hence it has a linear factor of the form

x − a in Z[x] or it factors into two quadratic factors in Z[x]. First if it has a linear factor

x− a, then a must divides 1 and hence a = 1 or a = −1. But neither values of a is a root of

f(x). Then, we assume that f(x) = (x2 + ax+ b)(x2 + cx+ d). Equating the coefficients, we

get

bd = 1, ad+ bc = 0, ac+ b+ d = −22, and a+ c = 0,

Thus a = −c and either b = d = 1 or b = d = −1. Assume that b = d = 1, then

ac + 1 + 1 = −22 implies that ac = −24. Thus c2 = 24 which is impossible. Otherwise, if

b = d = −1, we get c2 = 20 which is also impossible. Therefore, f(x) is irreducible over Q.

Exercise 2.3.13

Show that for a prime p, f(x) = xp + a ∈ Zp[x] is not irreducible for any a ∈ Zp.

Solution:

Note that by the Corollary of Fermat’s Little Theorem, we get xp + a = xp + ap = (x + a)p,

and hence x = −a is a root of f(x).
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Chapter

Quotient Rings

Section 3.1: Homomorphism of Rings and Ideals

Definition 3.1.1

If R and S are rings, then a mapping θ : R→ S is a (ring) homomorphism if for all a, b ∈ R

θ(a+ b) = θ(a) + θ(b), and θ(ab) = θ(a)θ(b).

Note that if θ : R → S is a ring homomorphism, then θ is a group homomorphism from the

additive group of R to the additive group of S. That is, θ(0R) = 0S and θ(−a) = −θ(a) for all a ∈ R.

Example 3.1.1

Show that θ : Z→ Zn defined by θ(a) = [a] is a ring homomorphism.

Solution:

Clearly θ is a ring homomorphism since for any a, b ∈ R, we have:

θ(a+ b) = [a+ b] = [a] + [b] = θ(a) + θ(b), and

θ(ab) = [ab] = [a][b] = θ(a)θ(b).

Example 3.1.2: Projection Homomorphism

Let R and S be two rings. Show that π1 : R × S → R and π2 : R × S → S, defined by

π(r, s) = r and π2(r, s) = s are ring homomorphism.

Solution:

We show that π1 is a ring homomorphism: Let (r1, s1), (r2, s2) ∈ R× S. Then

π1((r1, s1) + (r2, s2)) = π1(r1 + r2, s1 + s2) = r1 + r2 = π1(r1, s1) + π1(r2, s2), and

π1((r1, s1)(r2, s2)) = π1(r1r2, s1s2) = r1r2 = π1(r1, s1)π1(r2, s2).

Thus, π1 is a ring homomorphism. The proof for π2 is similar.

69



70 Chapter 3. Quotient Rings

Definition 3.1.2

Let θ : R → S be a ring homomorphism. The kernel of θ, ker θ, is the set of all elements

r ∈ R such that θ(r) = 0S.

Note that the kernel of ring homomorphism θ : R→ S is just the kernel of θ as a homomorphism

of the additive group of the rings. Recall that ker θ is a (normal) subgroup of the additive group of

R. In rings, ker θ is forming a subring of R that is called an ideal.

Definition 3.1.3

A subring I of a ring R is called an ideal of R if ar ∈ I and ra ∈ I for all a ∈ I and all

r ∈ R.

We note that if R is a commutative ring, then the conditions ra and ar are equivalent. Moreover,

recall that I is being a subring of R means that I is being closed under multiplication and subtraction.

Thus, we get the following Theorem.

Theorem 3.1.1

A nonempty set I in a ring R is an ideal iff it satisfies:

1. if a, b ∈ I, then a− b ∈ I, and

2. if r ∈ R and a ∈ I, then ar ∈ I and ra ∈ I.

Note that Z is a subring of Q, but Z is not an ideal of Q since 1 ∈ Z and 1
2 ∈ Q, but 1 · 1

2 = 1
2 6∈ Z.

Theorem 3.1.2: Analogue Homomorphism Properties From Math-261

Let θ : R→ S be a ring homomorphism. Then:

1. θ(0R) = 0S.

2. θ(−a) = −θ(a) for all a ∈ R.

3. If N is a subring of R, then θ(N) is a subring of S.

4. If M is a subring of S, then θ−1(M) is a subring of R.

5. If R has a unity e, then θ(e) is unity of θ(R).

6. ker θ is a subring of R.

7. θ is one-to-one iff ker θ = {0R}.
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Theorem 3.1.3

Let θ : R→ S be a ring homomorphism. Then

1. θ(R) is a subring of S.

2. ker θ is an ideal of R.

Proof:

Clearly, θ(R) is an additive group of S (From Math-261). So θ(R) is not empty, closed under

addition, and contains the negative of each of its elements.

1. We use Theorem 3.1.2 with R itself a subring of R.

2. Note that ker θ is a subring of R by Theorem 3.1.2. So, we only show that ar, ra ∈ ker θ

for all r ∈ R and a ∈ ker θ. If a ∈ ker θ and r ∈ R, then θ(ar) = θ(a)θ(r) = 0 · θ(r) = 0.

Thus, ar ∈ ker θ. Similarly ra ∈ ker θ. Therefore, ker θ is an ideal of R.

Example 3.1.3

If θ : Z→ Zn is defined by θ(a) = [a], then ker θ = {kn : k ∈ Z} ≈ nZ is an ideal of Z.

If π1 : R × S → R is defined by π1(r, s) = r, then ker θ = {(0, s) : s ∈ S} ≈ S. This is the

ideal of R× S.

Example 3.1.4

Show that θ : Z6 → Z3 defined by θ([a]6) = [a]3 is a ring homomorphism and find its kernel.

Is the mapping f : Z3 → Z6 defined by f([a]3) = [a]6 well-defined? Explain.

Solution:

Let [a], [b] ∈ Z6. Then

• θ([a]6 + [b]6) = θ([a+ b]6) = [a+ b]3 = [a]3 + [b]3 = θ([a]6) + θ([b]6).

• θ([a]6[b]6) = θ([ab]6) = [ab]3 = [a]3[b]3 = θ([a]6)θ([b]6).

Therefore, θ is a ring homomorphism. Further, ker θ = {[a]6 ∈ Z6 : θ([a]6) = [a]3 = [0]3}.

Thus, 3 | a and hence a = 3k, k ∈ Z. Thus ker θ = {[0], [3]} ⊆ Z6.

Note that f is not well-defined since [0]3 = [3]3, but f([0]3) 6= f([3]3) as [0]6 6= [3]6.

In general, the mapping f : Zm → Zn defined by θ([a]m) = [a]n is well-defined whenever

n | m.
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Example 3.1.5

Let θ : R → S be a ring homomorphism with θ(R) 6= {0}. Show that if R has a unity e and

S has no zero divisors, then θ(e) is the unity of S.

Solution:

By Theorem 3.1.2, θ(e) is the unity of θ(R) 6= {0}. If θ(e) = 0, then for any r ∈ R we have

θ(r) = θ(re) = θ(r)θ(e) = 0 and hence θ(R) = {0} which is not the case. Then we may

assume that θ(e) 6= 0. Assume that e′ is the unity of S. Then e′θ(e) = θ(e) = θ(e)θ(e) which

implies that (e′− θ(e))θ(e) = 0. Since, S has no zero divisors and θ(e) 6= 0, then e′− θ(e) = 0

and hence e′ = θ(e).
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Exercise 3.1.1

Determine whether θ : Z → Z defined by θ(a) = a2 is a ring homomorphism? If so, find its

kernel.

Solution:

For any a, b ∈ Z, we have

θ(a+ b) = (a+ b)2 = a2 + 2ab+ b2 = θ(a) + 2ab+ θ(b).

Thus, θ is not a ring homomorphism.

Exercise 3.1.2

Determine whether θ : M2(Z)→ M2(Z) defined by θ
a b

c d

 =
a c
b d

 is a ring homomor-

phism? If so, find its kernel.

Solution:

Let
a b
c d

 ,
x y
z w

 ∈M2(Z). Then

θ

a b
c d

+
x y
z w

 = θ

a+ x b+ y
c+ z d+ w

 =
a+ x c+ z
b+ y d+ w


=
a c
b d

+
x z
y w

 = θ

a b
c d

+ θ

x y
z w

, and

θ

a b
c d

 x y
z w

 = θ

ax+ bz ay + bw
cx+ dz cy + dw

 =
ax+ bz cx+ dz
ay + bw cy + dw

 , while

θ

a b
c d

θ
x y

z w

 =
a c
b d

x z
y w

 =
ax+ cy az + cw
bx+ dy bz + dw

 .
Thus, θ is not a ring homomorphism.

Exercise 3.1.3: #38.7 @page : 180

Show that if R and S are rings, and θ : R→ S is defined by θ(r) = 0S for each r ∈ R, then θ

is a ring homomorphism.
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Solution:

Let x, y ∈ R. Then

• θ(x+ y) = 0 = 0 + 0 = θ(x) + θ(y).

• θ(xy) = 0 = 0 · 0 = θ(x)θ(y).

Therefore, θ is a ring homomorphism.

Exercise 3.1.4: #38.8 @page : 180

Let R and S be two rings.

1. Show that the mapping π1 : R× S → R defined by π1(r, s) = r is a homomorphism.

2. Show that kerπ1 ≈ S.

Solution:

1. Let (r1, s1), (r2, s2) ∈ R× S. Then

(a) π1((r1, s1) + (r2, s2)) = π1(r1 + r2, s1 + s2) = r1 + r2 = π1(r1, s1) + π1(r2, s2).

(b) π1((r1, s1)(r2, s2)) = π1(r1r2, s1s2) = r1r2 = π1(r1, s1)π1(r2, s2).

Therefore, π1 is a ring homomorphism.

2. ker π1 = {(r, s) : π1(r, s) = r = 0R} = {(0, s) : s ∈ S} = {0}×S. Define θ : S → {0}×S

by θ(s) = (0, s). We now show that θ is a ring isomorphism.

(a) 1-1: Let θ(a) = θ(b) for a, b ∈ S. Then (0, a) = (0, b) implies that a = b. Thus, θ

is 1-1.

(b) Onto: Let (0, a) ∈ {0} × S. Then a ∈ S and θ(a) = (0, a). Thus θ is onto.

(c) Homomorphism: Let a, b ∈ S. Then

• θ(a+ b) = (0, a+ b) = (0, a) + (0, b) = θ(a) + θ(b).

• θ(ab) = (0, ab) = (0, a)(0, b) = θ(a)θ(b).

Therefore, θ is homomorphism.

Therefore, θ is an isomorphism and hence S ≈ ker θ = {0} × S.
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Exercise 3.1.5: #38.9 @page : 180

Show that if R is a commutative ring and θ : R → S is a ring homomorphism, then θ(R) is

commutative.

Solution:

Let a, b ∈ θ(R). Then there are r1, r2 ∈ R with θ(r1) = a and θ(r2) = b. Then,

ab = θ(r1)θ(r2) = θ(r1r2) = θ(r2r1) = θ(r2)θ(r1) = ba.

Exercise 3.1.6: #38.10 @page : 180

Show that if R is a ring with unity e, then every homomorphic image of R has a unity.

Solution:

Let θ : R→ S be any ring homomorphism. Then for any s ∈ θ(R), there is r ∈ R such that

s = θ(r) = θ(eRr) = θ(eR)θ(r) = θ(eR)s.

In a similar way, we can prove that s = sθ(eR) as well. Therefore, θ(eR) is a unity for θ(R).

Exercise 3.1.7

Let R be a ring with unity e, and let I be an ideal of R. If I contains a unit u of R, then

I = R.

Solution:

Let u−1 be the inverse of u in R. Then u ∈ I implies that e = u−1u ∈ I. Then for any r ∈ R,

we have r = re ∈ I. Thus I = R.

Exercise 3.1.8

Let θ : R → S be a ring homomorphism and let N be an ideal of R. Show that θ(N) is an

ideal of θ(R).

Solution:

Clearly by Theorem 3.1.2, we have θ(N) is a subring of S which is contained in the subring

θ(R) of S. Thus θ(N) is a subring of θ(R). So, we only need to show that θ(r)θ(n), θ(n)θ(r) ∈
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θ(N) for all θ(r) ∈ θ(R) and θ(n) ∈ θ(N). If r ∈ R and n ∈ N , then rn, nr ∈ N as N is an

ideal of R. Thus, θ(r)θ(n) = θ(rn) ∈ θ(N) since rn ∈ N . The proof of θ(n)θ(r) ∈ θ(N) is

similar. Therefore, θ(N) is an ideal of θ(R).

Exercise 3.1.9

Let θ be a homomorphism of a ring R with unity e onto a nonzero ring S. Let u be a unit in

R. Show that θ(u) is a unit in S.

Solution:

Since θ is onto, we know that θ(R) = S and hence θ(e) is the unity of S. Let u be a unit

in R. Then there is u−1 with uu−1 = u−1u = e. Therefore, θ(uu−1) = θ(e) = θ(u−1u) which

implies that θ(u)θ(u−1) = θ(e) = θ(u−1)θ(u). Therefore, θ(u) is a unit in S.
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Section 3.2: More on Ideals

Definition 3.2.1

Let R be a commutative ring with unity e, and let a ∈ R. Then (a) is the set of all multiple

of a by elements of R. That is (a) = {ra : r ∈ R}. A set of the form (a) is an ideal of R and

this ideal is called a principal ideal.

Theorem 3.2.1

Every ideal of Zn is a principal ideal.

Theorem 3.2.2

Let R be a commutative ring with a ∈ R. The set (a) is an ideal of R. It is called the

principal ideal of R generated by a. Moreover, (a) is the smallest ideal of R containing a.

Proof:

We simply prove the conditions of Theorem 3.1.1:

1. Clearly, 0 = 0a ∈ (a) 6= φ.

2. If ra, sa ∈ (a) for some r, s ∈ R, then ra− sa = (r − s)a ∈ (a) as r − s ∈ R.

3. If ra ∈ (a) and s ∈ R, then s(ra) = (sr)a ∈ (a) as sr ∈ R. Therefore, (a) is an ideal of

R. It is clear that if I is an ideal containing a, then I must contains all multiple of a.

That is, (a) ⊆ I.

We note that if R is any ring, then (0) and R are ideals of R.

Example 3.2.1

Show that if F is a field, then F has no ideals other than (0) and F .

Solution:

Assume that I 6= (0) is an ideal of F . We will show that I = F . Let 0 6= a ∈ I. Then a−1 ∈ F

(F is field). If e is the unity of F , then e = a−1a ∈ I since I is an ideal of F . Thus for any

r ∈ F , r = re ∈ I. Therefore, I = F .



78 Chapter 3. Quotient Rings

Example 3.2.2: #38.15 @page : 181

Show that if R is a commutative ring with unity e, and R has no ideals other than (0) and

R, then R is a field.

Solution:

For each 0 6= a ∈ R, we have a ∈ (a) 6= {0} and hence (a) = R. We show that R is a field

by showing that each nonzero element in (a) = R has a multiplicative inverse. Note that

e ∈ R = (a). Thus, there is r ∈ R with ra = e ∈ (a). Thus, for each nonzero element a, we

have r ∈ R such that ra = e. Thus each nonzero element in R has a multiplicative inverse in

R. We now need to show that R has no zero divisors. Assume that ab = 0 and a 6= 0 for any

a, b ∈ R. Then a−1 ab = a−1 0 = 0. Then b = 0. Therefore, R has no zero divisors and hence

R is a field.

Example 3.2.3: #38.17 @page : 181

Prove that if I is an ideal of Z, then either I = (0) or I = (n), where n is the least positive

integer in I.

Solution:

If I = {0}, then I = (0). Otherwise I 6= (0). Let 0 6= a ∈ I, and hence −a ∈ I as it is ideal.

Clearly, either a or −a is positive in I. That is, I contains a positive integer.

Let n be the least positive integer in I. By addition closure of rings, (n) ⊆ I. So we need

only to show that I ⊆ (n). Let a ∈ I. Then by the division algorithm there are r, s ∈ Z such

that a = rn+s and 0 ≤ s < n. But since n is the least positive element, we have s = 0. That

is a = rn and hence a ∈ (n). Thus I ⊆ (n) and therefore I = (n).

Definition 3.2.2

An ideal P of a commutative ring R is a prime if P 6= R and for all a, b ∈ R, ab ∈ P implies

that a ∈ P or b ∈ P .

Definition 3.2.3

An ideal M of a ring R is a maximal if M 6= R and there is no ideal I of R such that

M $ I $ R.
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Example 3.2.4

Let m and n be nonzero integers. Show that (m) ⊆ (n) iff n | m.

Solution:

”⇒ ”: Assume that (m) ⊆ (n). Then m ∈ (m) ⊆ (n) and hence m ∈ (n). Thus, m = nk for

some k ∈ Z. Therefore, n | m.

” ⇐ ”: Assume that n | m. Then m = nk for some k ∈ Z. Thus, m ∈ (n) since (m) is the

smallest ideal of Z containing m, we have (m) ⊆ (n).

Example 3.2.5: #39.7 @page : 184

Show that if n is a positive integer, then (n) is a prime ideal of Z iff n is a prime.

Solution:

” ⇒ ”: Suppose that n is not a prime. Then there are a, b ∈ Z such that ab = n where

1 < a, b < n. Clearly, ab ∈ (ab) = (n). Thus, ab | ab, but ab - a and ab - b. Hence (ab) is not

a prime ideal of Z.

” ⇐ ”: Assume that n is a prime. If ab ∈ (n), then n | ab which implies that n | a or n | b.

That is a ∈ (n) or b ∈ (n). Therefore, (n) is a prime ideal of Z.

Theorem 3.2.3

If F is a field, then every ideal of F [x] is principal.

Proof:

Let I be an ideal of F [x]. If I = {0}, then I = (0) and we are done. Otherwise, assume that

I 6= {0}. Let f(x) be a nonzero element of I of minimal degree. If the degree of f(x) is 0

(constant element), then f(x) ∈ F and is a unit (F is a field). Thus I = F = (e). Assume

that the degree of f(x) is at least 1. Let g(x) ∈ I. Then by the Division Algorithm there are

q(x), r(x) ∈ F [x] such that g(x) = f(x)q(x)+r(x) with r(x) = 0 or deg r(x) < deg f(x). Since

g(x), f(x)q(x) ∈ I, we have r(x) = g(x) − f(x)q(x) ∈ I (ideal properties). But since f(x) is

of minimal degree in I, we get r(x) = 0 and hence g(x) = f(x)q(x). Therefore, I = (f(x)).
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Example 3.2.6

Determine all of the ideals of Z6, Z9, and Z12.

Solution:

Recall that all ideals of Zn is principal. Thus for Z6 we have

(0) = 6Z6 = {0},

(1) = Z6 = (5), where (5, 6) = 1

(2) = 2Z6 = {0, 2, 4} = (4),

(3) = 3Z6 = {0, 3}.

Note that 1, 2, 3, and 6 are divisors of 6. While the divisors of 9 are 1, 3, and 9 and hence for

Z9 we have

(0) = 9Z9 = {0},

(1) = Z9 = (2) = (4) = (5) = (7) = (8), and

(3) = 3Z9 = {0, 3, 6} = (6).

And the divisors of 12 are 1, 2, 3, 4, 6, and 12. Thus the ideals of Z12 are:

(0) = 12Z12 = {0},

(1) = Z12 = (5) = (7) = (11),

(2) = 2Z12 = {0, 2, 4, 6, 8, 10} = (10),

(3) = 3Z12 = {0, 3, 6, 9} = (9),

(4) = 4Z12 = {0, 4, 8} = (8), and

(6) = 6Z12 = {0, 6}.
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Exercise 3.2.1: #38.12 @page : 180

Show that every subring of Z is an ideal of Z.

Solution:

Let S be a subring of Z. For any s ∈ S,
n∑
i=1

s ∈ S (additive closure). But
n∑
i=1

s = ns ∈ S.

Thus, S is an ideal of Z.

Exercise 3.2.2: #38.13 @page : 180

Show that the constant polynomials in Z[x] form a subring that is not an ideal of Z[x].

Solution:

Clearly, constant polynomials in Z[x] is a subring since Z is a ring. Furthermore, 3 is a

constant polynomial and x ∈ Z[x], but 3x is not a constant polynomial. Hence the constant

polynomials is not an ideal of Z[x].

Exercise 3.2.3: #38.14 @page : 181

Show that if R is a commutative ring with unity e, and a ∈ R, then (a) is the smallest ideal

of R containing a.

Solution:

Let I be any ideal of R containing a. We prove that (a) ⊆ I. Let b ∈ (a). Then there is

r ∈ R such that b = ar, but ar ∈ I since a ∈ I. Hence ar = b ∈ I. That is (a) ⊆ I.

Exercise 3.2.4: Non-principal ideal #38.18 @page : 181

Let I denote the set of all polynomials in Z[x] that have an even number as the constant

term.

1. Show that I is an ideal of Z[x].

2. Show that I is not a princial ideal of Z[x].

Solution:

1. Clearly 0 ∈ I so I is not empty. If r = 2a0 + a1x + · · · , s = 2b0 + b1x + · · · ∈ I, then

−s ∈ I since −2b0 is an even number and hence r − s = 2(a0 − b0) + · · · ∈ I. Also,
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Let f(x) = 2a0 + a1x + · · · ∈ I and g(x) = b0 + b1x + · · · ∈ Z[x]. Then f(x)g(x) =

c0 + c1x+ c2x
2 + · · · , where c0 = 2a0b0 which is even. Thus f(x)g(x) ∈ I. Thus I is an

ideal of Z[x].

2. Note that f(x) = x + 2 and g(x) = x + 4 are two irreducible polynomials in Z[x]

and they are both contained in I. Assume that I = (a) for some nonzero a ∈ Z[x].

Then both f(x) and g(x) are multiples of a. But since (f(x), g(x)) = 1, we have

f(x) · u+ g(x) · v = 1 ∈ (a), for any u, v ∈ Z[x]. But clearly 1 6∈ I. Therefore, I cannot

be a principal ideal.

Exercise 3.2.5

If R is a commutative ring and a ∈ R, show that Ia = {x ∈ R : ax = 0} is an ideal of R.

Solution:

Clearly, a0 = 0 ∈ Ia implies that Ia is not empty. For x, y ∈ Ia, we have ax = ay = 0.

Hence a(x − y) = 0. Thus, x − y ∈ Ia. Further a(xy) = (ax)y = 0y = 0 implies that

xy ∈ Ia. Therefore, Ia is a subring of R. Let r ∈ R and x ∈ Ia. Then ax = 0, and hence

a(xr) = (ax)r = 0. Thus xr ∈ Ia. As R is commutative, we get rx ∈ Ia. Therefore Ia is an

ideal of R.

Exercise 3.2.6

Given the set S =


x y

0 z

 : x, y, z ∈ Z

 is a ring with respect to matrix addition and

multiplication. Show that I =


a b

0 0

 : a, b ∈ Z

 is an ideal of S.

Solution:

Clearly I 6= φ as the zero matrix O ∈ I. Let A =
a b

0 0

 , B =
c d

0 0

 ∈ I. Then

A−B =
a− c b− d

0 0

 ∈ I, and AB =
ac ad

0 0

 ∈ I.
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Thus I is a subring of S. If C =
x y

0 z

 ∈ S and A =
a b

0 0

 ∈ I, then

AC =
a b

0 0

x y
0 z

 =
ax ay + bz

0 0

 ∈ I, and

CA =
x y

0 z

a b
0 0

 =
ax bx

0 0

 ∈ I.
Therefore, I is an ideal of S.

Exercise 3.2.7

Show that the set of all nilpotent elements in a commutative ring R forms an ideal of R.

Solution:

Let I = {a ∈ R : an = 0 for some n ∈ N}. Clearly I 6= φ since 01 = 0 ∈ I. Let a, b ∈ I. Then

an = 0 and bm = 0 for some n,m ∈ N. Using the Bionomial Theorem (R is commutative),

we have

(a− b)n+m =
n+m∑
k=0

cka
k(−b)n+m−k, where ck ∈ Z.

If k ≥ n, then ak = 0 and hence ckak(−b)n+m−k = 0. If otherwise k < n, then n+m− k ≥ m

and hence ckak(−b)n+m−k = 0 since bn+m−k = 0. Thus, a − b ∈ I. Further (ab)n = anbn =

0bn = 0 and hence ab ∈ I. Therefore, I is a subring of R.

Let r ∈ R, then (ar)n = anrn = 0rn = 0. That is ar ∈ I, and by commutativity, we get

ra ∈ I. Therefore, I is an ideal of R.

Exercise 3.2.8

Let R be a commutative ring with unity and that I is an ideal of R. Show that S =

{a ∈ R : an ∈ I, for some n ∈ N} is an ideal of R.

Solution:

Clearly 01 = 0 ∈ I and hence 0 ∈ S 6= φ. Let a, b ∈ S. Then an, bm ∈ I for some n,m ∈ N.

Using the Bionomial Theorem (R is commutative), we have

(a− b)n+m =
n+m∑
k=0

cka
k(−b)n+m−k, where ck ∈ Z.



84 Chapter 3. Quotient Rings

If k ≥ n, then ak = anak−n ∈ I since I is an ideal and an ∈ I. Thus ckak(−b)n+m−k ∈ I. If

otherwise k < n, then n+m−k ≥ m and hence ckak(−b)n+m−k ∈ I since bn+m−k = bmbn−k ∈ I.

Thus, (a− b)n+m ∈ I and hence a− b ∈ S. Further (ab)n = anbn ∈ I since an ∈ I. Therefore,

ab ∈ S. Therefore, S is a subring of R.

Let r ∈ R and a ∈ S, then (ar)n = anrn ∈ I since an ∈ I and I is an ideal. That is ar ∈ S,

and by commutativity, we get ra ∈ S. Therefore, S is an ideal of R.

Exercise 3.2.9: #38.20 @page : 181

Prove that if F is a field, R is a ring, and θ : F → R is a ring homomorphism, then either θ

is one-to-one or θ(a) = 0 for all a ∈ F .

Solution:

Note that ker θ is an ideal of F . An ideal of a field is either {0} or F . If ker θ = {0}, then θ

is one-to-one. Otherwise, ker θ = F and hence a ∈ ker θ for all a ∈ F . Thus, θ(a) = 0 for all

a ∈ F .
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Section 3.3: Quotient Rings

Remark 3.3.1

If I is an ideal of a ring R, then I is a normal subgroup of the additive group of R. This is

because the additive group of R is abelian by definition of rings.

Theorem 3.3.1

Let I be an ideal of a ring R, and let R/ I denote the set of all left cosets of I considered as

a subgroup of the additive subgroup of R. For a+ I, b+ I ∈ R/ I, for any a, b ∈ R let

(a+ I) + (b+ I) = (a+ b) + I, and (a+ I)(b+ I) = ab+ I.

With these operations, R/ I is a ring. This ring is called the quotient ring of R by I.

Proof:

From Math-261, R/ I is an abelian (quotient) group. Now let a+ I, b+ I, c+ I ∈ R/ I, then

[(a+ I)(b+ I)](c+ I) = (ab+ I)(c+ I) = (ab)c+ I = a(bc) + I

= (a+ I) + (bc+ I) = (a+ I)[(b+ I)(c+ I)].

Thus, multiplication is associative on R/ I. Moreover,

(a+ I)[(b+ I) + (c+ I)] = (a+ I)[(b+ c) + I] = a(b+ c) + I = (ab+ ac) + I

= (ab+ I) + (ac+ I) = (a+ I)(b+ I) + (a+ I)(c+ I).

Thus, the left distribution law is satisfied. The proof of right distribution law is similar.

Therefore R/ I is ring.

Theorem 3.3.2

Let R be a ring and I be an ideal of R. Then,

1. If R is commutative, then R/ I is commutative.

2. If e is the unity of R, then e+ I is the unity of R/ I.
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Example 3.3.1: #39.6 @page : 183

Show that if I is an ideal of a ring R, then R/ I is commutative iff ab− ba ∈ I for all a, b ∈ R.

Solution:

Let a, b ∈ R and a+ I, b+ I ∈ R/ I. Then,

(a+ I)(b+ I) = (b+ I)(a+ I) iff ab+ I = ba+ I

iff (ab+ I)− (ba+ I) = 0 + I

iff (ab− ba) + I = 0 + I = I

iff ab− ba ∈ I.

Theorem 3.3.3

If R is a ring and I is an ideal of R, then the mapping θ : R→ R/ I defined by θ(a) = a+ I,

for each a ∈ R, is a homomorphism of R onto R/ I, and ker θ = I.

Proof:

For any a, b ∈ R, we have:

• θ(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = θ(a) + θ(b).

• θ(ab) = ab+ I = (a+ I)(b+ I) = θ(a)θ(b).

Therefore, θ is a homomorphism, and for any a+ I ∈ R/ I, we have a ∈ R with θ(a) = a+ I.

Thus θ is a homomorphism onto R/ I. To show that ker θ = I, note that

a ∈ ker θ iff θ(a) = 0 + I iff a+ I = 0 + I = I iff a ∈ I.

Theorem 3.3.4: The Fundamental Homomorphism Theorem For Rings

Let R and S be rings, and let θ : R→ S be a homomorphism from R onto S with ker θ = I.

Then the mapping φ : R/ I → S defined by

φ(a+ I) = θ(a), for each a+ I ∈ R/ I

is an isomorphism of R/ I onto S. Therefore, R/ I ≈ S.
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Theorem 3.3.5

Let R be a commutative ring with unity. Then:

1. If M 6= R is an ideal of R, then M is maximal iff R/M is a field.

2. If P 6= R is an ideal of R, then P is prime iff R/P is an integral domain.

3. Every maximal ideal of R is a prime ideal of R.

Proof:

1. ” ⇒ ”: Let M be a maximal ideal of R. We show that if a + M ∈ R/M is a nonzero

element, then it has a multiplicative inverse b+M such that (a+M)(b+M) = e+M .

Note that a+M 6= 0 +M iff a 6∈M . Let J = {r + ax : r ∈M and x ∈ R} be an ideal

of R that contains properly M . But since M is maximal, we have J = R and hence

e ∈ J . Therefore, e = r + ab for some r ∈M and b ∈ R. Thus

(a+M)(b+M)− (e+M) = (ab− e) +M = (−r) +M = M = 0 +M.

That is (a+M)(b+M) = e+M . Therefore, R/M is a field.

”⇐ ”: Suppose R/M is a field and M $ J for some ideal J . We need to show J = R.

As J 6= M , there is some a ∈ J −M . Then clearly a 6= 0 since 0 ∈ M . As R/M is

a field, there is b ∈ R such that (a + M)(b + M) = e + M = (b + M)(a + M). Thus,

ab + M = e + M . That is ab − e ∈ M . But then ab ∈ J and ab − e ∈ M ⊂ J implies

that e = ab− (ab− e) ∈ J . Therefore, J = R which implies that M is maximal.

2. We note that the zero of R/P is 0 + P = P . Then R/P is an integral domain iff

(a+P )(b+P ) = 0+P implies a+P = P or b+P = P iff ab+P = P implies a+P = P

or b+ P = P iff ab ∈ P implies a ∈ P or b ∈ P iff P is a prime ideal of R.

3. Assume that M is a maximal ideal of R. Then R/M is a field and hence it is an integral

domain. Therefore, M is a prime ideal of R.

Example 3.3.2

What are prime and maximal ideals of Z6 and Z12.

Solution:

Note that a finite integral domain is a field. Thus the maximal and the prime ideals are the

same.
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For Z6, we have (2) = {0, 2, 4} and (3) = {0, 3} are both prime and maximal ideals, because

the corresponding factor rings, namely Z6 / (2) and Z6 / (3), are isomorphic to the fields Z2

and Z3.

For Z12, we have (2) = {0, 2, 4, 6, 8, 10} and (3) = {0, 3, 6, 9} are both prime and maximal

ideals, because the corresponding factor rings, namely Z12 / (2) and Z12 / (3), are isomorphic

to the fields Z2 and Z3.
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Exercise 3.3.1

Show that if R is a finite commutative ring with unity, then every prime ideal in R is maximal.

Solution:

Let P be a prime ideal of R. Then R/P is a ”finite” integral domain and hence it is a field.

Therefore, P is maximal.

Exercise 3.3.2

Consider the ring R = Z[x] and let I = (x) = {xf(x) : f(x) ∈ R} be an ideal of R. Show

that R/ I ≈ Z.

Hint: Use the Fundamental Homomorphism Theorem For Rings with θ : R → Z defined by

θ(anxn + · · ·+ a0) = a0.

Solution:

Note that for any f(x), g(x) ∈ R, f(x) − g(x) ∈ I iff f(x) and g(x) have the same constant

term. We use the Fundamental Homomorphism Theorem For Rings: Let θ : R → Z defined

by θ(anxn + · · ·+ a0) = a0. Let f(x) = anx
n + · · ·+ a0, g(x) = bmx

m + · · ·+ b0 ∈ R. Then

• θ(f(x) + g(x)) = θ(clxl + · · ·+ c0) = c0 = a0 + b0 = θ(f(x)) + θ(g(x)), and

• θ(f(x)g(x)) = θ(dkxk + · · ·+ d0) = d0 = a0b0 = θ(f(x))θ(g(x)),

where we only focus on the constant terms in the addition and multiplication of f(x) and

g(x). Therefore, θ is a ring homomorphism. We now prove that θ is onto Z. Let a ∈ Z. Then

f(x) = anx
n + · · ·+ a ∈ R with θ(f(x)) = a. Thus θ is onto Z.

We now show that ker θ = I. Clearly,

f(x) = anx
n + · · ·+ a1x+ a0 ∈ ker θ iff θ(f(x)) = 0 iff a0 = 0

iff f(x) = x(anxn−1 + · · ·+ a1) iff f(x) ∈ I.

Thus, ker θ = I. By the Fundamental Homomorphism Theorem For Rings, we have R/ I ≈ Z.
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Exercise 3.3.3: Part of #39.9 @page : 184

Let I and J be two ideals of a ring R, and define I + J = {a+ b : a ∈ I and b ∈ J}. Then

1. Show that I + J is an ideal of R containing each of I and J .

2. Show that I (or equivalently J) is an ideal of I + J .

3. Show that I ∩ J is an ideal of I (or equivalently J).

4. Show that if J ⊆ I, then I / J is an ideal of R/J .

5. The First Isomorphism Theorem For Rings: Show that I / (I ∩ J) ≈ (I + J) / J .

6. The Second Isomorphism Theorem For Rings: Show that if J ⊆ I, then I / J is

an ideal of R/J , and (R/J) / (I / J) ≈ R/ I.

Solution:

1. Clearly, 0 = 0+0 ∈ I+J and hence I+J is not empty. Let x, y ∈ I+J . Then x = a1+b1

and y = a2 + b2, where a1, a2 ∈ I and b1, b2 ∈ J . Then x− y = (a1 + b1)− (a2 + b2) =

(a1 − a2) + (b1 − b2) ∈ I + J .

Finally for any r ∈ R, (a + b)r = ar + br ∈ I + J as ar ∈ I and br ∈ J . Note that for

any a ∈ I, a = a+ 0 ∈ I + J and hence I ⊆ I + J . In a similar way, J ⊆ I + J .

2. Part (1) implies that I is a subring of I + J . Further if a ∈ I and x ∈ I + J ⊆ R, then

ax, xa ∈ I since I is an ideal of R.

3. If I and J are subrings of R, then so is I ∩ J . Moreover, I ∩ J ⊆ I and hence I ∩ J is a

subring of I. Let x ∈ I ∩ J ⊆ R and a ∈ I. Then clearly ax, xa ∈ I (I is an ideal of R).

4. Clearly, I / J and R/J are both rings and I / J = {i+ J : i ∈ I} ⊆ R/J . Thus,

I / J is a subring of R/J . Moreover, if r + J ∈ R/J and a + J ∈ I / J . Then

(r + J)(a + J) = ra + J with ra ∈ I as it is an ideal of R. Therefore, ra + J ∈ I / J .

The proof of (a+ J)(r + J) ∈ I / J is similar. Therefore, I / J is an ideal of R/J .

5. We simply show the statement using the Fundamental Theorem for Ring Homomor-

phism. Let θ : I → (I + J) / J , defined by θ(a) = a + J for any a ∈ I. Let a, b ∈ I.

Then

• θ(a+ b) = (a+ b) + J = (a+ J) + (b+ J) = θ(a) + θ(b), and

• θ(ab) = (ab) + J = (a+ J)(b+ J) = θ(a)θ(b).

Therefore, θ is a ring homomorphism. We now prove that θ is onto. Assume that

x + J ∈ (I + J) / J . Then, x = a + b ∈ I + J for some a ∈ I and b ∈ J . That is,
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θ(a) = a+ J = a+ (b+ J) = (a+ b) + J = x+ J . Therefore, θ is onto homomorphism.

We now prove that ker θ = I ∩ J . For any a ∈ I, we have

a ∈ ker θ iff θ(a) = 0 + J iff a+ J = 0 + J iff a ∈ J iff a ∈ I ∩ J.

Thus, ker θ = I ∩ J . By the Fundamental Theorem of ring homomorphism, we have

I / (I ∩ J) ≈ (I + J) / J .

6. We first show that I / J is an ideal of R/J . Clearly, I / J and R/J are both rings

and I / J = {i+ J : i ∈ I} ⊆ R/J . Thus, I / J is a subring of R/J . Moreover, if

r + J ∈ R/J and a + J ∈ I / J . Then (r + J)(a + J) = ra + J with ra ∈ I as it is an

ideal of R. Therefore, ra + J ∈ I / J . The proof of (a + J)(r + J) ∈ I / J is similar.

Therefore, I / J is an ideal of R/J .

We now show the isomorphism part of the statement. Let θ : R/J → R/ I, defined by

θ(r + J) = r + I for any r ∈ R. Let a, b ∈ R so that a+ J, b+ J ∈ R/J . Then:

• θ((a+ J) + (b+ J)) = θ((a+ b) + J) = (a + b) + I = (a + I) + (b + I) = θ(a +

J) + θ(b+ J), and

• θ((a+ J)(b+ J)) = θ((ab) + J) = (ab) + I = (a+ I)(b+ I) = θ(a+ J)θ(b+ J).

Therefore, θ is a ring homomorphism. We now prove that θ is onto. Assume that r+I ∈

R/ I for some r ∈ R. That is, θ(r + J) = r + I, and hence θ is onto homomorphism.

We now prove that ker θ = I / J .

a+ J ∈ ker θ iff θ(a+ J) = 0 + I iff a+ I = 0 + I iff a ∈ I iff a+ J ∈ I / J.

Thus, ker θ = I / J . By the Fundamental Theorem of ring homomorphism, we have

(R/J) / (I / J) ≈ R/ I.
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Section 3.4: Quotient Rings of F[x]

Theorem 3.4.1

For a field F an ideal I = (p(x)) 6= {0} of F [x] is maximal iff p(x) is irreducible in F [x].

Proof:

” ⇒ ”: Since I is a maximal ideal of F [x], it is a prime ideal. If p(x) = f(x)g(x) is a

factorization of p(x) in F [x]. Then either f(x) ∈ I or g(x) ∈ I. Thus either f(x) a multiple

of p(x) or g(x) is a multiple of p(x). But then we cannot have the degrees of both f(x) and

g(x) less than the degree of p(x). Therefore no such factorization exist and hence p(x) is

irreducible in F [x].

”⇐ ”: Assume that p(x) is irreducible over F . Let N be an ideal so that I ⊆ N ⊆ F [x]. Now

N is a principal ideal of F [x] (Since F is a field). Thus N = (g(x)) for some g(x) ∈ N . Then

p(x) ∈ N implies that p(x) = g(x)q(x) for some q(x) ∈ F [x]. But since p(x) is irreducible,

we must have either g(x) or q(x) is of degree 0. If deg g(x) = 0, then it is a nonzero constant

(unit) in F and hence (g(x)) = N = F [x]. If deg q(x) = 0, then q(x) = c and hence

g(x) = c−1p(x) ∈ (p(x)). So (p(x)) = N . Therefore, it is not possible to have I ⊆ N ⊆ F [x].

Thus (p(x)) is maximal ideal of F [x].

Theorem 3.4.2

If F is a field and I = (p(x)) is a nonzero element in F [x], then F [x] / I is a field iff (p(x)) is

maximal of F [x] iff p(x) is irreducible over F .

Example 3.4.1

Find all c ∈ Z3 such that Z3[x] / (x2 + c) is a field.

Solution:

Simply Z3[x] / (x2 + c) is a field iff x2 + c is irreducible over Z3. Let f(x) = x2 ∈ Z3[x]. Then

f(0) = 0, f(1) = 1, and f(2) = 1. We need to find a value for c ∈ Z3 so that 0 + c and 1 + c

are both nonzero. Therefore c = 1.
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Example 3.4.2

Find all c ∈ Z3 such that Z3[x] / (x3 + cx2 + 1) is a field.

Solution:

Simply Z3[x] / (x3 + cx2 + 1) is a field iff f(x) = x3 + cx2 + 1 is irreducible over Z3. If c = 0,

then f(2) = 0 and when c = 1, then f(1) = 0. But if c = 2, we get f(x) = x3 + 2x + 1 with

no zeros. Thus c = 2 is the only choice.

Theorem 3.4.3

Assume that F is a field, p(x) is a polynomial of degree n over F , and I = (p(x)) is an ideal

of F [x]. Then each element of F [x] / I can be expressed uniquely in the form

(b0 + b1x+ · · ·+ bn−1x
n−1) + I, with b0, b1, · · · , bn−1 ∈ F. (3.4.1)

Moreover, {b+ I : b ∈ F} is a subfield of F [x] / I isomorphic to F .

Proof:

If f(x) + I ∈ F [x] / I, then by the Division Algorithm, f(x) = p(x)q(x) + r(x) for some

q(x), r(x) ∈ F [x] with r(x) = 0 or deg r(x) < deg p(x). Thus, f(x) − r(x) = p(x)q(x) ∈ I,

and hence f(x) + I = r(x) + I. Therefore, each element of F [x] / I can be expressed in at

least one way in the form (3.4.1).

On the other hand, if

(b0 + b1x+ · · · bn−1x
n−1) + I = (c0 + c1x+ · · ·+ cn−1x

n−1) + I,

then

(b0 − c0) + (b1 − c1)x+ · · ·+ (bn−1 − cn−1)xn−1 ∈ I,

so that p(x) divides (b0 − c0) + · · · + (bn−1 − cn−1)xn−1. But since deg p(x) = n > n − 1, we

have (b0− c0)+ · · ·+(bn−1− cn−1)xn−1 = 0. Therefore, b0 = c0, b1 = c1, · · · , bn−1 = cn−1. This

proves uniqueness.

Let θ : F → E, defined by θ(b) = b + I, where E = {b+ I : b ∈ F}, where b is a polynomial

of degree at most n−1. Clearly, θ is onto homomorphism. Also θ is one-to-one as it is proved

above. Therefore, θ is an isomorphism and then E ≈ F .
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Remark 3.4.1

The proof of the previous Theorem shows that if f(x) ∈ F [x], and if f(x) = p(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < deg p(x), then f(x) + I = r(x) + I. This allows us to represent

elements of F [x] / (p(x)) by polynomials of degree less than deg p(x).

Example 3.4.3

Construct the field C from the field R. Or: Let I = (1 + x2). Show that R[x] / I ≈ C.

Solution:

Let p(x) = 1 + x2 and I = (p(x)). Note that p(x) is irreducible over R and hence R[x] / I is

a field. By Theorem 3.4.3, each element of R[x] / I can be written uniquely as (a + bx) + I

with a, b ∈ R.

Define θ : R[x] / I → C by θ((a+ bx) + I) = a+ bi. Then we show that θ an isomorphism:

• θ is 1-1: Let θ((a+ bx) + I) = θ((c+ dx) + I). Then a+ bi = c+ di which implies that

a = c and b = d. Thus, a+ bx = c+ dx and hence the result.

• θ is onto: For any a+ bi ∈ C, a, b ∈ R with θ((a+ bx) + I) = a+ bi. Thus, θ is onto.

• θ is homomorphism: Let (a+ bx) + I, (c+ dx) + I ∈ R[x] / I. Then:

θ((a+ bx) + I + (c+ dx) + I) = θ(((a+ c) + (b+ d)x) + I) = (a+ c) + (b+ d)i

= (a+ bi) + (c+ di)

= θ((a+ bx) + I) + θ((c+ dx) + I).

For multiplication, we have:

θ(((a+ bx) + I)((c+ dx) + I)) = θ((ac+ (ad+ bc)x+ (bd)x2) + I).

So, we use Theorem 3.4.3 to represent (ac+ (ad+ bc)x+ (bd)x2) + I as (u+ vx) + I. We use

long division to get: ac+ (ad+ bc)x+ (bd)x2 = (1 + x2)bd+ (ac− bd) + (ad+ bc)x. So that

u+ vx = (ac− bd) + (ad+ bc)x. Thus,

θ(((a+ bx) + I)((c+ dx) + I)) = θ((ac+ (ad+ bc)x+ (bdx2) + I)

= θ(((ac− bd) + (ad+ bc)x) + I) = (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di) = θ((a+ bx) + I)θ((c+ dx) + I).

Therefore, θ is an isomorphism and hence R[x] / I ≈ C.
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Example 3.4.4

Show that if F is a field, then every proper nontrivial prime ideal of F [x] is maximal.

Solution:

Recall that every ideal of F [x] is principal. Let (f(x)) 6= {0} be a proper prime ideal of F [x].

Then every polynomial in (f(x)) is of degree greater than or equal to degree of f(x). Thus if

f(x) = g(x)h(x) ∈ F [x] where deg g(x) and deg h(x) are less than deg f(x), then neither g(x)

nor h(x) can be in (f(x)). But this contradict the definition of prime ideals. Therefore, no

factorization of f(x) in F [x] can exist. That is f(x) is irreducible in F [x]. Therefore, (f(x))

is maximal ideal in F [x].
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Exercise 3.4.1: #40.1 @page : 187

Show that if F is a field with unity e, and I is an ideal of F [x], then F [x] / I is commutative

with unity e+ I.

Solution:

Clearly, F is a field and hence F is commutative. Thus F [x] is commutative and hence F [x] / I

is also commutative. For any a+ I ∈ F [x] / I, we have

(a+ I)(e+ I) = ae+ I = a+ I = ea+ I = (e+ I)(a+ I).

Therefore, e+ I is a unity of F [x] / I.

Exercise 3.4.2: #40.2 @page : 187

Prove that if F is a field and f(x), p(x) ∈ F [x], with p(x) is irreducible and p(x) - f(x), then

(p(x), f(x)) = e, the unity of F .

Solution:

Let d(x) = (p(x), f(x)). Then d(x) | p(x) and d(x) | f(x). But since p(x) is irreducible

polynomial, d(x) is either an associate of e or an associate of p(x). Since p(x) - f(x), d(x) is

not associate of p(x). Therefore, d(x) is an associate of e. Thus, (p(x), f(x)) = e.

Exercise 3.4.3: #40.5 @page : 187

Prove that if F is a subfield of a field E, c ∈ E, then θ : F [x]→ E defined by θ(f(x)) = f(c)

is a homomorphism.

Solution:

Let f(x), g(x) ∈ F [x], then

θ(f(x) + g(x)) = θ((f + g)(x)) = (f + g)(c) = f(c) + g(c) = θ(f(x)) + θ(g(x)), and

θ(f(x)g(x)) = θ((fg)(x)) = (fg)(c) = f(c)g(c) = θ(f(x))θ(g(x)).
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Exercise 3.4.4: #40.11 @page : 187

Suppose that F is a field and f(x), g(x) ∈ F [x]. Show that (f(x)) = (g(x)) iff f(x) and g(x)

are associates.

Solution:

” ⇒ ”: Assume that (f(x)) = (g(x)). Clearly f(x) ∈ (g(x)) and g(x) ∈ (f(x)). Then there

are q(x), r(x) ∈ F [x] such that g(x) = f(x)q(x) and f(x) = g(x)r(x). Hence f(x) | g(x) and

g(x) | f(x). Therefore, f(x) and g(x) are associates.

”⇐ ”: Assume that f(x) and g(x) are associates. Then f(x) = c g(x) for some c ∈ F . Hence

f(x) ∈ (g(x)) which implies that (f(x)) ⊆ (g(x)). Similarly, (g(x)) ⊆ (f(x)) and hence

(f(x)) = (g(x)).

Exercise 3.4.5

Find all c ∈ Z3 such that Z3[x] / (x3 + x2 + c) is a field.

Solution:

Simply Z3[x] / (x3 + x2 + c) is a field iff x3 +x2 +c is irreducible over Z3. Let f(x) = x3 +x2 ∈

Z3[x]. Then f(0) = 0, f(1) = 2, and f(2) = 0. We need to find a value for c ∈ Z3 so that

0 + c and 2 + c are both nonzero. Therefore c = 2.

Exercise 3.4.6

Find all c ∈ Z5 such that Z5[x] / (x2 + x+ c) is a field.

Solution:

Simply Z5[x] / (x2 + x+ c) is a field iff x2 + x+ c is irreducible over Z5. Let f(x) = x2 + x ∈

Z5[x]. Then f(0) = 0, f(1) = 2, f(2) = 1, f(3) = 2, and f(4) = 0. We need to find a value

for c ∈ Z5 so that 0 + c, 1 + c and 2 + c are all nonzero. Therefore c can be either 1 or 2.

Exercise 3.4.7

Find all c ∈ Z5 such that Z5[x] / (x2 + cx+ 1) is a field.

Solution:
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Simply Z5[x] / (x2 + cx+ 1) is a field iff f(x) = x2 + cx + 1 is irreducible over Z5. If c = 0,

then f(2) = 0; when c = 1, then f(x) has no zeros; when c = 2, then f(−1) = 0; when c = 3,

then f(1) = 0; and when c = 4, then f(x) has no zeros. Therefore, c can be either 1 or 4.



4
Chapter

Field Extension

Section 4.1: Adjoining Roots

Definition 4.1.1

A field E is called an extension of a field F , if E contains a subfield isomorphic to F . Often,

F is thought of as actually being a subfield of E. Further, Any field is an extension of itself.

For instance, R is an extension of Q, and C is an extension of both R and Q.

Theorem 4.1.1

Let F be a field and let f(x) be a nonconstant polynomial in F [x]. Then there exists an

extension field E of F and an a ∈ E such that f(a) = 0.

Let E be an extension of a field F . Assume that F ⊆ E. Let S be a subset of E. Then there is

at least one subfield of E containing both F and S, namely E. Let F (S) denote the intersection of

all subfields of E containing both F and S. Then F (S) is a subfield of E. Moreover, if S ⊆ F , then

F (S) = F .

If S = {a1, a2, · · · , an}, then F (a1, a2, · · · , an) denotes F (S). For example, R(i) = C. In other-

words, F (S) consists of all the element in E that can be obtained from F and S by repeated addition,

multiplication, and taking additive and multiplicative inverses in E. If E = F (a) for some a ∈ E,

then E is said to be a simple extension of F .

Definition 4.1.2

An element a of an extension field E of a field F is algebraic over F if f(a) = 0 for some

nonzero f(x) ∈ F [x]. If a is not algebraic over F , then a is transcendental over F .

The extension field E of F is called a simple extension of F if E = F (a) for some a ∈ E.

If a is algebraic over F , then E is called a simple algebraic extension of F . Further, E is

called an algebraic extension of F if every element in E is algebraic over F .

99
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Theorem 4.1.2

If E is an extension field of a field F , with E = F (a) and a algebraic over F , then there is a

unique (up to a constant factor in F ) irreducible nonconstant polynomial of minimal degree

p(x) in F [x] having a as a root. That is

E ≈ F [x] / (p(x)),

Moreover, if f(a) = 0 for a nonzero f(x) ∈ F [x], then p(x) divides f(x).

Definition 4.1.3

Let E be an extension field of a field F , and let a ∈ E be algebraic over F . The unique monic

polynomial p(x) having the property described in Theorem 4.1.2 is called the irreducible

polynomial for a over F and will be denoted by irr(a, F ). The degree of irr(a, F ) is the

degree of a over F , denoted by deg(a, F ).

Remark 4.1.1

Theorem 3.4.3 states that if F is a field and p(x) ∈ F [x] is irreducible over F , then each

element of F [x] / (p(x)) can be expressed uniquely in the form

(b0 + b1x+ · · ·+ bn−1x
n−1) + I, with b0, b1, · · · , bn−1 ∈ F. (4.1.1)

That is as α = x+ I, each element in F [x] / (p(x)) can be expressed uniquely as

b0 + b1α + · · ·+ bn−1α
n−1, with b0, b1, · · · , bn−1 ∈ F. (4.1.2)

Example 4.1.1

The polynomial p(x) = x2 − 2 is irreducible over Q. Thus, Q[x] / (p(x)) is an extension field

of Q, which contains a root α of p(x). Clearly,
√

2 is a root of p(x) which is algebraic over Q.

To see that, α =
√

2 implies that α2 = 2 and hence α2 − 2 = 0. Therefore, α =
√

2 is a root

for p(x) = x2 − 2 ∈ Q[x].

Thus, each element in Q[x] / (p(x)) can be written uniquely in the form a+bα, where a, b ∈ Q

and α = x+ (x2 − 2). Moreover, irr
(√

2,Q
)

= x2 − 2 with degree 2.
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Theorem 4.1.3

Assume that F is a field and p(x) ∈ F [x] is irreducible over F . Then F [x] / (p(x)) is a field

extension of F , and p(x) has a root in F [x] / (p(x)).

Proof:

Let I = (p(x)). Since F is a field and p(x) is irreducible in F [x], then F [x] / I is a field. Note

that {b+ I : b ∈ F} is a subfield of F [x] / I that is isomorphic to F . Hence F [x] / I is an

extension of F .

Assume that p(x) = a0 + a1x + · · · + anx
n, and let α denote the element x + I ∈ F [x] / I.

Then

p(α) = a0 + a1(x+ I) + · · · an(x+ I)n

= (a0 + a1x+ · · ·+ anx
n) + I = p(x) + I = I

But I is the zero element in F [x] / I. Thus α is a root of p(x) in F [x] / I.

Corollary 4.1.1

Assume that F is a field and p(x) ∈ F [x] is irreducible over F . Then F [x] / (p(x)) contains a

root α of p(x), and each element of F [x] / (p(x)) can be expressed uniquely in the form (4.1.2).

Moreover, elements of the form (4.1.2) are added and subtracted using the usual addition and

subtraction of polynomials. To multiply elements f(α) and g(α) of the form (4.1.2), multiply

them as polynomials and divide the result by p(α); the remainder will equal f(α) g(α).

Example 4.1.2

Show that every element in Q
(√

5
)

can be written in the form a+ b
√

5 with a, b ∈ Q.

Solution:

Note that Q[x] / (x2 − 5) ≈ Q
(√

5
)

and hence every element in Q[x] / (x2 − 5) can be written

as a + bα, where α is a root of x2 − 5 and a, b ∈ Q. Thus, using the isomorphism mapping

θ : Q[x] / (x2 − 5)→ Q
(√

5
)

defined by θ(a + bα) = a + b
√

5, we can see that every element

of Q
(√

5
)

can be expressed in the form a+ b
√

5 with a, b ∈ Q.

We discuss the same problem in the next example in more details.
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Example 4.1.3

Show that θ : Q[x] / (x2 − 2)→ Q(
√

2) defined by θ(a+ bα) = a+ b
√

2, where α is a root of

x2 − 2 ∈ Q[x], is an isomorphism and compute (1− 2α)(2 + α) in Q[x] / (x2 − 2).

Solution:

We first prove the isomorphism part:

• θ is 1-1: Let θ(a + bα) = θ(c + dα) and hence a + b
√

2 = c + d
√

2. Thus a = c and

b = d. Therefore, a+ bα = c+ dα and hence θ is 1-1.

• θ is onto: Clearly, for any a+ b
√

2 ∈ Q(
√

2), we have a+ bα ∈ Q[x] / (x2 − 2) such that

θ(a+ bα) = a+ b
√

2. Thus θ is onto.

• θ is homomorphism:

θ((a+ bα) + (c+ dα)) = θ((a+ c) + (b+ d)α) = (a+ c) + (b+ d)
√

2

=
(
a+ b

√
2
)

+
(
c+ d

√
2
)

= θ(a+ bα) + θ(c+ dα).

Further, for a+ bα, c+ dα ∈ Q[x] / (x2 − 2), we have

(a+ bα)(c+ dα) = ac+ (ad+ bc)α + bdα2 = bdα2 − 2bd+ 2bd+ ac+ (ad+ bc)α

= bd(α2 − 2) + (ac+ 2bd) + (ad+ bc)α.

That is (a+ bα)(c+ dα) = (ac+ 2bd) + (ad+ bc)α in Q[x] / (x2 − 2). Hence

θ((a+ bα)(c+ dα)) = θ((ac+ 2bd) + (ad+ bc)α) = (ac+ 2bd) + (ad+ bc)
√

2

=
(
a+ b

√
2
)(
c+ d

√
2
)

= θ(a+ bα)θ(c+ dα).

Therefore, θ is an isomorphism and hence Q[x] / (x2 − 2) ≈ Q(
√

2).

To compute (1− 2α)(2 + α), we compute it first in Q[x] / (x2 − 2) as

(1− 2α)(2 + α) = 2− 3α− 2α2 = −
[
2α2 + 3α− 2 + (4− 4)

]
= −

[
2(α2 − 2) + 3α + 2

]
= −2(α2 − 2)− 3α− 2 = −3α− 2.

Or we compute it in Q(
√

2) as
(
1− 2

√
2
)(

2 +
√

2
)

= 2 +
√

2− 4
√

2− 4 = −3
√

2− 2.

Here you can see how θ simplified in Q(
√

2).
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We note that
√

2, i, and 3
√

3 are all algebraic over Q as they are zeros of x2−2, x2 + 1, and x3−3,

respectively.

Example 4.1.4

Show that Q
(√

2,
√

3
)

= Q
(√

2 +
√

3
)
, where Q

(√
2,
√

3
)

=
{
a+ b

√
2 + c

√
3 : a, b, c ∈ Q

}
and Q

(√
2 +
√

3
)

=
{
a+ b

(√
2 +
√

3
)

: a, b ∈ Q
}

.

Solution:

Clearly,
√

2,
√

3 ∈ Q
(√

2,
√

3
)

and hence
√

2 +
√

3 ∈ Q
(√

2,
√

3
)

which implies that

Q
(√

2 +
√

3
)
⊆ Q

(√
2,
√

3
)
.

We need now to prove the other direction of the inclusion by showing that both
√

2 and
√

3

are contained in Q
(√

2 +
√

3
)
. Clearly,

√
2 +
√

3 ∈ Q
(√

2 +
√

3
)

and so is its inverse

(√
2 +
√

3
)−1

= 1√
2 +
√

3

√
2−
√

3√
2−
√

3
=
√

2−
√

3
−1 =

√
3−
√

2 ∈ Q
(√

2 +
√

3
)
.

Therefore,
(√

2 +
√

3
)

+
(√

3−
√

2
)

= 2
√

3 ∈ Q
(√

2 +
√

3
)
, and thus

√
3 ∈ Q

(√
2 +
√

3
)
.

Similarly
(√

2 +
√

3
)
−
(√

3−
√

2
)

= 2
√

2 ∈ Q
(√

2 +
√

3
)

implies
√

2 ∈ Q
(√

2 +
√

3
)
.

So
√

2,
√

3 ∈ Q
(√

2 +
√

3
)

which implies that Q
(√

2,
√

3
)
⊆ Q

(√
2 +
√

3
)

and therefore

Q
(√

2 +
√

3
)

= Q
(√

2,
√

3
)
.

Example 4.1.5

Show that β =
√

2 +
√

3 is algebraic over Q. Find deg(β,Q).

Solution:

Note that β =
√

2 +
√

3 implies that β2 = 2 + 2
√

6 + 3. Then β2 − 5 = 2
√

6. Squaring both

sides again, we get β4 − 10β2 + 25 = 24. That is, β4 − 10β2 + 1 = 0.

Therefore, f(x) = x4 − 10x2 + 1 ∈ Q[x] (irreducible over Q, prove it!) with β is a root of

f(x).

Note that irr(β,Q) = f(x) of degree 4. Hence deg(β,Q) = 4. Hence f(x) is a nonzero

polynomial in Q[x] whose root is β and hence β is algebraic.
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Exercise 4.1.1

Let α ∈ Q[x] / (x2 − 7) be a root of the irreducible polynomial x2 − 7 ∈ Q[x]. Express each

of the following elements in the form a+ bα with a, b ∈ Q.

1. α3,

2. (1− α)(2 + α),

3. (1 + α)2, and

4. (1 + α)−1.

Solution:

1. α3 = α(α2 − 7 + 7) = α(α2 − 7) + 7α = 7α.

2. (1− α)(2 + α) = 2− α− α2 = 2− α− α2 + 7− 7 = −(α2 − 7)− α− 5 = −α− 5.

3. (1 + α)2 = 1 + 2α + α7 = 1 + 2α + α7 − 7 + 7 = (α2 − 7) + 2α + 8 = 2α + 8.

4. (1 + α)−1 = 1
1 + α

1− α
1− α = 1− α

−(α2 − 1) = 1− α
−(α2 − 7 + 7− 1) = 1− α

−(α2 − 7)− 6.

That is (1 + α)−1 = 1− α
−6 = −1

6 + α

6 .

Exercise 4.1.2: #42.5 @page : 197

Prove that Q(
√

2) 6= Q(
√

3).

Solution:

Assume that Q(
√

2) = Q(
√

3). Then Q(
√

2) ⊆ Q(
√

3) and in particular
√

2 ∈ Q(
√

3). That

is
√

2 = a + b
√

3 for some a, b ∈ Q. Squaring both sides, we get 2 = a2 + 2ab
√

3 + 3b2.

Therefore,
√

3 = 2− a2 − 3b2

2ab which cannot be as the right hand side is a rational number

while the left hand side is not rational. By contradiction proof, we get the result.

Exercise 4.1.3: #42.6 @page : 197

Show that every element of Q( 3
√

5) can be written in the form a+b 3
√

5+c 3
√

25, with a, b, c ∈ Q.

Solution:

Clearly, Q[x] / (x3 − 5) ≈ Q( 3
√

5). The isomorphism mapping is θ : Q[x] / (x3 − 5) → Q( 3
√

5)

is given by θ(a+ bα+ cα2) = a+ b 3
√

5 + c
3
√

52 where a, b, c ∈ Q, and α is a root for x3 − 5 in
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Q[x]. Thus, the result.

Exercise 4.1.4

Show that α =
√

1 +
√

3 is algebraic over Q and find deg(α,Q).

Solution:

Clearly, α =
√

1 +
√

3 and hence α2 = 1+
√

3 implies that (α2−1)2 = 3. Thus, α4−2α2−2 = 0.

Therefore p(x) = x4− 2x2− 2 ∈ Q[x] is irreducible over Q (by Eisenstein test with p = 2, for

instance) with a root α. Therefore, α is algebraic over Q and deg(α,Q) = 4.

Exercise 4.1.5

Let p and q be two distinct primes. Show that α = √p +√q is algebraic over Q by finding

an appropriate (quartic) polynomial in Q[x] with α as a root.

Solution:

Let α = √p + √q. Then α2 = p + 2√pq + q and hence α2 − (p + q) = 2√pq implies that

(α2 − (p+ q))2 = 4pq. Therefore,

α4 − 2(p+ q)α2 + (p+ q)2 − 4pq = 0 ⇒ α4 − 2(p+ q)α2 + (p− q)2 = 0.

Therefore, the polynomial f(x) = x4 − 2(p + q)x2 + (p − q) is a quartic polynomial in Q[x]

with α as a root.

Exercise 4.1.6

For any positive integers a and b, show that Q
(√

a,
√
b
)

= Q
(√

a+
√
b
)
.

Solution:

If a = b, then Q(
√
a,
√
a) = Q(

√
a) = Q(2

√
a). Otherwise assume that a 6= b. Clearly,

√
a,
√
b ∈ Q

(√
a,
√
b
)

and hence
√
a +
√
b ∈ Q

(√
a,
√
b
)

which implies that Q
(√

a+
√
b
)
⊆

Q
(√

a,
√
b
)
.

We need now to prove the other direction of the inclusion by showing that both
√
a and

√
b
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are contained in Q
(√

a+
√
b
)
. Clearly,

√
a+
√
b ∈ Q

(√
a+
√
b
)

and so is its inverse

(√
a+
√
b
)−1

= 1
√
a+
√
b

√
a−
√
b

√
a−
√
b

= 1
a− b

(√
a−
√
b
)
∈ Q

(√
a+
√
b
)
.

Since 0 6= a− b ∈ Q, we get
√
a−
√
b ∈ Q

(√
a+
√
b
)
.

Therefore,
(√

a+
√
b
)

+
(√

a−
√
b
)

= 2
√
a ∈ Q

(√
a+
√
b
)
, and thus

√
a ∈ Q

(√
a+
√
b
)
.

Similarly
(√

a+
√
b
)
−
(√

a−
√
b
)

= 2
√
b ∈ Q

(√
a+
√
b
)

implies
√
b ∈ Q

(√
a+
√
b
)
.

So
√
a,
√
b ∈ Q

(√
a+
√
b
)

which implies that Q
(√

a,
√
b
)
⊆ Q

(√
a+
√
b
)

and therefore

Q
(√

a+
√
b
)

= Q
(√

a,
√
b
)
.

Exercise 4.1.7

Show that Q
(√

2, i
)

= Q
(√

2 + i
√

2
)
. Show that Q

(√
2, i
)

= Q
(√

2 + i
)

Solution:

Clearly,
√

2, i ∈ Q
(√

2, i
)

which implies i
√

2 ∈ Q
(√

2, i
)

and hence
√

2 + i
√

2 ∈ Q
(√

2, i
)

which implies that Q
(√

2 + i
√

2
)
⊆ Q

(√
2, i
)
.

We need now to prove the other direction of the inclusion by showing that both
√

2 and i are

contained in Q
(√

2 + i
√

2
)
. Clearly,

√
2 + i

√
2 ∈ Q

(√
2 + i

√
2
)

and so is its inverse

(√
2 + i

√
2
)−1

= 1√
2 + i

√
2

√
2− i

√
2√

2− i
√

2
= 1

4
(√

2− i
√

2
)
∈ Q

(√
2 + i

√
2
)
.

Since 4 ∈ Q, we get
√

2− i
√

2 ∈ Q
(√

2 + i
√

2
)
.

Therefore,
(√

2 + i
√

2
)

+
(√

2− i
√

2
)

= 2
√

2 ∈ Q
(√

2 + i
√

2
)
, and thus

√
2 ∈ Q

(√
2 + i

√
2
)
.

Similarly
(√

2 + i
√

2
)
−
(√

2− i
√

2
)

= 2i
√

2 ∈ Q
(√

2 + i
√

2
)

implies i
√

2 ∈ Q
(√

2 + i
√

2
)
.

So
√

2, i
√

2 ∈ Q
(√

2 + i
√

2
)

which implies that Q
(√

2, i
)
⊆ Q

(√
2 + i

√
2
)

and therefore

Q
(√

2 + i
√

2
)

= Q
(√

2, i
)
.
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Section 4.2: Splitting Fields

Definition 4.2.1

A nonconstant polynomial p(x) over a field F splits over an extension field E of F if p(x)

can be factored into linear factors over E, that is

p(x) = a(x− c1)(x− c2) · · · (x− cn),

where a ∈ F and c1, c2, · · · , cn are the roots of p(x) in E.

Theorem 4.2.1: The Fundamental Theorem of Algebra

Every nonconstant polynomial f(x) ∈ C[x] has a root in C. That is, C is algebraically closed.

In other words, each polynomial of degree n ≥ 1 over C has n roots.

Definition 4.2.2

An extension field E of a field F is called a splitting field for f(x) ∈ F [x] over F if:

1. f(x) factors into linear factors (splits completely) in E[x], and

2. f(x) does not split completely in K[x] for any F $ K $ E.

Theorem 4.2.2

For any field F and f(x) ∈ F [x], there is an extension field E of F which is a splitting field

for f(x) over F .

Theorem 4.2.3

Let E be an extension of a field F and f(x) ∈ F [x]. If E contains roots α1, · · · , αn of f(x)

and f(x) splits in F (α1, · · · , αn)[x], then F (α1, · · · , αn) is a splitting field for f(x) over F .

Example 4.2.1

Any first degree polynomial over F splits over F , since ax + b with a 6= 0 has the form

ax+ b = a(x− α) root α = −a−1b ∈ F .
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Example 4.2.2

Note that f(x) = x2 − 2 ∈ Q[x] does not splits over Q. Clearly, f(x) = (x −
√

2)(x +
√

2)

which splits over the extension field R of Q. But R is not a splitting field for f(x) over Q

since f(x) splits over a smaller extension field Q
(√

2
)

which is contained in R. Thus Q
(√

2
)

is a splitting field for f(x) over Q.

Another example is g(x) = x2 + 1 ∈ R[x] which does not split in R[x]. It does split in C[x]

since g(x) = (x− i)(x+ i) ∈ C[x]. Here C = R(i) is a splitting field for g(x) over R.

Example 4.2.3

Construct a splitting field for f(x) = x2 − 2 ∈ Q[x].

Solution:

Clearly f(x) is irreducible over Q using for instance Eisenstein criterion for p = 2. Note that

f(x) = x2 − 2 =
(
x−
√

2
)(
x+
√

2
)
,

with roots
{√

2,−
√

2
}
6∈ Q. But

√
2 generates all roots of f(x).

Therefore, Q
(√

2
)
≈ Q[x] / (x2 − 2) is a splitting field for f(x) over Q.

Example 4.2.4

Construct a splitting field for f(x) = x4 − 4 ∈ Q[x].

Solution:

Clearly f(x) = x4 − 4 = (x2 − 2)(x2 + 2) where both factors irreducible over Q using for

instance Eisenstein criterion for p = 2 for both factors. Factoring f(x), we get

f(x) = (x2 − 2)(x2 + 2) =
(
x−
√

2
)(
x+
√

2
)(
x− i

√
2
)(
x+ i

√
2
)
.

So the roots of f(x) are
{√

2,−
√

2, i
√

2,−i
√

2
}
6∈ Q. Note that

√
2 and i generate all the

roots of f(x).

Therefore, Q
(√

2, i
)
≈ Q[x] / (x4 − 4) is the splitting field for f(x) over Q.
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Example 4.2.5

Find a polynomial f(x) ∈ Q[x] so that F = Q
(√

1 +
√

5
)

is the splitting field for f(x) over

Q.

Solution:

We simply need to find an irreducible polynomial f(x) ∈ Q[x] which has
√

1 +
√

5 as a root.

Let α =
√

1 +
√

5. Then α2 = 1 +
√

5 and hence α2− 1 =
√

5. That is, α4− 2α2 + 1 = 5 and

thus α4 − 2α2 − 6 = 0. Therefore, if f(x) = x4 − 2x2 − 6 ∈ Q[x], then it is irreducible over Q

and it has
√

1 +
√

5 among its roots.

Thus, f(x) is a polynomial whose splitting field is F over Q.
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Exercise 4.2.1

Construct a splitting field for f(x) = x3 − 2 ∈ Q[x].

Solution:

Clearly f(x) is irreducible over Q using for instance Eisenstein criterion for p = 2. Using

Factor Theorem, we see that 3
√

2 is a root for f(x), since f
(

3
√

2
)

= 0. Applying the Division

Algorithm to get f(x) = x3 − 2 =
(
x− 3
√

2
)(
x2 + 3

√
2x+ 3

√
22
)
. Furthermore, we use the

quadratic formula to get

f(x) = x3 − 2 =
(
x− 3
√

2
)(− 3

√
2

2 + i 3
√

2
√

3
2

)(
− 3
√

2
2 − i 3

√
2
√

3
2

)
.

So the roots of f(x) are
{

3
√

2,
3√2
2

(
−1 + i

√
3
)
,

3√2
2

(
−1− i

√
3
)}

. Clearly, 3
√

2 and i
√

3 generate

all roots of f(x). Therefore Q
(

3
√

2, i
√

3
)
≈ Q[x] / (x3 − 2) is a splitting field for f(x) over Q.

Exercise 4.2.2

Construct a splitting field for f(x) = x4 − 5x2 + 6 ∈ Q[x].

Solution:

Clearly f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) where both factors irreducible over Q using

for instance Eisenstein criterion for p = 2 and p = 3, respectively. Factoring f(x), we get

f(x) = (x2 − 2)(x2 − 3) =
(
x−
√

2
)(
x+
√

2
)(
x−
√

3
)(
x+
√

3
)
.

So the roots of f(x) are
{√

2,−
√

2,
√

3,−
√

3
}
6∈ Q. Note that

√
2 and

√
3 generate all the

roots of f(x). Therefore, Q
(√

2,
√

3
)
≈ Q[x] / (x4 − 5x2 + 6) is the splitting field for f(x)

over Q.

Exercise 4.2.3

Construct a splitting field for f(x) = x4 + 4 ∈ Q[x].

Solution:

Factoring f(x), we get

f(x) = x4 + 4 = x4 + 4x2 + 4− 4x2 = (x2 + 2)2 − (2x)2 = ((x2 + 2) + 2x)((x2 + 2)− 2x).
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Thus, f(x) = (x2 + 2x + 2)(x2 − 2x + 2), where both factors irreducible over Q using

for instance Eisenstein criterion for p = 2 for both factors. So the roots of f(x) are

{1 + i, 1− i,−1 + i,−1− i} 6∈ Q. Note that i generates all the roots of f(x). Therefore,

Q(i) ≈ Q[x] / (x4 + 4) is the splitting field for f(x) over Q.

Exercise 4.2.4

Show that f(x) = x4 − 2x2 − 3 splits over Q
(
i,
√

3
)
.

Solution:

Note that f(x) = (x2 − 3)(x2 + 1) =
(
x−
√

3
)(
x+
√

3
)
(x− i)(x+ i). Thus, the roots of

f(x) are
{
±
√

3,±i
}

which can be generated by only
√

3 and i. Therefore f(x) splits over

Q
(
i,
√

3
)
.

Exercise 4.2.5

Show that Q
(√

7, i
)

is the splitting field for f(x) = x4 − 6x2 − 7 over Q.

Solution:

Note that f(x) = (x2 − 7)(x2 + 1) =
(
x−
√

7
)(
x+
√

7
)
(x− i)(x+ i). Thus, the roots of

f(x) are
{
±
√

7,±i
}

which can be generated by only
√

7 and i. Therefore f(x) splits over

Q
(
i,
√

7
)
.

Exercise 4.2.6

Find a polynomial f(x) ∈ Q[x] so that F = Q
(√

2,
√

3
)

is the splitting field for f(x) over Q.

Solution:

We simply need to find an irreducible polynomial f(x) ∈ Q[x] which has
√

2 and
√

3 as

roots. But since Q
(√

2,
√

3
)

= Q
(√

2 +
√

3
)
, we look for irreducible polynomial f(x) ∈ Q[x]

which has
√

2 +
√

3 as a root. Let α =
√

2 +
√

3. Then α2 = 2 + 2
√

6 + 3 and hence

α2 − 5 = 2
√

6. That is, α4 − 10α2 + 25 = 24 and thus α4 − 10α2 + 1 = 0. Therefore, if

f(x) = x4 − 10x2 + 1 ∈ Q[x], then it is irreducible over Q and it has
√

2 and
√

3 among its
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roots. Thus, f(x) is a polynomial whose splitting field is F over Q.

Exercise 4.2.7

Find a polynomial f(x) ∈ Q[x] so that F = Q
(√

2 + i
√

3
)

is the splitting field for f(x) over

Q.

Solution:

We simply need to find an irreducible polynomial f(x) ∈ Q[x] which has
√

2 + i
√

3 as a

root. Let α =
√

2 + i
√

3. Then α2 = 2 + 2i
√

6 − 3 and hence α2 + 1 = 2i
√

6. That is,

α4 + 2α2 + 1 = −24 and thus α4 + 2α2 + 25 = 0. Therefore, if f(x) = x4 + 2x2 + 25 ∈ Q[x],

then it is irreducible over Q and it has
√

2 + i
√

3 as a root. Thus, f(x) is a polynomial whose

splitting field is F over Q.
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Section 4.3: Finite Fields

Recall that Zp is a (finite) field if and only if p is a prime number. Here we write Fp to denote a field

of size p.

Theorem 4.3.1

There is a finite field of order n iff n is a power of a prime.

Remark 4.3.1

• Every finite field has a prime power order.

• For every prime power, there is a finite field of that order.

• Any two finite fields of the same order are isomorphic.

• The multiplicative group of a finite field is cyclic.

Theorem 4.3.2

For a prime p and a monic irreducible polynomial p(x) ∈ Fp[x] of degree n, the ring

Fp[x] / (p(x)) is a field of order pn.

Example 4.3.1

Consider the ring Z2[x] / (x2). Construct the addition and multiplication Cayley tables for

Z2[x] / (x2). Show that Z2[x] / (x2) is not a field.

Solution:

Note that Z2[x] / (x2) = {0 + (x2), 1 + (x2), x+ (x2), 1 + x+ (x2)}. For simplicity, we write

Z2[x] / (x2) = {0, 1, x, 1 + x}. Hence, the addition and multiplication tables are:

+ 0 1 x 1 + x

0 0 1 x 1 + x

1 1 0 1 + x x

x x 1 + x 0 1

1 + x 1 + x x 1 0

· 0 1 x 1 + x

0 0 0 0 0

1 0 1 x 1 + x

x 0 x 0 x

1 + x 0 1 + x x 1

Clearly, Z2[x] / (x2) is not a field since it has x · x = 0 (in the table). Moreover, x2 is not

irreducible in Z2[x] as x2 = x · x.
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Example 4.3.2

Construct a field of order 4. Find a generator for the multiplicative group of that field.

Solution:

Note that 4 = 22. Since x2 +x+1 is an irreducible polynomial in Z2[x] (using Factor Theorem

for instance), We conclude that F = Z2[x] / (x2 + x+ 1) is a field with 22 = 4 elements. The

field F contains a root α of x2 +x+ 1. Therefore, any element in Z2(α) ≈ Z2[x] / (x2 + x+ 1)

can be uniquely expressed as a + bα, where a, b ∈ Z2. That is Z2(α) = {0, 1, α, 1 + α}. The

addition and multiplication tables of Z2(α) are:

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1

1 + α 1 + α α 1 0

· 0 1 α 1 + α

0 0 0 0 0

1 0 1 α 1 + α

α 0 α 1 + α 1

1 + α 0 1 + α 1 α

We note that the addition table is clearly done. In the multiplication table, we consider some

entries as follows:

The entry α · α = α2 = −1− α since α2 + α + 1 = 0. But then α2 = −1− α = 1 + α in Z2.

Moreover, we have (1 + α)(1 + α) = α2 + 2α + 1. Since 2α = 0 in Z2 and α2 = 1 + α as we

have proved, we get (1 + α)(1 + α) = α2 + 2α + 1 = 1 + α + 0 + 1 = 2 + α = α.

To find a generator for the multiplicative group (not including 0) of Z2(α), we try to find an

element in Z∗2(α) whose powers generate all elements in the group.

Note that α1 = α, α2 = 1 + α (as we have seen), and α3 = αα2 = α(1 + α) = α + α2 =

1 + 2α = 1. Therefore, Z∗2(α) = {α, α2, α3}, and hence α is a generator for the multiplicative

group of Z2(α).

It is also true that Z∗2(α) = {1 + α, (1 + α)2, (1 + α)3}. Can you show that?

Example 4.3.3

Construct a field of order 9. Find a generator for the multiplicative group of that field.

Solution:
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Note that x2 + 1 is an irreducible polynomial in Z3[x]. Thus F = Z3[x] / (x2 + 1) is a field

with 32 = 9 elements. The field F contains a root α of x2 + 1. Therefore, any element

in Z3(α) ≈ Z3[x] / (x2 + 1) can be uniquely expressed as a + bα, where a, b ∈ Z3. That is

Z3(α) = {0, 1, 2, α, 2α, 1 + α, 1 + 2α, 2 + α, 2 + 2α}. The tables of Z3(α) are:

+ 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α

0 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α

1 1 2 0 1 + α 1 + 2α 2 + α 2 + 2α α 2α

2 2 0 1 2 + α 2 + 2α α 2α 1 + α 1 + 2α

α α 1 + α 2 + α 2α 0 1 + 2α 1 2 + 2α 2

2α 2α 1 + 2α 2 + 2α 0 α 1 1 + α 2 2 + α

1 + α 1 + α 2 + α α 1 + 2α 1 2 + 2α 2 2α 0

1 + 2α 1 + 2α 2 + 2α 2α 1 1 + α 2 2 + α 0 α

2 + α 2 + α α 1 + α 2 + 2α 2 2α 0 1 + 2α 1

2 + 2α 2 + 2α 2α 1 + 2α 2 2 + α 0 α 1 1 + α

· 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α

0 0 0 0 0 0 0 0 0 0

1 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α

2 0 2 1 2α α 2 + 2α 2 + α 1 + 2α 1 + α

α 0 α 2α 2 1 2 + α 1 + α 2 + 2α 1 + 2α

2α 0 2α α 1 2 1 + 2α 2 + 2α 1 + α 2 + α

1 + α 0 1 + α 2 + 2α 2 + α 1 + 2α 2α 2 1 α

1 + 2α 0 1 + 2α 2 + α 1 + α 2 + 2α 2 α 2α 1

2 + α 0 2 + α 1 + 2α 2 + 2α 1 + α 1 2α α 2

2 + 2α 0 2 + 2α 1 + α 1 + 2α 2 + α α 1 2 2α

Here, we note that α2 + 1 = 0 and the coefficients are reduced by the rules in Z3. Thus, in

the multiplication table, we have α · α = α2 = −1 = 2. Hence

(1 + 2α)(2 + 2α) = 2 + 6α + 4α2 = 2 + α2 = 4 = 1.

Further, (1 + α)(2 + 2α) = 2 + 4α + 2α2 = 2 + α + 4 = 6 + α = α.

Moreover, 1 + α, 1 + 2α, 2 + α, and 2 + 2α are all the generators of (Z∗2(α), ·).
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Exercise 4.3.1

Construct a field of order 8. Find a generator for the multiplicative group of that field.

Solution:

Note that x3 + x+ 1 is an irreducible polynomial in Z2[x]. Thus F = Z2[x] / (x3 + x+ 1) is a

field with 23 = 8 elements. The field F contains a root α of x3 +x+1. Therefore, any element

in Z2(α) ≈ Z2[x] / (x3 + x+ 1) can be uniquely expressed as a+ bα+ cα2, where a, b, c ∈ Z2.

That is Z2(α) = {0, 1, α, 1 + α, α2, 1 + α2, α + α2, 1 + α + α2}. The tables of Z2(α) are:

+ 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

0 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

1 1 0 1 + α α 1 + α2 α2 1 + α + α2 α + α2

α α 1 + α 0 1 α + α2 1 + α + α2 α2 1 + α2

1 + α 1 + α α 1 0 1 + α + α2 α + α2 1 + α2 α2

α2 α2 1 + α2 α + α2 1 + α + α2 0 1 α 1 + α

1 + α2 1 + α2 α2 1 + α + α2 α + α2 1 0 1 + α α

α + α2 α + α2 1 + α + α2 α2 1 + α2 α 1 + α 0 1

1 + α + α2 1 + α + α2 α + α2 1 + α2 α2 1 + α α 1 0

· 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

0 0 0 0 0 0 0 0 0

1 0 1 α 1 + α α2 1 + α2 α + α2 1 + α + α2

α 0 α α2 α + α2 1 + α 1 1 + α + α2 1 + α2

1 + α 0 1 + α α + α2 1 + α2 1 + α + α2 α2 1 α

α2 0 α2 1 + α 1 + α + α2 α + α2 α 1 + α2 1

1 + α2 0 1 + α2 1 α2 α 1 + α + α2 1 + α α + α2

α + α2 0 α + α2 1 + α + α2 1 1 + α2 1 + α α α2

1 + α + α2 0 1 + α + α2 1 + α2 α 1 α + α2 α2 1 + α

Here, we note that α3 + α + 1 = 0 and the coefficients are reduced by the rules in Z2. Thus,

in the multiplication table, we have α · α2 = α3 = −1− α = 1 + α. Hence

(1 + α)(α + α2) = α + 2α2 + α3 = α + 1 + α = 1.

Further, (1 + α)(1 + α + α2) = 1 + 2α + 2α2 + α3 = 1 + 1 + α = α.

Moreover, 1 + α is a generator of (Z∗2(α), ·), can you find another one?

Exercise 4.3.2

Find an appropriate irreducible polynomial p(x) in Z2[x] so that Z2[x] / (p(x)) is a finite filed

of order 16.

Solution:

Note that 16 = 24, and hence we need an irreducible polynomial p(x) of degree 4 in Z2[x].

So p(x) = x4 + ax3 + bx2 + cx + d, where a, b, c, d ∈ Z2. Computing p(0) = d and p(1) =
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1 +a+ b+ c+d. Insisting that p(x) 6= 0 for x = 0, 1 ∈ Z2, we see that d 6= 0 and hence d = 1.

Hence a+ b+ c 6= 0, so we can choose a = b = 0 and c = 1.

Therefore, p(x) = x4 + x+ 1 ∈ Z2[x] and F16 = F24 ≈ Z2[x] / (p(x)).
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