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Chapter

Section 0.1: Fields

Definition 0.1.1

A field F is a set on which two operations + and - (called addition and multiplication,
respectively) are defined, such that for each pair of elements x,y € F, there are unique

elements x+y and x -y in F for which the following properties hold for all elements a, b, c € F.
Fl. a+b=b+caanda-b=0b-a (Commutativity).
F2. (a+b)+c=a+(b+c)and (a-b)-c=a-(b-c) (associativity).
F3. There are unique elements 0 and 1 in [F such that

(identities): O+a=aand 1l -a=a.

F4. For each element a € F and each nonzero element b € IF, there exist unique elements ¢

and d in F such that

(inverses): a+c=0andb-d=1.

F5. a-(b+c)=a-b+a-c (distributivity).

Example 0.1.1

The following sets are fields with the usual definitions of addition and multiplication:

1. real numbers R, and rational numbers Q.

2. {a+bv/2: a,bc Q) CR.
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Example 0.1.2

The field Zy = {0, 1} with the operations of addition and multiplication defined by

0+40=0, O0+1=1+0=1, 1+1=0,
0-0=0, 0-1=1-0=0, and 1-1=1.

[ Remark 0.1.1

The sets Z+, Z~, and Z are not fields since the property F4 does not hold for all of the three

sets.

Theorem 0.1.1

For any elements a, b, and c in a field F, the following statements hold:

Ifa+c=b+c, thena =0,
1. The Cancellation Laws

If ac = bc and ¢ # 0, then a = b.

Definition 0.1.2

In a field F, the smallest positive integer p such that the sum of p 1's is 0 is called the
characteristic of F. If no such positive integer exists, then I is said to have characteristic

Zero.

Note that Z, has characteristic 2, while R has characteristic zero.
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Section 0.2: Some Facts About Complex Numbers C

Definition 0.2.1

A compleax number is an expression of the form z = a -+ bi, where a and b are real numbers
called the real part and the imaginary part of z, respectively. Note that ¢« = /—1 and

hence 2 = —1.

The sum and product of two complex numbers z = a + bi and w = ¢ + di are defined by

z+w=(a+c)+ (b+d)i, and zw = (a + bi)(c+ di) = (ac — db) + (ad + bc)i.

Definition 0.2.2

The complex conjugate of a complex number z = a + bi is the complex number Z = a — bi.

Moreover, the absolute value (or modulus) of z is the real number v/a? + b2.

Let z =a+ib,w = c+ di € C for some a, b, c,d € R, then the following statements are true:

1. 3=z 6. |zw| = 2] - wl.
2. ztw=zZ+w | 7. |2 :|—Z|,ifw7é().
1 w |w|
3. 7w=2 w. 8 2] = |w| < |2+ w] < |2] + .
z z . : B
4. ()z,lfw#o ; 9. 24z =2Re(z) = 2a.
w w I
5. 2z2=|z|. . 10. z—z =2Im(z) = 2b.
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1 Vector Spaces

Section 1.2: Vector Spaces

An object of the form (xy, 29, - ,x,), where 1, - - - | ,, are elements of a field I, is called an n-tuple.
Such object is called a vector. Moreover, the set of all vectors with entries from F is denoted by F”.

The elements x;.--- ,z, are called the entries or components.

Definition 1.2.1

A vector space (or linear space) V over a field F is a set of elements on which two operations

(called addition and scalar multiplication) are defined so that

() If 2,y € V, then x +y € V; that is, "V is closed under +".

VS1. z+4+y=y+aoforalz,yeV.

VS2. (z+y)+z=x+ (y+z2) forall z,y,z € V.

VS3. There exists an element 0 in V such that z + 0 = x for each z € V.
VS4. For each x € V, there exists an element y € V such that z + y = 0.

(B) If z € Vand a € F, then ax € V; that is, "V is closed under -”.

VS5. Foreachz eV, 1z =x.

VS6. For each pair of elements a,b € F and each element x € V, (ab)z = a(bz).
VS7. Foreacha€F and z,y €V, a(x +y) = ax + ay.

VS8. Foreach a,b € Fand x €V, (a+b)x = ax + bx.

[ Remark 1.2.1

A vector space V along with operation + and - is denoted by (V, +,-).

Theorem 1.2.1

For any positive integer n, (R, +,-) is a vector space.
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Example 1.2.1

Let M, (F) = {all m x n matrices over a field F}. Then ( M,,«,(F),+,-) is a vector space
where for any A = (a;;), B = (bij) € Myxn(F) and for ¢ € F, we have

(A + B)U = (aij + bu) and (CA)Z']' = caij,

foralll1 <i<mand1<j<n.

Example 1.2.2

Let S be a nonempty set and F be any field, and let F(S,F) denote the set of all functions
from S to F. Two functions f,g € F(S,F) are called equal if f(z) = g(z) for each z € S.
The set F(S,TF) is a vector space with the operations of addition and scalar multiplication

defined for f,g € F(S,F) and ¢ € F by

(f +9)(x) = f(x) +9(z)  and  (cf)(x) =c[f(2),

for each x € S.

Example 1.2.3

Let S = {(a,b) : a,b € R}. For any (a,b),(x,y) € S and ¢ € R, define
@)@ @y =(@+zb-y) snd o (ab)=(cach)

Is (S,®,®) a vector space?

Solution:

No. Since (VS1), (VS2), and (VS8) are not satisfied (verify!). For instace, (1,2) & (1,3) #
(1,3) & (1,2).

Theorem 1.2.2: Cancellation Law for Vector Addition

If x,y, and z are vectors in a vector space V such that x + 2z =y + 2, then z = y.




1.2.  Vector Spaces 7

There is a vector v € V such that z +v = 0. Then

r=z+0=z+(z2+v)=(x+2)+v

=(y+2)+v=y+(z+v)=y+0=y.

Theorem 1.2.3

Let (V,+,-) be a vector space. Then

(a) The zero vector in V is unique.

(b) The addition inverse for each element in V is unique.

(a): Assume that 0; and 05 are two zeros in V| then for any x € V, we have 2+0; = x = 2+0,.

Thus, using the cancellation law we have
z+ 0, =240, = 0, = 0.

(b): For any z € V, assume that y and z are two additive inverses for . Then, by cancellation
law we have

r+y=0=z+=z2 = Y=z

Theorem 1.2.4

In any vector space V, the following statements are true.

(a) 0z =0 for each z € V.
(b) (—a)xr = —(ax) = a(—x) for each a € F and each z € V.
(¢) a0 =0 for each a € F.

(a): Clearly 0z + 0 = 0z = (0 4+ 0)x = Ox + Oz, and by cancellation law, 0z = 0.
(b): The element —(ax) is the unique element in V such that ax + [—(ax)] = 0. But

ar + (—a)z = (a + (—a))z = 0z = 0 as well. Hence, —(ax) = (—a)z. Moreover,




(c): Note that 0 = 0 + 0. Thus,
a0+ 0 = a0 = a(0 + 0) = a0 + a0.

By the cancellation law, we get a0 = 0.

Chapter 1.

Vector Spaces
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Solve the following exercises from the book at pages 12 - 16:

o 13,17, 18.
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Section 1.3: Subspaces

Definition 1.3.1

A subset W of a vector space V over a field F is called subspace of V if W is a vector space

over F with operations of addition and scalar multiplication defined on V.

Note that, if V is any vector space, then {0} and V are both subspaces of V.

Theorem 1.3.1

Let V be a vector space over a field F and W is a subset of V. Then, W is a subspace of V if

and only if:

1. 0 e W.
2. Forany z,y e W, z +y € W.
3. Forany x € W and any a € F, ax € W.

Example 1.3.1

Show that the set W of all symmetric matrices (that is matrices with property A* = A) is a
subspace of M, (F).

Solution:

We need to show the three conditions of Theorem 1.3.1.

1. Clearly, Of .. = 0,, and hence 0,,x,, € W.
2. Let A,B € W. Then A* = A and B* = B and hence (A + B)! = A'+ B' = A+ B.
Thus, A+ BeW.

3. Let A€ Wand a € F. Then A® = A and hence (aA)" = aA" = aA. Thus, aA € W.

Therefore, W is a subspace of M, (IF).

Note that the set W of all non-singular matrices in M, (F) is not a subspace of M,,x,(F). Can

you guess why!?
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Definition 1.3.2

The trace of an n x n matrix A, denoted tr(A), is the sum of the diagonal entries of A. That
is, for A = (ai;),

t’f’(A) = Zaii = al +a22+~-+a,m.
i=1

Example 1.3.2: Exercise #6 @Q page 20

Show that tr(cA + dB) = ctr(A) + dtr(B) for any n x n matrices A and B.

Solution:

If A= (a;;) and B = (b;;), then cA = (ca;;) and d B = (db;;) for 1 <4, j <n. Thus

tr(cA+dB) = (caj; +dbi) + (cage + dby) + -+ - + (cany, + dbyy,)
=c(ay +an+ -+ ap) +d(big +ba+ -+ bpy)

=ctr(A) + dtr(B).

Example 1.3.3

Show that the set W = { A € M, (F) : tr(A) =0} is a subspace of M, (F).

Solution:

We need to show the three conditions of Theorem 1.3.1.

L. tr(0pxn) = X% 10 =0 and hence 0,,x, € W.
2. Let A, B € W. Then tr(A) = tr(B) = 0 and hence

tr(A+ B) =tr(A)+tr(B)=0+0=0.

Thus A+ B e W.
3. Let A€ W and c € F, then tr(c A) = ctr(A) = 0 and hence cA € W.

Therefore, W is a subspace of M, (F).
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Example 1.3.4

Let W={(z,y,2) : z=x —y}. Show that W is a subspace of R>.

Solution:

1. Clearly 0 = (0,0,0) € W since 0 = 0 — 0.
2. Let x = (a,b,¢),y = (d,e,f) € W. Then ¢ = a — b and f = d — e, and hence
r+y=(a+d,b+e,c+ f) which is in W since

c+f=(a—-b)+(d—e)=(a+d)— (b+e).

3. Let z = (a,b,c) € W and k € F. Then ¢ = a — b and hence k¢ = ka — kb; that is
kx = (ka, kb, kc) € W.

Therefore, W is a subspace of R3.

Definition 1.3.3

Let P(F) denote the set of all polynomials with coefficients from a field F. For integer n > 0,

let P,,(FF) be the set of all polynomials of degree less than or equal n with coefficients from F.

For instance, f(z) = a,z" + a, 12" ' 4+ -+ + a1z + ag € P,(F). Note that f(z) = 0 means that
Gy = QUp_1 = -+ = a1 = ag = 0 and hence f is called the zero polynomial. For our convenience,

we define the degree of the zero polynomial as —1.

Example 1.3.5

Show that P,(FF) is a subspace of P(IF).

Solution:

1. Note that the zero polynomial is of degree -1 and hence it is in P, (F).

2. Clearly the sum of two polynomial of degrees less than or equal n is another polynomial
of degree less than or equal n.

3. The product of a scalar and a polynomial of degree less than or equal n is a polynomial

of degree less than or equal n.

Therefore, P, (F) is a subspace of P(IF).
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Exercise 1.3.1

Solve the following exercises from the book at pages 19 - 23:
e 6,8:a,b,c.

o 11.
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Definition 1.4.1

Let S = {x1,29, -, 2, } be a nonempty subset of vectors in a vector space V over a field F.

A vector x € V is called a linear combination of vectors in S if there exist ¢y, co, -+ ,¢, € F
such that
T=cC1ZT1+CTa+ -+ CpTn. (1.4.1)

In that case, the scalars ¢, ¢, - -+ , ¢, are called the coefficients of the linear combination.

Recall from Math-111: To solve a system of linear equations Ax = B, we simplify the original
system [A|B] to its reduced row echelon form (r.r.e.f for short) using the following elementary row

operations:

1. Interchanging two rows.
2. Multiplying a row by a nonzero scalar.

3. Adding a multiple of a row to another.

Example 1.4.1

Is z = (2,1,5) a linear combination of S = {x, 75,23} C R?, where z; = (1,2,1),29 =

(1,0,2), and x3 = (1,1,0)? Explain.

Solution:

Note that z is a linear combination of { x1, s, x5} if we find scalars ¢y, ¢, c3 € R such that

T = 171 + c2xo + c3x3. Thus, we consider
(27 17 5) = 61(1, 27 1) + C2<1a 07 2) + C3(17 1a O)
That is

01+CQ+03:2
261—|—0—|—63:1

Cl+202+0:5
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We then find the r.r.e.f. of that system as follows:
1 1 172 1 0 0 1
2 0 11 nrel 01 0] 2
1 2 015 0 0 1| -1
That is, ¢; = 1, ¢ = 2, and ¢3 = —1 and therefore x = x1 + 229 — 3.
Definition 1.4.2
Let S = {x1,29,---,2, } be a nonempty subset of vectors in a vector space V over a field F.

The span of S, denoted span 5, is the set of all linear combinations of the vectors in S. For

convenience, we define span ¢ = {0}, where ¢ is the empty set.

Theorem 1.4.1

Let S = {x1, 29, -+ ,x, } be a subset of vectors in a vector space V. The span S is a subspace

of V.

Proved in Math 111. Let W =span S ={z : z =21 + - - ¢z, } CV. Then

1. 02=0x1 +0x9+---+0x, =0 € W.
2. Let zy =iy + -+ cpxp, 20 =dixy + - - + dpx, € W. Then,

itz = (a4 Fenty) F (i 4+ dpzy) = (+di)zi+ -+ (en +dn)zn, € W.
3. Let z=cix1 4+ -+ + cpx, € W and let a be any scalar. Then
az = a(cizy + -+ + cpy) = a1z + -+ - + acyz, € W.

Therefore, W is a subspace of V.

Example 1.4.2

Let S = {1+z,2— 2% 1+x+ 2%} be a subset of P5(R). Is 22 a linear combination of S?
Explain.

Solution:
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Considering the system z2 = ¢1(1 + z) + (2 — 22) + c3(1 + = + %), we get

= (ci+2c+¢c3)- 1+ (c1 +¢3) -z + (—cp + c3) - 2.

Hence
C1 aly 262 + C3 = 0
C1 + 0 + C3 = 0
0 — Co + C3 = 1

We then find the r.r.e.f. of that system as follows:

2 110 1 0 0] -1
1 0 10 rreb 0 1 0
1 11 00 1] 1

Therefore, 2 = —1-(14+2)4+0-(2—2?)+1-(1+2+2?), and 2? is a linear combination of S.

Example 1.4.3: Solving Example 1.3.4 in a different way

Show that W = { (z,y,2) : 2 =2 —y } is a subspace of R.

Solution:

Note that W = {(z,y,x —y) :z,y e R} = {2(1,0,1) +y(0,1,-2) : 2,y € R}. That is,
W = span {(1,0,1),(0,1,—1) }. Therefore, W is a subspace of R?.

Example 1.4.4

a a—2b

Show that W = : a,b € R 3 is a subspace of Ms,o(R).
a+b b

Solution:
1 1 0 -1 1 1 0 -1

Clearly W = ¢ a +b a,be R} = span , and
1 0 1 1 1 0 1 1

therefore it is a subspace of Mayyo(R).
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Example 1.4.5
1 2
Determine whether =z = is in the span S, where S =
-3 4
1 0 0 1 1 1
1 0/ \o 1) \o o
Solution:
1 2 1 0 0 1 1 1
Consider the system =a +0 +c . Thus,
-3 4 -1 0 0 1 0 0
l=a+c¢,2=b+c¢,—3=—a, and 4 = 0.
Therefore, a = 3,b = 4, ¢ = —2 and hence x € span S since it is a linear combination of S.
Definition 1.4.3
Let S = { 21,29, -+ ,x, } be asubset of a vector space V. If every vector in V is a linear com-

bination of S, we say that S spans (or generates) V or that V is spanned (or generated)

by S.

Example 1.4.6

Show that S = { x1,xy, z3 } spans R where z; = (1,1,0), x5 = (1,0,1), and 23 = (0,1,1).

Solution (1):

Let x = (a,b,c) € R3 by an arbitrary vector. Consider the system z = c12; + coxs + c373

and work its matrix form to get the system in its reduced form as follows:

1 1 0]a 1 0 0| i(a+b—c)
1 0 1|0 nrel 0 1 0| La=b+ec)
0 1 1]|c 0 0 1| 3(—a+b+c)

Thus, ¢; = 3(a+b—c¢),co=1(a—b+c),c3 = 3(—a+b+c) and hence S generates R3.

Solution (2):

We can solve the problem if we know that this system has at least one solution. So, we
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compute the determinant of the associate matrix to the system

0
1|=—2+#0
1

o =
—_ O =

Therefore, the system has a unique soltion and hence S spans R3.

[ Remark 1.4.1

For any nonnegative n, S = {1,z,2% --- 2"} spans P,(R).

Example 1.4.7

Does the set S = {1 —z,z — 2% 1 + 22 } spans Py(R)? Explain.

Solution:

Consider any polynomial az? + bz + ¢ € P(R). Then

ax’ +bz+c=ci(l—2)+c(z—2?) +es(1+2%) = (c14+c3) 1+ (—c1+ ) -z 4+ (—cp+c3) - 22

1 0 1] c

Thus |—1 1 0 | b| has a unique solution since

0 -1 1| a
1 0 1
1 1 0/ =24#0.
0o -1 1

Thus, S spans Py(R).

Example 1.4.8: Exercise #13 @ page 34

Show that if S; and Sy are subsets of a vector space V such that S; C S, then span S; C

span S,. If moreover, span S; =V, then span S; = V.

Solution:

Let S; = {xy,29,--+ ,x} € Sy and let x € span S;. Then z can be written as a linear
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combination of vectos of S;; that is

T =C121 + CTo + - - + CpTg,

for some scalars cq,- -+, c,. But then z is also a linear combination of vectors in S5 since all
vectors x1, -+ ,xr € Sy. Thus span S; C span S5.
If span S; = V, then we know that span S, is a subspace of V containing span S; = V.

Therefore, span S, = V.

19
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Exercise 1.4.1

Solve the following exercises from the book at pages 32 - 35:
e 2:a,bc, 3:a,b,c,4:a,b.
e 5:abe f g, h.
e 6—9.

o 13.
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Section 1.5: Linear Dependence and Linear Independence

It is clear that there are many different subsets that generates a subspace W of a vector space V.
In this section, we will try to get these subsets as small as possible by removing unnecessary vectors

from those subsets.

[ Remark 1.5.1 ]

R™ is generated by { E1, Es, - - - , E, } where E; is the vector whose all entries are 0 except for

entry at position ¢ which equals 1.

Definition 1.5.1

The set of vectors S = { z1, 29, -+ ,x, } in a vector space V is said to be linearly dependent
if there exist scalars ¢y, co, - , ¢,, not all zero, such that
1Ty + ey + - +epxy, = 0. (1.5.1)

Otherwise, S is said to be linearly independent. That is, if whenever Equation (1.5.1)
hold, we must have ¢c; = ¢y = --- = ¢, = 0. In that case, we say that the zero vector has only

the trivial representation as a linear combination of the vectors of S.

[ Remark 1.5.2 l

r a

The homogenous system Az = 0 (with a square matrix A) has only trivial solution if and

only if | A| # 0.

Example 1.5.1

Determine whether the set S = {z; =(1,0,1),20 =(2,1,2),23 = (1,1,1) } is linearly de-

pendent or independent in R3.

Solution (1):

We consider the homogenous system: c1z1 + coxs + c3x3 = 0. Solving this system, we see that

1 2 0 1 0 —1]0
0 1 0 rret 01 110
1 2 10 00 00
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That is, ¢; —c3 = 0 and ¢o +¢c3 = 0. If cg =t € R, the system has non-trivial solutions

¢y =t,co = —t,c3 =t and hence S is linearly dependent.

Solution (2):

Note that the determinant of matrix A (the matrix whose columns are the vectors of S) is 0,

and hence the set S is linearly dependent.

Example 1.5.2

Find the values, if any, of « so that the set S is linearly independent in R?, where

S:{I'lz(—l,o,—l),l'Q:(2,1,2),.233:(&,1,1)}

Solution:

Simply use the determinant of a matrix whose columns are the vectors of S. Consider the

-1 2 «
homogenous system Axr = 0 where A = | 0 1 1|. Thus the system has only trivial
-1 2 1

solution if and only if S is linearly independent. Therefore, the | A| # 0. That is,

-1 2 «
1 1 2 «

0 1 1/#0 & —1 — #0 & 1-2-a)#0 & a#1l
2 1 1 1

-1 2 1

Thus, S is linearly independent only if o # 1.

Theorem 1.5.1

Let S; and S5 be two subsets of a vector space V with S; C S5. Then

1. If S is linealry dependent, then .S, is linearly dependent.
2. If Sy is linearly independent, then S is linealry independent.
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Example 1.5.3: Exercise #2(a) @ page 40
1 -3 -2 6
Determine whether S = , is linearly dependent or linealry inde-
-2 4 4 -8
pendent set in Moy o(R)?
Solution:
1 -3 -2 6
Consider the system a +b = . Thus, we solve the following
-2 4 4 -8 0 0
system
1 =210 1 =210
-3 6 0 r.r.e.f. 0 0 0
S
—2 410 0 01]0
4 =810 0 01]0

That is a = 2b and the set is linearly dependent.

Example 1.5.4

Let S = {1—w,2—2? -1+ 22} C Py(R). Determine whether or not S is linearly depen-
dent.

Solution:

Consider

a(l—xz)+ey(x—2%) +c3(—=1+2%) =0

(co—c3)- 14 (—ci+c) x4+ (—cp+c3)-z2=0

By equating the coefficients of 2™ on both sides of the equation for n = 0, 1,2, we obtain the

following homogenous system:

61—03:0
—Cl+02:0

—02+03:0
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That is

But

Which implies that the system has a non-trivial solution and hence S is linearly dependent.

1| |1
Ol |z | =
1| |2?
0o -1
1 0]=0
-1 1

Chapter 1.

Vector Spaces




ot

1.5. Linear Dependence and Linear Independence 2

Exercise 1.5.1

Solve the following exercises from the book at pages 40 - 42:
e 2:a,bc,de,f.

e 456,9

Exercise 1.5.2

Let x and y be two linearly independent vectors in a vector space V. Show that the condition

for the vectors ax + by and cx + dy to be linearly dependent is ad — be = 0.

Solution:

Consider

ri(ax + by) + r2(cx + dy) = 0.

Then, (ria + roc)x + (r1b + rod)y = 0 and hence (r1a + ra¢) = (r1b + rod) = 0 since z and y

are linearly independent. Considering the second system

ari +cra =0
(1.5.2)

b’f’l‘l'd?"Q:O

For ax + by and cx + dy to be linear dependent, we must have nontrivial solutions to the

a c
system represented in (1.5.2). That is , = 0. That is ad — bc = 0.
b d
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Section 1.6: Bases and Dimension

Let V be a vector space with a subspace W. We note that if S is a generating set for W and no

proper subset of S is a generating set for W, then S must be a linearly independent set.

Definition 1.6.1

A set [ of distinct nonzero vectors in a vector space V is called a basis for V if and only if

1. (3 spans (generates) V, and
2. (3 is linearly independent set in V.

Moreover, the dimension of V is the number of vectors in its finite basis 3, denoted by

dim(V). In that case, we say that V is a finite-dimensional vector space.

| Remark 1.6.1 |

1. In F", the set { £y = (1,0,---,0), B2 = (0,1,0,---,0),--- , E, = (0,--- ,0,1) } is a ba-
sis for . This basis is called the standard basis for F". Therefore, dim(F") = n.

2. Let EY denote the matrix in M,,x,(F) whose all entries are 0 except the ij-entry is 1.
The set { £ : 1 <i<m,1<j<n} is the standard basis for M,,,(F). Therefore,
dim(M,,«n(F)) = mn.

3. The set 8 = {1,z,2% -+, 2"} is the standard basis for the vector space P,(FF), and
therefore dim(P,(F)) =n + 1.

Theorem 1.6.1

Let V be a vector space and = {z1, 23, -+ ,x, } be a nonempty subset of V. Then 5 is a

basis for V if and only if each z € V can be uniquely expressed as a linear combination of

vectors in (3, that is, can be expressed in the form

T = a121 + ATy + + - - Apxy,, for unique scalars a1, as, - - - , a,.

Proved in Math-111. » =": Let /3 be a basis for V. If z € V, then 2 € span 8 = V, and
hence

T = 0121 + A% + - - - + ATy,
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for some scalars aq,--- ,a,. Assume that x has another expression as
r = bixq + byxo + - - + by,
for some scalars by, --- ,b,. Thus
0=x—x=(a; —b))xy+ (ag — ba)xs + -+ + (ay, — by)xy,.

But 5 is linearly independent set and hence a; — b; = 0 and therefore a; = b; fori=1,--- n.
Thus, x has a unique expression as a linear combination of vectors in .

» <=": Assume that every vector z € V can be uniquely expressed as a linear combination of
vectors in . Then V = span j.

Also, 0 € V, and there is unique scalars aq, - - - , a,, such that 0 = ayx1 +- - - +a,z,. Note that
multiplying both sides by a constant does not change the expression by assumption. Hence,

a; =ag = ---=a, = 0. Thus f is linearly independent and hence [ is a basis for V.

Theorem 1.6.2

If a vector space V is generated by a finite set S, then some subset of S is a basis for V.

Every basis for a finite-dimensional vector space V contains the same number of vectors.

Theorem 1.6.3

Let V be an n-dimensional vector space and let 5 = {z1, 29, -+ ,x, } be a subset (with n

vectors) of V. Then,

1. If g spans V, then ( is a basis for V.
2. If 8 is linearly independent, then [ is a basis for V.

Theorem 1.6.4

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional

subspace and dim(W) < dim(V). Moreover, if dim(W) = dim(V), then W = V.
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Example 1.6.1

Determine whether S = {x; = (1,0,—1),29 = (2,5,1), 23 = (0,—4,3) } is a basis for R.

Solution:

Note that S contains 3 = dim(R?), and thus it is enough to show that S is linearly indepen-
dent (or S spans R3). In either cases, we can simply show that the associate matrix of the

system is not equal to zero. That is

1 2 0
0 5 —4=(15+4)—(—8)=27#£0.
-1 1 3

Thus S is a basis for R3.

Example 1.6.2

Let W = {(z,y,2) : 2+ 3y — 2 = 0}. Show that W is a subspace of R* and find its dimen-

sion.

Solution:

Clearly, W = {(z,y,20+3y):z,yc R} = {2(1,0,2) +y(0,1,3)}. Therefore, W =
span {(1,0,2),(0,1,3) } which shows that W is a subspace of R3. Moreover, the set
{(1,0,2),(0,1,3) } is linearly independent set and hence it is a basis for W. Therefore,
dim(W) = 2.

Example 1.6.3

Let W= {(z,y,z,w) : c+y+2z=0and w=2z}.

1. Show that W is a subspace of R*.
2. Find a basis for W.

Solution:

(1): Clearly,

W={(z,y,—2—y,2z) : z,ye R} ={x(1,0,-1,2) +y(0,1,-1,0) : z,y e R}

=span {(1,0,—1,2),(0,1,—-1,0) }
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Therefore, W is a subspace of R*.
(2): Consider the system ¢;(1,0,—1,2)4c5(0,1,—1,0) = (0,0,0,0). It is clear that ¢; = co =0
and hence {(1,0,—1,2),(0,1,—1,0) } is linearly independent set and is a basis for W.

29

Example 1.6.4

a+b c
Let W = € M2><2(R> .
2¢ a—2b

1. Show that W is a subspace of M.o(R).
2. What is dim(W)?

Solution:

L)
o [ RS AN

So, W is a subspace of My«2(R).

1 0 1 0 0 1 0 0
(2): Consider the homogenous system c; + ¢ + c3 = :
0 1 0 -1 2 0 0 O

Thus,

c1+c=0, c3=0, 2¢c3=0, and ¢; —cy = 0.

1 0 1 0 0 1
Hence ¢; = ¢ = ¢3 = 0. Therefore, , , is a basis for W and
0 1 0 -1 2 0

dim(W) = 3.

Example 1.6.5

Let W= { f(z) e Py(R) : f(1)=0}.

1. Show that W is a subspace of Py(R).
2. What is dim(W)?
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Solution:

Note that f(z) = a + bz + cz? so that f(1) = a+ b+ c = 0. That is ¢ = —a — b. Hence
f(x) = a+br+ (—a —b)x* = a(l — z%) + b(x — x*). Therefore, W = span S, where
S={1-2%x—2%}. Clearly, S is linearly independent (each element is not a composite of

the other). Hence S is a basis for W and dim(W) = 2.

Definition 1.6.2

Let V be a vector space with a basis f = {z1,29, - ,2, }. If z € V, then © = 121 +

CoXo + -+ + ¢y, is uniquely represented with scalars ¢y, co, - -+, ¢,. We call thses scalars the

coordinates of z in the basis /3, denoted by

Cn

Example 1.6.6

Let 3 = { E1, Ey, E3} be the standard basis for R3, and let v = {z, %9, 73 }, where x; =
(1,1,1), 29 = (0,1,1), and x3 = (0,0, 1).

1. Show that v is another basis for R3.
2. Find [z]4 and [z], for z = (2, —1,4).

Solution:
(1): Note that |8] = |v| = 3 = dim(R?). So, we only need to show that ~ is linearly
independent (or 7 spans R3) Consider ¢yx1 + coxo + c3x3 = 0 which is a homogenous system
1 0 0 C1
with Az =0, where A= |1 1 0| and x = |¢,|. Clearly then |A| =1 # 0 and hence ~
1 1 1 C3
is linearly independent and it is a basis for R3.
2
(2): Note that [z]; = | —1| since z = 2E) — E; + 4E3.
4

Now consider ¢;(1,1,1) 4+ ¢2(0,1,1) 4+ ¢3(0,0,1) = (2, —1,4) to get ¢; = 2,¢1 + ¢ = —1, and
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2

5

¢1 +¢2 + c3 = 4. Therefore, x = 221 + (—3)z2 + 523 and hence [z], = | -3].

31
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Exercise 1.6.1

Solve the following exercises from the book at pages 53 - 58:
e 2:a,b,3:a,b.
o 45 7.

o 11,12.

Exercise 1.6.2

Let W = { f(z) € P3(R) : f(0) = f'(0) and f(1) = f’(1) }. Find a basis for W.

Solution:

Note that any f(z) € W is of the form f(z) = a+ bx + ca? + da?®. Thus, f(0) = f/(0) implies
that a = b. Also, f(1) = f'(1) implies a+b+c+d = b+ 2c+ 3d. These two equations implies
a=b=c+ 2d. Thus

f(x) = (c+2d) + (c+ 2d)x + cx® + dz* = c(1 + x + 2°) + d(2 + 27 + 2°).

Therefore, W =span {1+z+2%2+2zx+23}. Clearly S={1+x+2%2+2zx+23}isa
basis for W.

Exercise 1.6.3

Let W = {a+ bx + cz? € P(R) : a = b = ¢ }. Show that W is a subspace of P,(R).

Solution:

Note that W = {a(1+z +2?):a € R}. Thus, W = span S, where S = {1+ z + 2? } and
hence W is a subspace of Py(RR).

Exercise 1.6.4

Let W= {a+br € P{(R):b=a’}. Is W a subspace of P;(R)? Explain your answer.

Solution:

No. Clearly f(z) =1+ z,g9(z) =2+ 42 € W, but f(z)+g(z) =3+ 52 ¢ W.
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Exercise 1.6.5

Exercise #11 @ page 55: Let x and y be distinct vectors of a vector space V. Show that if
B ={x,y} is a basis for V and a and b are nonzero scalars, then both 7, = { + y,ax } and

v2 = { ax,by } are also bases for V.

Since (3 is a basis for V, then dim(V) = 2. So it is enough to check if both v; and ~, are
linearly independent.

For ~1: Assume that s(x + y) + t(ax) = 0. Then, (s + ta)z + (s)y = 0, and hence s = 0 and
s + ta = 0 which implies that t = 0 since a # 0. Therefore, v, is linearly independent and
hence it is a basis for V.

For ~9: Assume that s(ax) + t(by) = 0. Then, (sa)x + (tb)y = 0 and hence sa = tb = 0
implies that s =t = 0 since a and b are both nonzero. Therefore, 75 is linearly independent

and hence it is a basis for V.
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Chapter

Linear Transformations and Matrices

In this chapter we consider special functions defined on vector spaces that preserve the structure.

These special functions are called linear transformations.

The preserved structure of vector space V over a field F is its addition and scalar multiplication

operations, or, simply, its linear combinations.

Note that we assume that all vector spaces in this chapter are over a common field F.

Definition 2.1.1

Let V and W be two vector spaces. A linear transformation T : V — W is a function such

that:

1. T(z+y) =T(z)+ T(y) for any z,y € V.
2. T(cz) =cT(z) for any c € F and any = € V.

Note that the addition operation in x + y refers to that defined in V, while the addition in
T(z) + T(y) refers to that defined in W. Moreover, if V = W, we say that T is a linear

operator on V. We sometime simply call T linear.

[ Remark 2.1.1

Let T : V. — W be a function for vector spaces V. and W. Then for any scalar ¢, and any

x,y € V, we have

1. If T is linear, then T(0y) = Ow: For any x € V, T(0) = T(0z) = 0T (z) = 0.
2. T is linear iff T(cz +y) = ¢T(z) + T(y).

3. T(z —y) = T(z) — T(y).
4

n n
. T is linear iff T Y ca; | =Y ¢T(x;), for scalars ¢y, -+ ,¢, and @1, -+, x, € V.
]

=1

To see that a linear transformation T : V — V preserves linear combination, assume that v € V

35
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such that v = 3s + 5t — 2u for some vectors s,t,u € V. Then, T(v) = T(3s + 5t — 2u) = 3T(s) +
5T(t) — 2T (u).

In what follows, we usually use property (2) above to prove that a given transformation is linear.

Definition 2.1.2

Let V and W be two vector spaces. We define the trivial linear transformation Ty : V — W
defined by To(z) = 0 for all z € V. Also, we define the identity linear transformation
Iy : V— V defined by T(z) = z for all x € V.

Example 2.1.1

Define T : R? — R? by T(z,y) = (z,—y). Such linear transformation (show it) is called

reflection.

Example 2.1.2

Define T : R*> — R? by T(z,y) = (2,0). Such linear transformation (show it) is called

projection.

Example 2.1.3

Define T : R? — R? by

cos) —sinf| |x
T(z,y) = (xcosf — ysinb, zsinh + ycosh) =
sinf  cosf | |y

Such linear transformation (show it) is called rotation.

Example 2.1.4

Define T : My xn(F) = Myxm(F) by T(A) = A'. Show that T is linear.

Solution (1):

We show that T is linear by showing that T satisfies the conditions of the definition of linear
transformation.

(1): For any A, B € M,,xn(F), T(A+ B) = (A+ B)' = A"+ B* = T(A) + T(B).
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(2): For any ¢ € F and any A € M,,«,(F), T(cA) = (cA)' = cA' = (T (A).

Therefore, T is linear.

Solution (2):

We use Remark 2.1.1 to show that T is linear. For all A, B € M,,«,(F) and ¢ € F, we have
T(cA+ B) = (cA+ B)" = (cA)' + B* = cA' + B' = ¢T(A) + T(B).

Therefore, T is linear.
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Example 2.1.5

Show that T : R? — R?, defined by T(z,y) = (2 + y,x — y) is linear.

Solution:

We use Remark 2.1.1 to show that T is linear. Let ¢ € R and (a,b), (z,y) € R% Then

T(c(a,b) + (z,9)) = T((ca+ z,cb+y)) = (2(ca+z) + (cb+y), (ca+z) — (cb+y))
= ((2ca + cb) + (22 +y), (ca — cb) + (z — y))
= (2ca+ cb,ca —cb) + (2w +y,x —y) = c(2a+ b,a —b) + 2z +y,z — y)
= cT(a,b) + T(z,y).

Therefore, T is linear.

Example 2.1.6

Solution:

For any f(x),g(x) € Po(R) and any ¢ € R, we have

T(cf(z) + 9(z)) = z(cf (@) + g(x)) + 2 = c(zf(x)) + zg(x) + 2,

CT(f(@)) + T(g(2)) = elaf(x) + %) + vg(a) + 2 = c(xf(2)) + xg(c) + w%

but

Define T : Po(R) — P3(R) by T(f(a:)) = zf(z)+ 2% Is T a linear transformation? Explain.
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Therefore, T is not linear.

Example 2.1.7

Let T : R® — R be a linear transformation for which T(3,—1,2) = 5 and T(1,0,1) = 2.
What is T(—1,1,0)?

Solution:

We first write (—1,1,0) as a linear combination of (3, —1,2) and (1,0, 1). Consider
(=1,1,0) = e1(3, —1,2) + (1,0, 1).
Thus, ¢; = —1 and ¢y = 2. Therefore,

T(-1,1,0) = T|(-1)(3,-1,2) + (2)(1,0,1)]
— —T(3,-1,2) + 2T(1,0,1)

=—1(5)+2(2) = —5+4=—1.

Example 2.1.8

Let T : P;(R) — Py(R) be a linear for which T(t + 1) = t* — 1 and T(t — 1) = t* + t. What
is T(7t + 3)?

Solution:

Consider 7t +3 = ¢1(t + 1) + c2(t — 1) which implies that ¢; + co = 7 and ¢; — ¢o = 3. That

is, ¢y = 5, and ¢y = 2. Therefore,
T(7t+3) = T[5(t +1) + 2(t — 1)

= 5T(t + 1) + 2T(t — 1)

=50 —1)+2(* +1t) = Tt* + 2t — 5.

Definition 2.1.3

Let V and W be two vector spaces (over ), and let T : V — W be a linear transformation.

The null space (or kernel) of T, denoted N (T), is the set of all vectors = € V such that
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T(z) = 0; that is
N(T)={ze€V:T(x)=0} CV.

The range (or image) of T, denoted R(T), is the set of all images (under T) of vectors in
V. That is

R(T)={T(x) : €V} CW.

Example 2.1.9

Find the null space and the range of: @ Iy : V= V. @ Ty: V- V.

Solution:

: N(Iy) ={z €V : Iy(x) =0} = {0}
: R(Iy) ={Iy(z) : eV} =V.

: N(To)={z eV :Tyz)=0}=V.
: R(To) ={To(z) : x € V}={0}.

O 00

Theorem 2.1.1

Let V and W be vector spaces and T : V — W be linear. Then N (T) and R(T) are subspaces
of V and W, respectively.

We first show that A/(T) is a subspace of V:

1. T(0y) = Ow and hence Oy € N(T).
2. Let 2,y € N(T), then T(z) = T(y) = Ow and

Tx+y)=T@)+T@) =0w+0w=00 =  z+yecN(T).
3. Let c € F and z € N(T), then T(cz) = ¢T(x) = cOw = Ow, and hence cx € N (T).

Therefore, N'(T) is a subspace of V.
Next we show that R(T) is a subspace of W.
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1. T(0y) = Ow and hence Ow € R(T).
2. Let z,y € R(T), then there exist u,v € V such that T(u) = x and T'(v) = y and hence

T(u+v)=T(u)+Tw) =z+vy = r+y € R(T).

3. Let ¢ € F and = € R(T), then there exists u € V such that T(u) = z, and as cu € V,
we have T(cu) = ¢T(u) = cx € R(T).

Therefore, R(T) is a subspace of W.

[ Remark 2.1.2

The next theorem provides a method for finding a spanning set (and therefore a basis) for

the range of T, namely for R(T).

Theorem 2.1.2

Let T : V— W be a linear transformation. If 5 = {x, 29, -+ ,x, } is a basis for V, then

R(T) =span T(f8) = span { T(zy), T(xs), -+, T(x,) }.

Since x; € V, then T(z;) € R(T) for each i. Because R(T) is a subspace of W, R(T) contains
span { T(z1), T(z2), -+, T(x,) } = span T(5). Thus, span T(8) C R(T).
Now suppose that y € R(T). Then y = T(z) for some z € V. But because [ is a basis for

V, we have x = Y1 | ¢;a;, for ¢1,cq,--- , ¢, € F. Thus,

y="T(z)=T(c1z1 + 2z + -+ - + cpxy)

=1 T(z1) + 2T (x2) + -+ + ¢, T(xy).

Thus, y € span T(3). Hence R(T) C span T(3). Therefore, R(T) = span T([3).
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Example 2.1.10

Let T : Py(R) — Msy2(R) be a linear transformation defined by

Find a basis for R(T).

Solution:

Consider the standard basis = {1, z,2? } for Po(R). Then

R(T) = span T(3) = span { T(1), T(x), T(s?) }
1—-1 0 1-2 0 1—-4 0
= Span ) )
0 1 0 0 0 0
0 0 -1 0 -3 0
= span , , .
0 1 0 0 0 0
o 0 0 -1 0 -3 0 0 0
Considering the system c¢; + ¢ + c3 = , we note that
0 1 0 0 0 0 0 0
co = —3c3. Thus
0 0 -1 0
R(T) = span , )
0 1 0 0

0 0 -1 0
Therefore, { ( ) , ( ) } is a basis for R(T) and dim(R(T)) = 2.
0 1 0 O

Definition 2.1.4

Let T : V— W be a linear transformation. If A'(T) and R(T) are finite-dimensional, then

we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be
the dimensions of N (T) and R(T), respectively.
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Theorem 2.1.3

Let V and W be vector spaces, and let T : V — W be a linear transformation. If V is

finite-demensional, then

nullity(T) + rank(T) = dim(V).

Definition 2.1.5

Let T : V. — W be a linear transformation. Then T is said to be one-to-one (or simply
1—1)if for all z,y € V, if T(z) = T(y), then x = y.

Moreover, T is said to be onto W if R(T) = W. That is for all y € W, there is z € V such
that T(z) = v.

Theorem 2.1.4

Let V and W be two vector spaces, and let T : V — W be a linear transformation. Then, T

is ono-to-one iff N(T) = {0}.

Proof:

» = : Assume that T is 1-1. If x € N(T), then T(z) = 0 = T(0), and hence x = 0.
Therefore, N'(T) = {0}.
» <= : Now let N(T) = {0}. Assume that T(z) = T(y) for z,3y € V. Then,

T(z) - T(y) = T(z —y) =0.

Hence x —y € N(T) = {0} and thus x —y = 0 which implies that # = y. Therefore, T is 1-1.

Theorem 2.1.5

Let V and W be two vector spaces of equal finite dimension, and T : V — W be a linear

transformation. Then the following statements are equivalent:

1. Tis 1-1

2. T is onto.

3. N(T) = {0}.

4. rank(T) = dim(V).

ot

. nullity(T) = 0.
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.

Note that nullity(T) + rank(T) = dim(V). Then,

Tisl-1 < N(T)={0} < nullity(T)=0

& R(T)=W <« T is onto.

&  rank(T)=dim(V) <& rank(T)=dim(R(T)) = dim(W)
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Example 2.1.11

Let T : R? — R? be linear transformation defined by

T(x,y) = (27 — 3y,y).

Show that T is 1-1 and onto.

Solution:

We simply show that NV (T) = {(0,0)}.

€R? : T(z,y) =(0,0) }

)
z,y) €R? : (22 —3y,y) = (0,0)}
)

Therefore, T is 1-1 and onto.

(
(
(z,y eR? : 2m—3y=0andy=0}
(

Example 2.1.12

N(T), R(T), nullity(T) and rank(T).

Solution:

First,

Thus { (0,0, 1) } is a basis for N(T) and hence nullity(T) = 1.

Let T : R> — R? be the linear transformation defined by T(x,y, 2)

(z,9).

N(T) ={(z,y,2) € R®: T(z,y,2) = (z,9) = (0,0) } ={(0,0,2) : z e R }.

Find
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Next,
R(T) = {T(x,y,z) = (z,y) € RQ} ={x(1,0) +y(0,1) : z,y € R} = R%

Thus, rank(T) = 2.

Example 2.1.13

Let T : Po(R) — P3(R) be the linear transformation defined by T (f(z)) = f'(x) + J5 f(t) dt.
@ Is T one-to-one? @ Is T onto? Explain.

Solution:

(1) : We show that T is 1-1 iff N(T) = {0}. Consider the basis § = {1, 2,2} for Py(R).
Then,

R(T) = span {T(l),T(m),T(:pQ) } = span {x, 1+ ZB;, 2z + x;’ }

2 3
x
Since  z,1+ —,2x + ey is linearly independent set (It can be shown easily), it is a basis

2
for R(T). Thus, rank(T) = dim(R(T)) = 3 = dim(P2(R)). Therefore, nullity(T) = 0 and
hence N (T) = {0} and then T is 1-1.

@ : rank(T) = 3 < dim(P5(R)) and hence R(T) # P3(R). Therefore, T is not onto.

Example 2.1.14

For each of the following linear transformations, determine A/(T) and R(T); find their bases;

is T 1-1 or onto? Explain.

: R? — R? given by T(z,y,2) = (z —y, 22).

(

: R? — R3 given by T(z,y) = (z + y,0,2z — y).
(
(

S
MR R 8

Y
: R® — R? given by T(z,y,2) = (v + v,z — y).
Y

: R? — R3 given by T(z,y) = (zr + y,z — y, x).

Solution:
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N(T)

{(z,y,2) : T(z,y,2) = (0,0) }
{(z,y,2) re—y=0and 22 =0}
{

(x,2,0) : z e R} ={x(1,1,0) }.

Then, nullity(T) = 1 since { (1,1,0} is a basis for N(T), and T is not 1-1.

Note that rank(T) = 3 — nullity(T) = 2. Thus, rank(T) = 2 and hence R(T) = R
Therefore, { (1,0),(0,1) } is a basis for R(T) and T is onto. We note that we can compute
R(T) by considering

R(T) = span { T(1,0,0),T(0,1,0), T(0,0,1) }.
Parts (2), (3), and (4) are left as exercises. (2):

N(T) ={(z,y) : T(z,y) = (0,0,0)}
={(z,y) :z+y=0and 2z —y =0} ={(0,0,0)}

Thus, nullity(T) = 0 and T is 1-1 and basis for N(T) = ¢. The rank(T) = dim(R(T)) =

2 < dim(RR?) and hence T is not onto.

R(T) = span {T(1,0),T(0,1)}
=span {(1,0,2),(1,0,—1) }

It is clear that { (1,0,2),(1,0,—1) } is linearly independent and hence is a basis for R(T).

Theorem 2.1.6

Let V and W be two vector spaces, and suppose that {xy, 2, ,z, } is a basis for V. For

any vectors yi,vys, - ,Y, € W, there exists exactly one linear transformation T : V — W

such that T(z;) =y; fori=1,--- ,n.

Let V and W be vector spaces, and suppose that V has a finite basis {1, xq, -+ ,2,}. If

T,U:V — W are linear transformations and U(x;) = T(x;) for i = 1,--- ,n, then U =T.
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Example 2.1.15

Let U, T : R? — R? be linear transformations and let T be defined by T(z,y) = (2y — z, 3x).
If U(1,2) =(3,3) and U(1,1) = (1, 3), show that T = U.

Solution:

Note that { (1,1),(1,2) } is a basis for R? and that T(1,1) = (1,3) = U(1,1) and T(1,2) =
(3,3) = U(1,2). Therefore, U =T.




~J
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Exercise 2.1.1

Solve the following exercises from the book at pages 74 - 79:
e 2.3.45.

o 8,11,12,13.

Exercise 2.1.2

Show that T : R* — R? defined by T(x,y,z,w) = (z,y) is linear.

Solution:

Let k € R and (a,b,c,d), (z,y,2,w) € RY Then

T(k(a,b,¢,d) + (z,y, 2,w)) = T((ka, kb, ke, kd) + (z,y, z,w))
= T(ka + z,kb+ y, kc + 2, kd + w) = (ka + z, kb + y)
= k(a,b) + (z,y)
= kT(a,b,c,d) + T(x,y, z,w).

Exercise 2.1.3

Show that T : R? — R? defined by T(z,y) = (z + y, 3z) is linear.

Solution:

Let k € R and (a,b), (z,y) € R% Then

T (k(a,b) + (2,y)) = T ((ka, kb) + (z,y))
=T (ka+ z,kb+y) = ((ka + z) + (kb + y), 3ka + 3x)
= (ka + kb, 3ka) + (v + y, 3x)
= kT(a,b) + T(z,y).

Exercise 2.1.4

Let C(R) denote the set of all real valued continuous functions on R. Define T : C(R) — R
b
by T(f(x)) = / f(z)dx for all a,b € R with a < b. Show that T is linear.
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For any f(z),g(x) € C(R) and any ¢ € R, we have

b

T(cf(2) + 9(a)) :/: (c/(@) + 9(@)) d:z::c/abf(x) do+ [ gla) do
= cT(f(x)) + T(g(x))

Therefore, T is linear.

Exercise 2.1.5

Let T : R? — R? be the linear transformation defined by T(z,y) = (2z + v,z — y). Find
N(T), R(T), nullity(T) and rank(T).

Solution:

N(T) ={(z,y) eR* : T(z,y) = 2z +y,z —y) = (0,0) }. Thus, 2r+y=0andz—y =0
which implies that © = y = 0. Thus, N (T) = {(0,0)}. Therefore, nullity(T) = 0 and hence
rank(T) = 2 = dim(R?). Therefore, R(T) = R?, and we are done.

Or, we can compute the basis of R(T) as follows
R(T) = { T(z,y) = 2 +y,2—y) € R? } = {2(2,1) +y(1,-1) }.

Therefore, { (2,1),(1,—1) } is a basis for R(T) and rank(T) = 2.
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Section 2.2: The Matrix Representation of Linear Transformation

In this section, we consider the representation of a linear transformation by a matrix. That is, we
develope a one-to-one correspondence between matrices and linear transformations that allows us to

utilize properties of one to study properties of the other.

Definition 2.2.1

Let V be a finite-dimensional vector space. An ordered basis for V is a finite sequence of

linearly independent vectors in V that generates V.

[ Remark 2.2.1

7

Note that 8y = {FEi, Ey, F3} can be considered as ordered basis for R? while 3y =
{ Ey, By, B3} is also an ordered basis for R3, but 3; # 3, as ordered basis.

In particular, { Ey,--- , E, } is the standard ordered basis for R". Also, {1,z,22 -+ 2"}
is the standard ordered basis for P, (R).

Definition 2.2.2

Let 5 = {1, -+ ,z, } be an ordered basis for a finite-dimensional vector space V. For x € V|

let ¢1,--+ , ¢, €F be the unique scalars such that x = c¢1x1 4+ coxo + - - - + ¢, x,,. We define the

coordinate vector of x relative to /3, denoted [x] 5> by

[35],3 =

Cn

Example 2.2.1

Consider the vector space P3(R) and the standard ordered basis 8 = {1, z,z% 23 }. Find the

coordinate vector of f(z) = 3 + Tz — 922 relative to 3.

Solution:

Clearly f(z) =3+4+Tr —922=3-1+7 -2+ (=9)-2* +0-2*, and hence

[f(2)];=(3,7,-9,00=[3 7 —9 0"
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Definition 2.2.3

Let V and W be two finite-dimensional vector spaces with ordered bases f = { z1, 2o, -+ , 2, }
and v = {y1,¥Y2," -, Ym }, respectively, and let T : V — W be a linear transformation. For
each j, 1 < j < n, we have T(z;) € W and there exist unique scalars ¢;; € F, 1 <1i < m,
such that

T(z;) =) ¢ij Ys-
i=1
Then the m x n matrix A = (¢;;) is called the matrix representation of T in the ordered
bases  and v and is written A = [T]}. If V.= W and 3 = v, then we write simply A = [T],.
Note that the j column of A = [T]} then is simply [T(z;)],- That is,

A= |[T(@), [T(e)], - [T,

| Remark 2.2.2 |

Following Definition 2.2.3, the following statements hold:

L IfU:V — W is a linear transformation such that [U]} = [T]3, then U = T.
2. If v € V, then [T(z)], = A [z]4, where [z], and [T(z)], are the coordinate vectors of x

and T(z), respectively, with respect to the respective bases  and 7.

3. Ifz €V, then T (z) = ([T(x)],y)l Y = ici Yi-

i=1

| Remark 2.2.3

>

. . ’Y.
* Finding [T];:
Let T : V — W be linear transformation from n-dimensional vector space V into m-
dimensional vector space W, and let 5 = {x1,--- ,2,} and v = {y1,- - ,ym } be bases

for V and W, respectively. Then we compute the matrix representation of T as follows:

1. Compute T(z;) for j =1,2,--- ,n.

2. Find the coordinate vector [T(z;)], for T(z;) with respect to 7. That is, express T(z;)
as a linear combination of vectors in ~.

3. Form the matrix representation A of T with respect to § and + by choosing [T(z;)] as

the 5% column of A.
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Example 2.2.2

Let T : R?* — R? be a linear defined by T(z,y, 2) = (z+y,y—2). Find a matrix representation
A for T. Use A to evaluate T'(u), where u = (1,2, 3).

Solution:

We use the method described in Remark 2.2.3 and consider 5 = {(1,0,0), (0,1,0),(0,0,1) }
and v = {(1,0),(0,1) } as standard ordered bases for R* and R?, respectively. Then

T(1,0,0) = (1,0)=1-(1,0)+0-(0,1) = [T(1,0,0)], = (1,0)
T(0,1,0) =(1,1)=1-(1,00+1-(0,1) = [T(0,1,0)]. = (1,1)

T(0,0,1) =(0,—1)=0-(1,0)+(~1)-(0,1) = [T(0,0,1)], = (0,—1).

0 1 -1
Note that (1,2,3) = (1,0,0) + 2(0,1,0) + 3(0,0,1), and that T(E;) = column;(A), for i =

Therefore, A = [T]} = [1 Lo ] :

1,2, 3. Hence, we can compute T(1,2,3) as follows:
T(1,2,3) = T(E,) + 2T(Es) + 3T(Es) = (3, —1).

On the other hand, we simply can use Remark 2.2.2 as follows:

Therefore, T(1,2,3) = (3, —1).

Example 2.2.3

Let T : Py(R) — P3(R) be a linear defined by T (f(x)) = z f(z). @: Find the matrix
representation A for T. @: If f(z) =3z —2 € Py(R), compute [T (f(z))]
standard ordered basis in Py(R). @: Evaluate T(f(z)) using A.

,» where v is the

Solution:
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@: We use the method described in Remark 2.2.3 and consider 8 = {1,z } andy = {1, 2, 2% }
as standard ordered bases for P;(R) and Py(R), respectively. Then

T(flz)=1)=2-1=2=0-1+1-2+0-2> = [T(1)], =(0,1,0)

T(f(zx)=2)=2-2=2>=0-1+0-2+1-2° = [T(z)], = (0,0,1).

Therefore, A = [T]} =

S = &S

0
ol.
1
@: We can simply compute [T (f(z))], directly:

T (f(z)) = zf(z) = z(3x—2) = 32°—2x = 0-1+(-2)-2+3-2°> = [T ((f(z))], = (0,-2,3).

il

Or, we can use Remark 2.2.2 part(2) using A. We first write f(z) as a linear combination of
B:
f@)=-2-143-2 =  [f@),=(-2.3)

Then using Remark 2.2.2 part(2), we have

Hence [T (f(z))]., = (0,-2,3).
@: Use the result in part @, to get T (f(x)) = —2z + 3z

Definition 2.2.4

Let T,U : V — W be arbitrary functions where V and W are vector spaces over F, and let

a € F. We define the usual addition of functions T+ U : V — W by
(T4 U)(z) = T(z) + U(z) forall x €V,

and aT :V — W by
(aT)(x) =aT(x) for all z € V.
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Theorem 2.2.1

Let V and W be two vector spaces over I, and let T, U : V — W be linear transformations.

Then

1. For all a € F, (aT + U) is linear transformation.

2. The collection of all linear transformations from V to W is a vector space over F.

(1) Let x,y € V and ¢ € F. Then

(aT + U)(cx +y) = aT(cx +y) + Ulex + y) = a[T(cx + y)] + cU(z) + U(y)
= a[cT(z) + T(y)] + U(z) + U(y)
= acT(z) + aT(y) + cU(z) + U(y)
= c(aT(z) + U(x)) + aT(y) + U(y)
= ¢(aT + U)(z) + (aT + U)(y).
Thus, aT + U is linear transformation.

(2): Note that the zero transformation T is the zero vector. The other conditions of a vector

space can be easily proved.

Definition 2.2.5

Let V and W be two vector spaces over F. We denote the vector space of all linear transfor-

mation from V into W by £ (V,W). If V=W, we simply write £ (V).

Theorem 2.2.2

Let V and W be finite-dimensional vector spaces with ordered bases [ and -, respectively,

and let T, U : V — W be linear transformations. Then

[T +UJ; = [T]; + [U]}, and

1.
2. [aT]} = a[T]} for all scalars a.
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Example 2.2.4

Define T : Myy2(R) — Py(R) by T (a 2) = (a+b) +2dx + bx?.
c

Let 8 = L0 ) 01 , 00 , U and v = {1,z,2%} be ordered bases
0 O 0 O 1 0 0 1

for Msxa(R) and Py(R), respectively. Find [T];. Use [T]} to evaluate T(D), where

B8
p=[1 3]
1 9

Solution:

We use the method described in Remark 2.2.3. That is,

1 0

T =1=1-140-2+0-2°> = [T], =(1,0,0),
- T T [T]., = ( )
T 8 (1) — 1422 =1-140-2+1-2% = [T], = (1,0,1),
0o 0y 2 _
T\, 0 =0=0-140-z+0-2° = [T], =(0,0,0),
0 O 2
T 0l =2r=0-142-2+0-2> = [T], =(0,2,0).
Thus,
1 1 0 0
A=[Tli=10 0 0 2|.
0 1 0 0

Note that [D], = (1,3,—1,2), and hence [T(D)], = A[D]; = (4,4,3). Hence, T(D) =

4 + 4z + 322,

Example 2.2.5

Let 3 = {a% 23 2% 2,1} be an ordered basis for P4(R) and let v be the standard ordered
basis for R3. Define T : P4(R) — R* by T (f(x)) = (f(1) — f(0), f(0), f”(1)), and let

U : Py(R) — R? be a linear transformation having the matrix representation

1 0 1
Uz=0 1 -1 1 2|.
1 11
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1. Find U(z* — 22 + 1).
2. Find the matrix representation of T + Uj that is, [T + U]},
3. Find the rank and the nullity of U. Exercise!!

Solution:

(1): Let f(z) = 2* — 2? + 1. We compute {U(f(a:))h = [U]} [f(2)]; using Remark 2.2.2:

flx)=2*—22+1=1-2*4+0-2°+(-1)-22+0-z+1-1 = [f(z)],=(1,0,—1,0,1).
B

Thus
1
1 1 0 1 0
U(@)] =@, =0 1 -1 1 2| |-1f=[1 3 1]e®
1 -1 1 1 1 (1)

We note that, this can be computed directly as follows:

[U(* -2 +1)] = [U(e*) - U(=") + U(1) ], = [0(=")], - [U(=*)], + [U(D)],
= coli([U]}) — col3([U]}) + cols([U]}) = (1,3, 1).
Therefore, U(x4 —z? + 1) =(1,3,1).
(2): Note that [T + U]} = [T]; + [U]}. Thus,
T (') = (1,0,12) = 1-(1,0,0) +0- (0,1,0) + 12 (0,0,1) = [T(gz;‘l)}7 = (1,0,12)

T (2%) = (1,0,6) = 1-(1,0,0) + 0+ (0,1,0)+ 6 (0,0, 1)

) -
T (%) = (1,0,2) = 1-(1,0,0) + 0 (0,1,0) + 2 (0,0,1) = |T(2*)] =(1,0,2)
T(r)=(1,1,0) =1-(1,0,0) +1-(0,1,0) +0-(0,0,1) =

=

T (1) = (0,0,0) = 0- (1,0,0) +0-(0,1,0) +0- (0,0, 1)

and therefore

O = =
o O O
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(3): R(U) = span {U(z%), U(23),U(z?),U(x),U(1) }, and hence rank(U) = mnk( [U]g)
and nullity(U) = nullity( [U]g)

1 0 1 0 1 1 0 0 2 3
0 1 -1 1 2 rret 01 0 -1 0
1 -1 1 1 1 00 1 -2 -2

That is rank(U) = 3 and hence nullity(U) = 2.
Also note that { (1,0,1),(0,1,—1),(1,—1,1) } is a basis for R(U). Also, U is not 1-1 since
its nullity # 0.

Example 2.2.6

Let T : Py(R) — Myyo(R), defined by T (f(z)) = (f 'ém ?{f g;) |

1. Compute [T]; where § and ~ are the standard ordered bases for Py(R) and Msxo(R),
respectively. Use [T]} to compute T(g(z)), where g(z) = 2* + 2z.
2. Is T 1-17 Explain. Exercise!!

3. Is T onto? Explain. Exercise!!

Solution:
1 0 0 1 0 0 0 0
1): Let 3={1,2,2°} and v = , , , . Then
T(1) = 0 2 _0. 1 0 +9. 0 1 40 0 0 40 0
0 0 0 0 0 0 1 0 0 1
T(z) = 1 2 1. 1 0 49, 0 1 40 0 0 e 0
0 0 0 0 0 0 1 0 0 1
@)= (2 2 =01 Y)42- (0 Y40 O) +2. (9
0 2 0 0 1 0 0 1
Thus

=
|

o oo

o o=

OO N O
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Note that [g(x)]5 = (0,2, 1), and hence [T (g(z))]; = A [g(z)]; = (2,6,0,2). Therefore,

T(g(z)) = (g 2) .

(2): Note that rank(T) = rank([T]}). Thus

r.r.e.f.

o O N O
S O N =
O NN O
oS O O =
S O = O
o = O O

Therefore, rank(T) = 3 and hence nullity(T) = 0. Thus, T is 1-1.
(3): T is not onto since rank(T) = 3 < rank(Msx2(R)) = 4.

o7

Example 2.2.7

Let T : Py(R) — R? be a linear transformation satisfying:
T(1) = (1,1,1), T(1+x) = (1,2,1), and T(1+z+2?) = (1,0,1).

1. Find a matrix representation of T relative to the standard ordered bases for Py(R) and
R3. Evaluate T (g(z)), where g(z) = ? — 3z + 1.
2. Find bases for R(T) and N (T). Exercise!!

Solution:

(1): Consider 8 = {1,z,2? } and v = { (1,0,0), (0,1,0),(0,0,1) }. Then

T(1) = (1,1,1) = 1-(1,0,0) + 1-(0,1,0) + 1 (0,0,1) = [T(1)], = (1,1,1)
T(z) = T(1+2) - T(1) = (0,1,0) = [T(z)], = (0,1,0)

T(z%) = T(1 4 2 + 2%) — T(1 + z) = (0,—2,0) = [T(xQ)L = (0, —2,0).

Thus

o~ O
|
O

Note that, [g(z)]; = (1,-3,1) and hence [T (g(x
T (9(z)) = (1, =4,1).

~—

)]7 = A[g(a:)]ﬁ = (1,—4,1). Therefore,
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(2): Note that

R(T) = span { T(1), T(z), T(«?) }
=span {(1,1,1),(0,1,0),(0,-2,0) } =span {(1,1,1),(0,1,0) }.

Therefore, { (1,1,1),(0,1,0) } is a basis for R(T).

N(T) = { f(z) = a+ bz + cz® € Py(R) : T(a+ bz +cz?) = (0,0,0) }

a+bx+ca® : aT(1) +bT(z) + ¢T(2?) = (0,0,0) }

a+bx+ca? : a(l,1,1)+5(0,1,0) +¢(0,-2,0) = (0,0,0) }

I
= S S S

a+bx + cz? : (a,a—i—b—?c,a):(0,0,0)}

a+br + cx? aanndszC}

2cx + cx? cER}:span {2x+:r:2}.

Thus, {2z + 2% } is a basis for N(T).
Note that we could use Remark 2.2.3 to find a basis for N'(T) using the following technique:

1 0 a a
[T(a+bx+0x2)}B:A [T(a+b$—|—cx2)]5: 1 1 =2| |b] =]la+b=2c]|.
1 0 c a
Therefore, i
a 0
a+b—2c| =10
a 0

implies that a = 0 and b = 2c. Hence, f(x) = 0+ 2cz + cx? and thus { 2z + 22 } is a basis for
N(T).
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Exercise 2.2.1

Solve the following exercises from the book at pages 84 - 86:
e 2:a,b c and d.
e 3.4,5.

o 8.

Exercise 2.2.2

Let T : R? — R3 be a linear defined by T(z,y) = (2v — 3y, —z,x + 4y). Find a matrix

representation A for T. Use A to evaluate T'(u), where u = (2,4).

Solution:

We use the method described in Remark 2.2.3 and consider § = {(1,0),(0,1) } and v =
{(1,0,0),(0,1,0),(0,0,1) } as standard ordered bases for R? and R?, respectively. Then

T(1,0) = (2,-1,1) = 2-(1,0,0) + (=1) - (0,1,0) +1-(0,0,1) = [T(1,0)]. = (2,~1,1)

T(0,1) = (=3,0,4) = =3 (1,0,0) +0- (0,1,0) + 4-(0,0,1) = [T(0,1)], = (~3,0,4).

2 =3
Therefore, A = [T]; = | -1 0
1 4
Simply, [T(u)], = A[u]; = (—8,-2,18). Hence, T(u) = (-8, -2,18).

Exercise 2.2.3

Let T : P3(R) — Py(R) be the linear defined by T (f(x)) = f'(x). Let § and ~ be the
standard ordered bases for P3(R) and Py(R), respectively. Find the matrix representation A
for T with respect to 8 and . Use A to evaluate T(f(z)), where f(z) = 322 + 1.
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Let 3 ={1,z,2% 2%} and v = {1,2,2? }. Thus

T1) = 0=0-1+0-z+0-2°> = [T(1)], =(0,0,0)
T(z) = 1=1-140-2+0-2> = [T(x)], =(1,0,0)
T(z?) = 22=0-14+2-2+0-2° = [T(:ﬁ)]w:(o,z,())
T(x*) = 32°=0-1+0-2+3-2° = [T(*)] =(0,0,3).

o

Therefore, A = [T]} =

e e S

1
0
0

S NN O
w o O

Note that [f(z)]; = (1,0,3,0) and hence [T(f(z))], = A[f(z)]; = (0,6,0). Therefore,
T(f(z)) = 6z.

Exercise 2.2.4

1 -1
1
by A using the standard ordered bases 3 and v for Po(R) and P;(R), respectively. Evaluate

Let A = 2| Assume that T : Py(R) — Py (R) is the linear tranformation defined

T (g(x)), where g(z) = 2z* — 3z + 1.

We solve in two methods: 1. Note that [T (2% — 3z 4+ 1)], = 2[T(2?)], -3 [T(2)], +[T(1)], =
2 1 (1] |8 B

2 [3 ) A - Hence, T (g(z)) = 8 + Tx.

2. Another way: Note that [g(z)]; = (1,—3,2) and hence [T (g(z))], = Ag(z)]; = (8,7).

.
Thus, T (g(x)) = 8 + Tx.

o

-3 +
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Definition 2.5.1

Let 5 and v be ordered bases for a finite-dimensional vector space V, and let ) = [Iv]f,

where Iy : V — V is the identity linear transformation. Then (@ is called the change of
coordinate matrix (it changes 7-coordinate into S-coordinate). Moreover, @) is invertible

and Q! changes 3-coordinate into y-coordinate.

Theorem 2.5.1

Let T be a linear operator on a finite-dimensional vector space V. Let 5 and v be two ordered

bases for V, and let () be the change of coordinate matrix that changes ~-coordinates into

[-coordinates. Then

1. For any z € V, [z], = Q [z],, and
2 [T), = Q' [T, Q.

Example 2.5.1

Let 3 = {(1,0),(0,1)} and v = {(1,—1),(2,1) } be two ordered bases for R? and let
T : R? — R? be defined by T(a,b) = (a+b,a—2b). Find the change of coordinate matrix Q,
that changes 7-coordinates into -coordinates, and use it to find [T].. Find [(5,1)], using Q.

Solution:

Note that
Ig:(1,-1)=(1,-1)=1-(1,0)+ (—=1)-(0,1) & Ipe(2,1)=(2,1)=2-(1,0)+1-(0,1).
Thus, the matrix that changes v-coordinates into -coordinates is
Q_<1 2) ) Q_1_1<1 _z)
-1 1 3\1 1
To find [T],, we use [T] = Q' [T], Q and

T(1,0) = (1,1) =1-(1,0) + 1-(0,1) [1 1]
T(0,1) = (1,-2) = 1+ (1,0) + (=2) - (0, 1) '
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Thus, [T}, = Q' [T, Q

* Confirmation:

T(1,—-1) = (0,3) = —2-(1,=1) + 1-(2,1), and

T(2,1) = (3,0) =1-(1,—=1)+1-(2,1).

Finally, note that [(5,1)]; = Q[(5,1)],, where [(5,1)], = (1,2) since (5,1) =1-(1,—-1) +2-

1 2 1
(2,1). Therefore, [(5,1)]5 = (_1 1) (2)
(0,1).

(?) which is true since (5,1) =5 (1,0) + 1 -

Example 2.5.2

Let 3 ={(1,1),(1,—1)} and v = {(2,4), (3,1) } be bases for R?. (a) What is the matrix Q
that changes y-coordinates into S-coordinates, and use it to find [(1,7)]4 and [(1,7)],. @ If
T : R — R? is the linear operator on R? defined by T(a,b) = (3a — b,a + 3b), find [T]..

Solution:

(a): We first consider:
Tpz(2,4) = (2,4) = e1(1, 1) + ea(1, —1) = 3(1,1) + (=1)(1, —1), and
Tpe(3,1) = (3,1) = c1(1, 1) + (1, —1) = 2(1,1) + 1(1, —1).

Thus, the matrix that changes v-coordinates into -coordinates is

_[3 2 {1 =2
_<—1 1) - ¢ _5(1 3)'

To compute [(1,7)]4, consider (1,7) = 2(2,4) + (—1)(3,1); hence [(1,7)],, = [_2 . Therefore,
3 2 2 4
[(1’7)]5 =Q [(177)]7 = (_1 1) |:_1] = |:_3] )
which is true since (1,7) =4(1,1) + (—3)(1, —1).
To compute [(1,7)], consider (1,7) = 4(1,1)+(—3)(1, —1); hence [(1,7)]; = [ 4 Therefore,
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which is true since (1,7) = 2(2,4) + (=1)(3,1).
@: Note that

T(1,1) =(2,4) =3-(1,1)+(-1) - (1,-1),

T(1,-1) = (4,-2) =1-(1,1) +3- (1, ~1).

1) and hence
3

Which can be seen if we consider

T(2,4) = (2,14) =@ (2,4 +(:2)-(3,1) = [T(2,4)], = (4,~2). "1 column of [T}

~

T(3,1)=(8,6) =1 (2,4)+(2)-(3,1) = [T(3,1)], =(1,2). "2"* column of [T] "
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Example 2.5.3

Let T be the linear operator on R? defined by
T(a,b,c) = (2a + b,a+ b+ 3c,—b),

and let 5 = {(1,0,0),(0,1,0),(0,0,1) } and v = {(-1,0,0),(2,1,0),(1,1,1) } be bases for
R3. Find [T] 8 [T] ,» and the matrix @ that changes the y-coordinates into S-coordinates.

Solution:
Clearly,
Izs(—1,0,0) = (—1,0,0) = —1(1,0,0) + 0(0,1,0) 4+ 0(0,0, 1)
Ir3(2,1,0) = (2,1,0) = 2(1,0,0) + 1(0,1,0) 4+ 0(0,0, 1)
Tgs(1,1,1) = (1,1,1) = 1(1,0,0) + 1(0, 1,0) + 1(0,0, 1).
Hence
-1 2 1 -1 2 -1
Q=0 1 =Q'=]l0 1 -1
0 0 1 0 0 1
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Computing [T,

T(1,0,0) = (2,1,0) = 2(1,0,0) + 1(0, 1,0) + 0(0,0, 1)
T(0,1,0) = (1,1,—1) = 1(1,0,0) + 1(0,1,0) + (—1)(0,0, 1)

T(0,0,1) = (0,3,0) = 0(1,0,0) + 3(0, 1,0) + 0(0, 0, 1).

2 1 0 0 2 8
Thus [T]; =11 1 3|, and hence [T]7 =Q! T, Q=]-1 4 6
0 -1 0 0 -1 -1

Confirming;:

T(-1,0,0) = (—2,—1,0) = 0(=1,0,0) + (=1)(2,1,0) +0(1,1,1)
T(2,1,0) = (5,3,—1) = 2(—1,0,0) + 4(2,1,0) + (=1)(1,1,1)

T(1,1,1) = (3,5,—1) = 8(—1,0,0) + 6(2,1,0) + (—1)(1,1,1).
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Solve the following exercises from the book at pages 116 - 117:

e 2,.3,4,5,6.
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Chapter

5 Diagonalization

Section 5.1: Eigenvalues and Eigenvectors

Definition 5.1.1

Let A € M,«n(F). We define the mapping Ly : F* — F™ by L4(x) = Ax for every column

vector z € F". We call Ly, the left multiplication transformation.

Example 5.1.1

T 1
Let A = 2 =1 and Ly : R® — R2 Find L4(z) where z = |—1|.
0 1 2
- 2
Solution:
2 1 3 L 9
Lu(z) = Az = B —1| = € R2
4@ 0 1 2] 21 3

[ Remark 5.1.1

Let A, B € My,x,(F) and let ¢ € F. Then

1. L4 is a linear transformation.

2. [La]j = A, where 3 and ~ are the standard ordered bases for F* and F™, respectively.
3. Ly =Lg if and only if A = B.

4. La,p=Ls+Lgand L.y = cLg4.

Proof of (2): Let 8= (FE4,---,E,)and v = (Ey,---, E, ) be the standard ordered bases for R™
T1
and R™, respectively. For any column vector x = | @ | € R"”, we have
Tn

r=xE+- - +a,E,,

67
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xy
and thus [z]; = | | | = z. Similarly, we have [y] =y for all y € R™.

Tn
Now let A € M,,«n(R), and let z € R™. By definition, L4(z) = Az. Also by Remark 2.2.2, we
have [Lal, = [La]} [z]5. Note that since [La], € R™ and [z], € R", we have

Thus, [L A]g x =Ly(z) = Ax for all x € R". Applying this to £ = ( ] we see that the first column
=1,-

of [L A] and A are the same. Similarly, we apply it for all E; for ¢ ,n, we get [L A]ZJ = A as
desired.

Definition 5.1.2

.
.
|
.

A linear operator T on a finite-dimensional vector space V is called diagonalizable if there
is an ordered basis # for V such that [T}, is a diagonal matrix. A square matrix A is called

diagonalizable if L 4 is diagonalizable.

Definition 5.1.3

Let T be a linear operator on a vector space V. A nonzero vector x € V is called eigenvector
(or e-vector for short) of T if there exists a scalar A such that T(x) = A x. The scalar \ is

then called eigenvalue (or e-value for short) corresponding to x.

[ Remark 5.1.2 ]

Let A € My, (F).

e A nonzero vector x € [F" is called e-vector of A if and only if x is an e-vector of L 4.

e )\ is an e-value of A if and only if A is an e-value of L.

Theorem 5.1.1

|
.

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there
exists an ordered basis 3 for V consisting of e-vectors of T. Furthermore, if T is diagonalizable,

B={w1,22,--+, 1, } is an ordered basis of e-vectors of T, and D = [T], = (d;;), then D is a
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\ diagonal matrix and d;; is the e-values corresponding to x; for 1 < j < n.

Note that to diagonalize a matrix or a linear operator is to find a basis of e-vectors and the

corresponding e-values.

Example 5.1.2

Consider A = ( 1 1), x = (1), Yy = (1) Then
-2 4 1 2
Li(z) = Az = (;) =2 (1) =2zr and La(y) = Ay = (2) =3 (;) = 3y.

That is 2 and 3 are e-values of L4 corresponding to e-vectors z and y, respectively.

Note that 8 = {x,y } is an ordered basis for R? consisting e-vectors of both A and L4, and

therefore A and L4 are both diagonalizable. Moreover,

[LA]g = (3 g) )

where [La(z)]5 = (2,0), and [La(y)]; = (0, 3).

Theorem 5.1.2

Let A € M« (F). Then a scalar \ is an e-value of A if and only if | A — AI,,| = 0.

A scalar ) is an e-value of A iff there exists a nonzero vector z € F” such that

Ar = o Az - =0 (A—A,)r =0 A— A, is singular & |A — A, | = 0.

Definition 5.1.4

o Let A € M,,x,,(F). The polynomial f(t) =|A —tl,| is called the characteristic polyno-

mial of A.

e Let T be a linear operator on an n-dimensional vector space V with ordered basis 5. We
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define the characteristic polynomial f(t) of T to be

f(t)=1A—tL,|, where A=[T],.

Example 5.1.3

Find the e-values of A = (i 1) )

Solution

We use the characteristic polynomial f(A\) =|A — Az | =0.

1—-A 1

PR =(1-X2—-4=X2-22-3=(L-3)(A+1)=0.

Therefore, A = —1 and 3 are the e-values of A.

Example 5.1.4

Let T be a linear operator on Py(R) defined by

Find the e-values of T.

Solution:

Let A = [T]; where 3 = {1,z,2” } is the standard ordered basis for Py(R). Then
T1)=1=1-1+0-2+0-2?
+(z+1)=2c+1=1-1+2-2+0-2°

x
T<x2):$2+($—|—1)2x:3x2+2x:0.1+2.x+3,x2_

1 1 0
Thus, A= |0 2 2|, and hence
0 0 3
1—A 1 0
fA)=|A=X3]=| 0 2— A 2 |=(1=-X)2-NB=X)=0.
0 0 3—A

Therefore, A is an e-value of A iff A = 1,2, or 3.
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Note that if A is an n x n matrix, then f(t) = |A —tL, | = (—1)"" + a,_1t"' + -+ + ait + ao,

is of degree n.

Theorem 5.1.3

Let A € M,,«,(IF) with characteristic polynomial f(¢). Then

1. f(t) is a polynomial of degree n with leading coefficient (—1)".
2. A has at most n distinct e-values.

3. £(0) =ao = | Al

The following theorem describes a procedure for computing the e-vectors corresponding to a given

e-value.

Theorem 5.1.4

Let T be a linear operator on a vector space V, and let A\ be an e-value of T. A vector z € V

is an e-vector of T corresponding to A if and only if x # 0 and z € N(T — \I).

Example 5.1.5

Let A = (i 1) . Find all e-vectors of A.

Solution:

We start finding the e-values using f(A) = | A — Ay | = 0. Thus

1—-A 1

| A=A | =
4 1—A

=(1-A)?—-4=XN-22-3=A-3)(A+1)=0.

Thus Ay = —1 and Ay = 3.

For \y = —1: Let By = A—\ 1, = (Z ;) . Then x; = (Z) € R? is an e-vector correspond-

ing to Ay = —1iff z; # 0 and x; € N (Lp,). That is

LBl([L‘l) =Bix1 =0 = (2 1) (CL) = (0) .
4 2 b 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

2 10| |1 3
4 210 0 0

O] = a—i-}b:O = b= —2a.
0 2
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1

That is, ;1 € N(Lp,) = { t ( 2) :0#£teR } Thus z; is an e-vector of A corresponding

1

for some nonzero t € R.

to)\lz—liffxlzt<

For \y=3: Let By = A — \oly = (_42 1 ) Then zo = (Z) € R? is an e-vector

corresponding to Ay = 3 iff x5 # 0 and 25 € N (Lp,). That is

LB2(.172) = Boxry =0 = (_2 1 ) (Cl) = (0> .
4 =2 b 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

0N1—%
0 0 0

That is, 2 € N (Lp,) = { t (;) :0#teR } Thus x5 is an e-vector of A corresponding to

=2

4 =2 2

8] S oa—ip=0 = b=2a

N =3iff 9 =1t (;) for some nonzero ¢t € R.

Remark:

Note that v = { ( 12) , (;) } is an ordered basis for R? containing e-vectors of A. Thus

L4, and hence A, is diagonalizable and if @ = ( 12 ;>, then Q~'AQ = (_01 g) '

[ Remark 5.1.3

Note that to find the e-vectors of a linear operator T on an n-dimensional vector space V:

1. Select an ordered basis for V, say .
2. Let A = [T];. Then z € V is an e-vector of T corresponding to A if and only if [z]g,

the coordinate vector of x relative to (3, is an e-vector of A corresponding to A.
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Example 5.1.6

Let T be the linear operator defined on Py(R) by
T (f(z)) = f(z) + (z + 1) f'(z).

Find the e-vectors of T and an ordered basis v for P2(R) so that [T], is diagonalizable.

Solution: ‘

Let 8 = {1,z,2% } be an ordered basis for Py(R). Then
T(1)=1=1-1+0-2+0-2°
+(x+1)=22+1=1-1+2-2+0-2°

x
T =22+ (z+1)22=322+22=0-1+2-2+3-2°

1 1 0
Thus, A=[T]; =10 2 2|, and hence
0 0 3

1—A 1 0
fA)=|A=X3|=| 0 2—-\ 2 |=1=-XN)2-NB=X)=0.
0 0 3— A
Therefore, A\ =1, \y =2 and A3 = 3.
0 1 0 a
For \y =1: Let Bi=A—MNIs=|0 1 2. Then z; = | p | is an e-vector corresponding
0 0 2 c

to A\ = 1iff z; # 0 and z; € N(Lp,). That is

0 1 0)\[a 0
Lp (z;)=Bixz1=0 = |0 1 2||o|[=10
0 0 2/ \c 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

1
0 = b=c=0and a =t € R\{0}.
0

===
O N O
2
===
o~ o
===

1
1
0

That is, 21 € N(Lp,) =

—_—— O O O

1
t{o| : 0#£te€R ;. Thus z; is an e-vector of A corresponding to
0

1
A = 1iff x&y =t | 0| for some nonzero t € R. Consequently, (using the ordered basis 3) the

0
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e-vectors of T corresponding to A\; = 1 are of the form

{t1-14+0-2+0-2%) :t e R\{0} } = {t : t e R\{0} }.

-1 1 0 a
For \g =2: Let By =A—XsI3s=| 0 0 2. Thenxzy = | p | is an e-vector corresponding
0 0 1 c
to Ag = 2 iff 25 # 0 and 29 € N (Lp,). That is
-1 1 0} [a 0
Lp,(z2) =Boz2=0 = [0 0 2||[bv]=]0
0 0 1 0

This is a homogenous system which can be solved using r.r.e.f. as follows:
-1 1 0
0 0 2
0 0 1

1 -1 0
~10 0 1
0O 0 0

= a—b=0andc=0=a=0=1t¢c R\{0}.

o O O
o O O

1
That is, zo € N(Lp,) =< t| 1] : 0#t €R 3. Thus x5 is an e-vector of A corresponding to
0

1
Ao =2 iff xz9 = ¢ | 1| for some nonzero t € R. Consequently, (using the ordered basis ) the

0
e-vectors of T corresponding to Ay = 2 are of the form

{t1-1+1-2+0-2%) :t e R\{0} | = {t(1 +2) : t € R\{0} }.

—2 1 0 a
—1 2. Then z3 = | p | is an e-vector correspond-

0 0 c

For )\3:31 Let B3:A—)\3]3: 0
0
ing to A3 = 3 iff 3 # 0 and 23 € N (Lp,). That is

-2 1 0 a 0
Lp,(z3) =Bsxzs=0 = [ 0 -1 2||b|l=1]0
0 0 0 c 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

-2 1 010 1 0 =110
0 -1 2]/0/~|0 1 —2|0] = a=candb=2c=c=tecR\{0}.
0 0 00 0 0 0 |0




5.1.

FEigenvalues and Eigenvectors

1
That is, x3 € N(Lp,) = t | 2| : 0#t € R 3. Thus 23 is an e-vector of A corresponding to
1

1
A3 = 3 iff x3 =t | 2| for some nonzero t € R. Consequently, (using the ordered basis ) the

1
e-vectors of T corresponding to A3 = 3 are of the form

{t0-1+2-2+1-2%):t e R\{0} } = {t(1+ 20 +2?) : t e R\{0} }.

Therefore, setting t = 1, we get v = {1,1+z,1+ 2z + 2? } which is an ordered basis for

Py(R) containing e-vectors of T and hence T is diagonalizable and

1
), = |0
0

S NN O
w o O

1 1 1
=Q1AQ, WhereQ:[I]fz 0 1 2
0O 0 1

Note that the columns of () are the vectors [ul]ﬁ for i« = 1,2,3 and u; € 7. That is Q =

[wi]s [ualy [us]y] where u; is the i** vector of 7.
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Example 5.1.7

c d c a
e-vectors of T and an ordered basis 7y for May2(IR) such that [T] is a diagonal matrix.

Let T be a linear operator defined on Msyo(R) by T ((a b)) = (d b). Find the

Solution:

Let f=4 B =1 O} po= (0 1) pn— (O O) p2_ (O O} phen,
0 0 0 0 10 0 1

E2=0-E"4+0-E2+0-E*+1.-E*®

2=0-E"+1-E”+0-E* +0.-E*

I
&S

E*=0-E"+0-E2?+1-E* +0-E*

HoR 3 A

~—~ —~ —~ —
&S
=

~— — '
I

Ell:1'E11+O'E12+0'E21+0'E22
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0 0 0 1
Thus, A = b 40 and hence the e-values of A are
0 0 1 O
1 0 0 O
—-A 0 0 1
S =1a=al=| 0 PTA 0 a1 =0

0
0 0 1-A
1

ThUS, /\17273 =1 and )\4 = —1.

-1 0 0 1 a
For A\=MX33=1: Let B=A -\, = 00 0 0 . Then z = b is an e-vector
—_— 0O 0 0 O &
1 0 0 -1 d
corresponding to X iff x # 0 and x € N (Lp). That is
-1 0 0 1 a 0
Lyz)=Bz=0 = [0 0 0 0o 10
0 0 0 O c 0
1 0 0 -1)\d 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

1 —1
8 = a—d=0=a=d=s;b=t,c=r,

—_ o O

o O O O
e e e @
o O O O
S O O =
o O O O
e e e S
e ©

o O O O

—1

where s,t,r € R\{0}. That is, x are of the form

:s,t,r € R

_|_
_I_
=

s, t,reR =435

nw I + O
_ o O =
o O~ O
o = O O

Note that s,t, and r are in R not all zeros. Consequently, (using the ordered basis /3) the

e-vectors of T corresponding to A are of the form

o 9)efs o) (0 0)
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1 0 0 1 a
For A\=X;=—-1: Let B = A -\, = 0 0 0 0 . Then =z = b is an e-vector
- 0O 0 0 O c
1 0 0 1 d
corresponding to A iff z # 0 and x € N(Lp). That is
1 0 0 1)\ [a 0
Ly(z) = Br =0 = 0 0 0 Offbf_|[0O
0 0 0 Of]ec 0
1 0 0 1/ \d 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

1 0 0 1/0 1 0 0 1/0
a0 O oL U O e == 0= d= o= %
00 2 00 00 1 00
1 0 0 10 00 0 00

where t € R\{0}. That is, x are of the form

=1l

/ . t € R\{0}

0
0
1

Consequently, (using the ordered basis ) the e-vectors of T corresponding to A are of the

form

t <_()1 ?) , for some t € R\{0}.

Thus, v = LU , v , bt , =L is an ordered basis for Myo(R) con-
0 1 0 0 1 0 0 1

sisting of e-vectors of T. Therefore T is diagonalizable and

1 0 0 O

0 1 0 O 1
Th=10 o 1 o e 4Q

0 0 0 -1

Where @ is the matrix whose columns are [u;]; for i = 1,2,3,4 and u; € 7.

7
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Example 5.1.8

Let T be the linear operator defined on R? by T(a,b) = (—2a + 3b, —10a + 9b). Find the

e-values of T and an ordered basis y for R? such that [T]. is a diagonal matrix.

Solution:

Let p={(1,0),(0,1) }. Then

T(1,0) = (-2, —10) = —2- (1,0) + (—10) - (0, 1)
T(0,1) = (3,9) = 3- (1,0)+ 9 (0,1)

Thus A= [ . and the e-values of A are
—-10 9
—2—A 3
N = [A-A,| = = (A=3)(A—4)=0.
FO) =1 4=, ‘_10 2 l==0-a0-y
Therefore, \; = 3 and Ay = 4.
For \y =3: Let By = A— [, = _150 2) Then z; = (Z) € R? is an e-vector corre-

sponding to A\; = 3 iff z; # 0 and z; € N (Lp,). That is

LBl<ﬂ?1) =Biz;=0 = (_5 3) ((I) = (0) .
—-10 © b 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

3
of |1 -3
of o o

That is, z; € N(Lp,) = { t (g) :0#£teR } Thus x; is an e-vector of A corresponding to

-5 3
—-10 6

0 3 3
—Zbh=0 = °b.
O] = a 5 = a 5

M=3iff z; =t :; for some nonzero t € R. Consequently, (using the ordered basis /3) the

e-vectors of T corresponding to A = 3 are of the form

t (?) , for some ¢t € R\{0}.
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For \y =4: Let By = A — A1, = (_160 ;’) Then z9 = (Z) € R? is an e-vector corre-

sponding to Ay = 4 iff x5 # 0 and 25 € N (Lp,). That is

LB2<:U2) =Boxy =0 = (_6 3) (a) = (0> .
—10 5/ \b 0

This is a homogenous system which can be solved using r.r.e.f. as follows:

ol 1 -1
0 0 0

That is, 2 € N (Lp,) = { t (;) 0#teR } Thus x5 is an e-vector of A corresponding to

-6 3
—10 5

1 1
8] = a-5b=0 = a=:5

A =4iff zg =t (;) for some nonzero t € R. Consequently, (using the ordered basis /3) the

e-vectors of T corresponding to A = 4 are of the form

t (;) , for some t € R\{0}.

Thus, v = { (3,5), (1,2) } is an ordered basis for R? consisting of e-vectors of T. Therefore T

thg ng*AQ

Where @ is the matrix whose columns are the vectors of . That is, () = (3 1) .

is diagonalizable and

5 2
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Exercise 5.1.1

Solve the following exercises from the book at pages 256 - 260:
o 2.
e 3:a,b, and d.

o 4 5.

11: a, and c.

14, 15.
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Section 5.2: Diagonalizability

In this section, we introduce a simple test to determine whether an operator or a matrix can be

diagonalized. Also, we present a method for finding an ordered basis of e-vectors.

Theorem 5.2.1

Let T be a linear operator on a finite-dimensional vector space V, and let A1, Ao, -+, \x be
distinct e-values of T. If xy, 29, -+, 2 are e-vectors of T such that \; correspond to z;
(1 <i<k),then {x,xq, -,z } is linearly independent set in V.

Theorem 5.2.2

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct e-values,

then T is diagonalizable.

Example 5.2.1

Is A= (1 1) diagonalizable? Explain.

Solution:

We first start to find the e-values of A (and hence of L4) using its characteristic polynomial:

1—-A 1

f=la-an|=7h 1

=(1-X?=-1=X-22=XX1-2)=0.

Therefore, \; = 0 and Ay = 2. Since Ly is a linear operator on R? and has two distinct

e-values (0 and 2), then L4 (and hence A) is diagonalizable.

P

Remark 5.2.1 ]

The converse of Theorem 5.2.1 is not true in general. That is if T is diagonalizable, then T

not necessary has distinct e-values.
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Definition 5.2.1

We say that a polynomial f(t) € P(F) splits over F if there are scalars ¢, ay, as, -+ ,a, (not

necessary distinct) in I such that

ft)=c(t—a)(t—az) - (t —ay,).

Example 5.2.2

Note that f(t) = t* — 1 splits over R, but g(¢) = t* + 1 does not.

Theorem 5.2.3

The characteristic polynomial of any diagonalizable linear operator splits.

Proof:

Let T be a diagonalizable linear operator on the n-dimensional vector space V with an ordered
basis 3 such that [T]; = D = diag(Ai, Ag, -+, A,) is a diagonal matrix. The characteristic

polynomial of T is
=0 0
f(t) =|[Tly—th,| =D —tI| =
0 Ap — t

=M=t =t) A —=t)=(=D)"(t—=X) - (t = An)-

Definition 5.2.2

Let A be an e-value of a linear operator or a matrix with characteristic polynomial f(t). The
(algebraic) multiplicity of ) is the largest positive integer k for which (¢t — \)* is a factor
of f(t). We write m(\) to denote \’s multiplicity.

Example 5.2.3

Consider the characteristic polynomial f(t) = (¢t — 2)*(t — 3)2(t — 1). Hence A = 2,3, 1 are
the e-values with multiplicities: m(A =2) =4, m(A=3) =2, and m(A=1) = 1.
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Definition 5.2.3

Let T be a linear operator on a vector space V, and let X\ be an e-value of T. Define
Ex={zeV:T(x)=Az}=N(T- ).

The set E) is called the eigenspace (or e-space for short) of T corresponding to A\. We also

define the eigen space of a square matrix A to be the eigen space of L 4.

[ Remark 5.2.2 ]

Let T be a linear operator on a vector space V, and let A\ be an e-value of T. Then

1. E) is a subspace of V.
2. F)\ consists of the zero vector and the e-vector of T corresponding to A.

3. dim(FE)) is the maximum number of linearly independent e-vectors corresponding to A.

Theorem 5.2.4

Let T be a linear operator on a finite-dimensional vector space V, and let A be an e-value of

T having multiplicity m. Then 1 < dim(E)) < m.

Theorem 5.2.5: Diagonalization Test

Let T be a linear operator on an n-dimensional vector space V. Then, T is diagonalizable if

and only if both of the following conditions hold.

1. The characteristic polynomial of T splits, and
2. For each e-value \ of T, m(\) = dim(E)) = n — rank(T — A\Iy).

Moreover, if T is diagonalizable and f; is an ordered basis for F), for ¢ = 1,---  k, then
B = p1U---UpPy (in corresponding order of e-values) is an ordered basis for V consisting of

e-vectors of T.
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Example 5.2.4

Let T be a linear operator on Py(R) defined by T (f(x)) = f'(x). Is T diagonalizable?

Explain.

Solution:

Choose the standard ordered basis 3 = {1, z,2? } for Po(R). Then,

—0=0-14+0-2+0-2? "
1=1-14+0-240- 22 = A=[T];=10
T(22) =22 =0-1+2-2+0- 22 L

The characteristic polynomial of T is

- 1 0
fA=|A=-AL|=l0 —-x 2|=-X=0.
0 0 -

Therefore, T has one e-value A = 0 with multiplicity m(0) = 3. The e-space E) corresponding

to A =01is Ey = N(T — \I3) = N(T). That is,

a 0O 1 O a 0 1
Ex=<X|(b|leR: o o 2||b|l=o]l;={t]o0
c 0O 0 0 c 0 0

Hence E) is the subspace of Po(R) consisting of the constant polynomials. So, {1} is a basis
for £\ and hence dim(E)) = 1 # m(0) = 3.
Therefore, there is no ordered basis for Py(R) consisting of e-vectors of T. Therefore, T is

not diagonalizable.

Example 5.2.5

Let T be a linear operator on R? defined by T(a, b, ¢) = (4a+c, 2a+3b+2c, a+4c). Determine

the e-space corresponding to each e-value of T.

Solution:
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Choose 3 = { Ey, By, F3 } the standard ordered basis for R®. Then,

T(E) = (4,2,1)=4-E,+2-Ey+1- F;

4 0 1
T(Ey) =(0,3,0)=0-E,+3-FE,+0-F; ¢ = A=[Tl;=[2 3 2
T(E;) = (1,2,4) =1 -E, +2- By + 4 By - U e
The characteristic polynomial of T is
4— X 0 1
fA)=1A=-X;|=| 2 3—\ 2 |=-=B=-XMNA=-3)(A—=5)=0
1 0 4— )\

Thus, T has e-values: A\; = 3 with m(3) = 2 and Ay = 5 with m(5) = 1.
For E, : The e-space E), corresponding to A\; = 3 is Ey, = N(T — 3I3). Therefore

1 0 1)\ (a 0
Ey, ={(a,bc)eR®: 2 0 2|]|b|l=10
1 0 1 c 0
This is can be solved as follows:
1 0 110 1 0 110
2 0 2/10/~10 0 0|0 = a=—-cc=rb=teR.
1 0 110 0 0 0|0
Setting r,t € R, we get
—1 0
Ex=<rl 0 |+t|l1]|:¢t,reR
1 0
—1 0
Therefore, v, = 01],]1 is a basis for F)y,. Thus, dim(E),) =2 = m(\).
1 0

For E,: The e-space E), corresponding to Ay =5 is Ey, = N(T — 5I3). Therefore

—1 0 1 a 0
Ey,={(a,bc)cR: |2 _—2 2 bl=10
1 0 —1 c 0
This is can be solved as follows:
-1 0 1 0 1 0 —-11]0
-2 2 10/ ~10 1 =20 = a=c,b=2c;c=teR.
1 0 —-110 0O 0 0 |0
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Setting r,t € R, we get

1
Therefore, vo = 2 is a basis for F,,. Thus, dim(FE),) =1 =m(\s).
1
—1 0 1
Afterall, v = vy Uy = of,111],]2 is a basis for R? consisting e-vectors of T.
1 0 1

Therefore, T is diagonalizable and

S w O
o O O

Example 5.2.6

3 1 0

Let A={0 3 0|. Is A diagonalizable? Explain.
0 0 4

Solution:

The characteristic polynomial of A is

f)=lA—tll=| 0 3-t 0 |=0B-t’@-t)=0.

Thus, Ay = 3 with m(3) = 2 and Ay = 4 with m(4) = 1. But we note that

A—>\1]3 =

o O O
o O =
— o O

has rank 2 and hence dim(F),,) = 3 — 2 = 1 which is different from the multiplicity of A;.

Therefore, A is not diagonalizable.
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Example 5.2.7

Let T be the linear operator on Py(R) defined by

T (f(z)) = f(1) + f(0) -z + (£/(0) + f7(0)) - &*.

Is T diagonalizable? Explain.

Solution:

Let B ={1,z,2%} be the standard ordered basis for Py(R). Then

(1) =1-1+0-2+0-2? 1
(@) =1+z+(1+0a?=1-1+1-z+1-22 ¢ = A=[T]z=0
0

T(2?)=1+4222=1-1+0-2+2- 22

T 1
T 1

The characteristic polynomial of T is

1-—t¢ 1 1
fO)=1A—th;]=| 0 1—-¢t 0 |=01-t?2-1t)=0.
0 1 2—1
Thus, A; = 1 with m(1) =2 and Ay = 2 with m(2) = 1.
For E,: The e-space E), corresponding to A\; = 1 is Ey, = N(T — 113). Therefore

0 1 1 a 0
E)\1 = (a>ba C) € RS : 0 0 0 bl =10
0O 1 1 c 0
This is can be solved as follows:
0 1 10 0 1 110
0 0 0l0l~|0 O O0]0] = b=-c
0 1 11]0 0 0 010
Setting a =t and ¢ = r both in R, we get
1 0
Exy=qt|lo|l+7r|-1] :t,reR
0 1

1 0
Therefore, v, = 0l,| -1 is a basis for E),.
0

1

N O =
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For E,: The e-space E), corresponding to Ay = 2 is Ej, = N(T — 2I3). Therefore

—1 1 1 a 0
Ey, =1 (a,bjc)eR®: [0 —1 ol||b|l=]0
0 1 0 c 0
This is can be solved as follows:
—1 1 110 1 —110
0O -1 0]0|~ 1 0 |0 = b=0a=c
0 1 01]0 0 0 |0
Setting c =t € R, we get
1
E)\l = t 0 teR
1
1
Therefore, v = 0 is a basis for E),.
1
1 0 1
Thus, y =7 Uy = ol,]=11,10 is a basis for R? consisting of e-vectors of A.
0 1 1

Therefore, the vectors in v are the coordinate vectors relative to § of the vectors in the set

a={1,—x+ 2% 1+ 2? } which is an ordered basis for P,(R) consisting e-vectors of T. Thus,

1
[Tl = |0
0

o = O
N OO

Example 5.2.8

Let A = ((1) _32> . Is A diagonalizable? Explain your answer and compute A" for positive

integer n.

Solution:

The characteristic polynomial of A is

—i =

s =la-th|=|" 2

=t?-3t+2=(t-1({t—-2)=0.
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distinct e-values and hence A is diagonalizable.

For FE),: The e-space E), corresponding to A; = 1

2 [—1
E,\I:{(a,b)ER : (1

This is can be solved as follows:
0 N 1
0 0

B

Setting b =t € R, we get

Therefore, v; = { (_12) } is a basis for E,.

For % : The e-space E), corresponding to Ay = 2 is E),

s [—2 =2
- {new (7 2)]

=7
2

)

Thus, A\; = 1 with m(1) = 1 and Ay = 2 with m(2) = 1. Then the operator L4 has two

is Ey, = N(A — 11). Therefore

2

)=}

N (A — 2I,). Therefore

()

=7
1

1

This is can be solved as follows:
0 N 1 0 N
0 0 010

—2
1
Setting b =t € R, we get
E,, = {t (_1) : tER}.
1

Therefore, v, = { (_11) } is a basis for F),.
-2 -1

Thus, y =y, Uy = ,
{20

1 O) = Q 'AQ where Q = (_12

0 2

Therefore, A = QQ D Q~! and hence A" = QQ D" Q~'; that is
-1
2

o (_2 _1> (1n
1 1 0

) } is a basis for R? consisting of e-vectors of A.
—1 -1
and Q7! =
e = (]
2—2"

2_2n+1
C\—1+420 —14ontr)

=1l
Note that D := [L4], = ( 2).

0

o) (3
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Exercise 5.2.1

Solve the following exercises from the book at pages 279 - 283:
o 2. 3.

o 7.8.
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Definition 5.4.1

Let T be a linear operator on a vector space V. A subspace W of V is called T-invariant

subspace of V if T (W) C W; that is if T(z) € W for all z € W.

| Remark 5.4.1 |

>

Let T be a linear operator on a vector space V. Then the following subspaces of V are

T-invariant:

1. {0}.

2. V.

3. R(T).

4. N(T).

5. E) for any e-value A of T.

Example 5.4.1

Let T be the linear operator on R? defined by T(a,b,c) = (a + b,b + ¢,0). Show that the

subspaces of R3, W, and W, are T-invariant, where

(1): W, ={(a,b,0) : a,bc R}, and (2): Wy ={(a,0,0) : a € R}.

Solution:

@: Clearly, T(a,b,0) = (a 4+ b,b,0) € Wy for all (a,b,0) € W;. Thus, W, is a T-invariant
subspace of R3.
@: Clearly, T(a,0,0) = (a,0,0) € W, for all (a,0,0) € W;. Thus, Wy is a T-invariant

subspace of R3.

Definition 5.4.2

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The

subspace

W = span {m,T(x),TQ(x), e },
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where T?(z) = T(T(z)), T?(z) = T(T(T(z))), and so on, is called a T-cyclic subspace of
V generated by z.

Example 5.4.2

Let T be the linear operator on R? defined by T(a,b,c) = (=b+ ¢, a + ¢, 3c). Determine the
T-cyclic subspace of R? generated by E; = (1,0,0).

Solution:

We simply compute the set containing £ and T*(E)) for i =1,2,---.

T(E)) = T(1,0,0) = (0,1,0) = B,
T(Ey) = T(T (E1)) = T (Es) = (~1,0,0) = —Ei.

Therefore, W = span { 1, T (Ey), T*(E1), -} =span { E1, Fy } = {(s,t,0) : s,t € R} is
the T-cyclic subspace of R? generated by E;.

[ Remark 5.4.2 ]

Let T be a linear operator on a vector space V, and let x be a nonzero vector in V. The
subspace W generated by x is the smallest T-invariant subsapce which contains x. That is,

any T-invariant subspace of V containing x must contain W.

Example 5.4.3

Let T be the linear operator on Py(R) defined by T (f(z)) = f/'(z). Determine the T-cyclic
subspace of Py(R) generated by z?.

Solution:

Note that T(2?) = 2z, T?(2?) = T(2z) = 2, and T?*(z?) = T(2) = 0. Therefore, W =
span {22, 22,2} = Py(R) is the T-cyclic subspace of P;(R) generated by 2.
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Example 5.4.4

Let T be the linear operator on R* defined by T(a, b, c,d) = (a+b+2c—d,b+d,2c—d, c+d),
and let W= { (¢,s,0,0) : ¢,s € R}. Show that W is a T-invariant subspace of R*.

Solution:

Choose arbitrary = = (¢, s,0,0) € W. Then
T(z) = (t+s,50,0) € W.

Thus, T(W) C W and hence W is a T-invariant subsapce of R%.

Theorem 5.4.1

Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-cyclic
subspace of V generated by = € V. Let dim(W) = k. Then {x,T(a:), e ,kal(x)} is a
basis for W.

Example 5.4.5

Let T be the linear operator on R3 defined by T(a,b,c) = (=b+ ¢,a + ¢, 3¢), and let W be

the T-cyclic subspace of R? generated by E.

Solution:

Clearly, El = (1,0,0), T(El) = (0,1,0) = E'Q, and T2(E1> = T(EQ) = (—1,0,0) = _El-
Therefore, W = span { Fi, F5 } and hence dim(W) = 2. Thus, by Theorem 5.4.1, v =
{ E1, E5 } is an ordered basis for W.

Theorem 5.4.2: The Cayley-Hamilton Theorem

Let T be a linear operator on a finite-dimensional vector space V, and let f(¢) be the char-
acteristic polynomial of T. Then f(T) = Ty, the zero transformation. That is, T "satisfies”

its characteristic equation.
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Theorem 5.4.3: The Cayley-Hamilton Theorem for Matrices

Let A be an n x n matrix, and let f(¢) be the characteristic polynomial of A. Then f(A)

the n X n zero matrix.

=0,

Example 5.4.6

Verify the Cayley-Hamilton theorem for the linear operator T defined on R? by T(a,b) =

(a+2b,—2a +b).

Solution:

Let 8 = { E1, F5 } be an ordered basis for R?. Then

T(E1) - (1, —2) = E1 + (—2)E2

T(E,) = (2,1) = 2E; + Es.

Thus, A =[T]; = ( 12 ?) The characteristic polynomial of T is therefore
1t 2 2 2
flt)=|A—th]|= =(1—-t)*+4=t"-2t+5=0.
-2 1t
That is,
F(T) = (T? — 2T + 5I7) (Z)
=T2 ) —2T (] + 51 [ ¢
_T a—+2b _9 a+ 20 L5(@
—2a+0b —2a+0b b
(a + 2b) + 2( 2a+b) n —2a — 4b . 5a
—2(a +2b) + (—2a + b) 4a — 2b 5b
—3a + 4b —2a —4b n S5a | _ [0 71, ).
—4a — 3b da — 2b 5b 0 b
Note that
F(A) = A% — 24 4+ 5] = 3 4 +—2 4 +5 0y _ (0 0} _
—4 -3 4 -2 0 5 0 0




5.4. Invariant Subspaces and The Cayley-Hamilton Theorem

95

Example 5.4.7

Hamilton Theorem for T.

Solution:

Let f={1,2}. Then,

T(1)=1+0=1-1+40-2

T(z)=z+1=1-1+1-2

Thus, [T], = A = ((1)
-t 1

OIVE AR

Therefore,

- i) ow (i) (o))

() =1, [ @
0 bx

Note that,

() 6 -6 )

=(1—-t2=¥-2t+1.

f(A)Z(A2—2A+Iz)=(é f)—a(é })+<(1] g

Let T be the linear operator defined on P1(R) by T (f(x)) = f(z)+ f'(x). Verify the Cayley-

1) , and the characteristic polynomial of T is therefore,

a a a a —2a a
=t (b+bm) -2 (b+bx> * (bx) - ((b+bx) +b) - (—25—2595) - (bx)

_ a n —2a n al _ 2a — 2a
20 + bx —2b — 2bx bx (2b — 2b) + (—2bx + 2bx)

|
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Example 5.4.8

1 2 1
Use Cayley-Hamilton Theorem to find A1 if A= |0 2
0o 0 -1
Solution:
Note that | A| = —2 # 0 and hence A™! exists. The characteristic polynomial of A is
1—t 2 1
fO)=lA-tl|=| 0 2-t
0 0 —1-t¢
=(1-)2-t)(-1—t)=—(2-3t+t)(1 +1)
=—(2+2t) =3t -3+ +t) = +28 +t—2.
Thus,

fA)=—A3 4242 + A—-213=0
=23 =—-A*+ A2+ A
1 1
L=—ZA+ A%+ A
= I3 5 + +2

= ;= (—;A2 + A+ ;13) A.

Hence A™' = —2A% + A+ 315
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Exercise 5.4.1

Solve the following exercises from the book at pages 321 - 327:

e 2.3, and 6.
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6

Inner Product Spaces

Section 6.1: Inner Product and Norms

[ Remark 6.1.1

Let z = a+ib € C for some a,b € R, then

1. | 2| = v/a% + b2 is called the absolute value for modulus of 2.
2. 2Z = |z|°.

3. 2+ Z=2Re(z) = 2a.

4. z—z=2Im(z) = 2b.

5. Re(z) <|z|.

6. Z=z.

7. z2+w=Z+wWand ZW =2 W.

Definition 6.1.1

Let V be a vector space over a field F. An inner product on V is a function that assigns, to
every pair of vectors x,y € V, a scalar in F, denoted by (z,y), such that for all z,y,z € V

and all ¢ € F, the following conditions hold:

Note that, Condition (3) reduces to (x,y) = (y,z) if F = R.

Example 6.1.1

Let V = C([0,1]), the vector space of real valued continuous function on [0, 1]. Define

(f9)=[ ' gl dt.

99
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Show that ( f, ¢ ) is an inner product on V.

Solution:

For every f,g,h € V and every ¢ € R, we have

(F+9.0) = [0 +ghe) dt = [ (FhD) + o0h(e) de
/01 f@)h(t) dt + /Olg(t)h(t) dt = (f,h) + (g, h).

2 (cf.g)= [ ef@gle) db=c [ f(gt) di =c(fg)
3 (f.9)= [ F09) de = [ g(0)5(0) dt = (g.5).
LIFA0 (S )= [ F@i) di= [ P a0

Thus, ( f,¢) is an inner product on C([0,1)].

Example 6.1.2

For x = (ay,as, -+ ,a,),y = (b1, b, -+ ,b,) € F", define (z,y) = X", a;b;. Show that {z,y)

is an inner product on F".

Solution:

For any = = (a1, ,a,),y = (b1, -+ ,bn), 2 = (c1, -+ ,¢,) € F" and k € F, we have

[ Remark 6.1.2 ]

~ ~

Note that, the inner product defined in Example 6.1.2, is called the standard inner product

on F". In case of F = R, we have (z,y) = > a;b; = « - y which is the usual dot (or scalar)
i=1
product of x and y in R™.
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Definition 6.1.2

Let A = (ai;) € Myxn(F). We define the conjugate transpose or adjoint of A to be the
n X m matrix A* such that a;; = @j forall 1 <i<mand 1 < j <n. Note that if F = R,

then we simply write A’ instead of A*.

Example 6.1.3
fFA=|" 1+2Z_ , then A* = _Z, 4 .
2 3444 1—-2¢ 3—4s

Example 6.1.4

Let V= M, «,(F), and define ( A, B) = tr(B*A) for A, B € V. Show that ( A, B) is an inner
product on V.

Solution:

For any A, B,C € V and ¢ € F, we have

1. (A+B,C)=tr(C*(A+ B)) =tr(C*A+ C*B) = tr(C*A) + tr(C*B)
=(AC)+(B,C).

2. (cA,B) =tr(B*(cA)) =ctr(B*A) = c¢(A,B).

3. (A,B) = tr(B*A) = tr(B*A) =tr(A*B) = <B A)

4. (A A) =tr(A™A me zn: zn: a5 0 = Z Z Ui = zn: zn: | a; ]2. Note that if

i=1 k=1 i=1 k=1 i=1 k=1

A#0, thenak,%Oforsomekandz So, (A,A) >0

Here is a detailed proof of tr(B*A) = tr(A*B): Assuming the C' = (¢;;) = B*A, we have

tr(B*A) =Y & = Zzbfjaﬂ = Zzbﬂaﬂ
7 7 J 1 J
— Zzbﬂ@ = ZZa:]bﬂ =tr(A*B)
2 J 1 J

Note that, a vector space V over a field F together with specific inner product on V is called an
inner product space. If F = C, we call V a complex inner product space, and if F = R, we call V

a real inner product space.
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Theorem 6.1.1

Let V be an inner product space. Then for x,y,z € V and ¢ € F, the following statements
are true:

L. {z,y+2z)=(z,y)+ (z, 2).

2. (m,cy) =7 (z,9)

3. (2,0) =(0,2)=0

4. (z,z)=0iff x =

5. If (z,y)=(x,z)forallz € V,theny=2. (y—2z,y—2)=0=>y—2=0=y =z

Definition 6.1.3

Let V be an inner product space. For x € V, we define the norm or length of = by
]| = /{2, ).

Note that if V=R, then ||z|| = |z | and if V =R", then ||z|| = \/(z,2) = Vx - .

Theorem 6.1.2

Let V be an inner product space over a field F. Then for all z,y € V and ¢ € F, the following

statements are true:

L lex]] = [e] |l=]].

2. ||z|| > 0; and ||z|| = 0 iff x = 0.

3. (Cauchy-Schwarz Inequality) | (z,y) | < ||z| - |ly]|-
4. (Triangle Inequality) ||z + y|| < [|z] + |Jy]|-

Proof:

L flex] = y/(ez,cx) = /e&(z,o) = /| c[* {z,2) = |e] - |Ja].
2. ||z]| = \/{z,z). If x =0, then (x,2) = (0,0) = 0. Otherwise, (z,x) > 0 and hence
l]| = 0.

3. If y = 0, then the Cauchy-Schwarz Inequality clearly hold. Assume now that y # 0.
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For any c € F, we have

0<|lz—cyl® = (z —ey,z —cy) = (z,2 —cy) — c{y,z — cy)

=(z,z) —z,y) —c(y,x) + cc(y,y).

_ {=zy) en
Let c = <y,y)’th
(y, o) (z,y) (z,y) (y,7)
0<<x’x>_<y,y><x’y>_<y,y><y’x>+<y,y>'W
o<<x,x>—§jj”y’§<x,y> <””;y> y,x>+<””j> )
o<<x,x>—'<j;’j>>'  where (o550 2) = (@)@ 50 = | (2,0

Therefore, | {x,y)|* < |l[* [y|* and hence | (z,y)| < || [ly.
4. Consider ||z 4+ y||* = (x4 y,z +y). Then

lz +ylI* = (z,2) + (z,y) + (v, ) + (y,)
= ||z|* + (z,y) + (z,y) + ly|I*
= ||z||* + 2Re(x,y) + |lyl|*, where Re(z,y) < |(=z,y)]
< l=l” + 2| {z,y) |+ lyl?

2 2
< [l + 2z lyll + Iyl = =]l + lyl)?*.

Therefore, ||z + y|| < ||z|| + ||y]|-

Definition 6.1.4

If z # 0 is any vector in an inner product space V, then u = ﬁ x is a unit vector; that is a

vector with length 1. This procedure is called normalizing.

Definition 6.1.5

Two vectors z and y in V are called orthogonal (or perpendicular) if (z,y) = 0. Moreover,

x and y are called orthonormal if they are orthogonal and ||z| = [|y|| = 1.
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Example 6.1.5

Note that the set S = {(1,1,0),(1,—1,1),(—=1,1,2) } in F? is an orthogonal set of nonzero

vectors, but it is not orthonormal. However, normalizing S, we get

1 1 1

B = { ﬁ(l’ 1,0), —3(1, -1,1), —=(-1,1,2) }

(=)

which is orthonormal in F3.

Example 6.1.6

Let H be the vector space of complex valued functions defined on the interval [0, 27], with

the inner product on H defined by

(f.9)= ;ﬂ/jﬂf(t)g(t) dt.

Show that S = { fult) =™ :n€Zandt€|0,2n] } is an orthonormal subset of H. Recall

that e = cosz + isinz, ¢ = e for all z € R, and [ e*dx = Le7.

Solution:

For any m # n in Z, we have

1

Cn® 5a0)) = 5 [ ST de = 5 [ em e ay

1 2T .
_ 7/ ez(mfn)t dt = L 1 ez(mfn)t
21 Jo 2mi (m —n)

2w

0

1 ; 1
_ i(m—n)2r _ 0| _ 1—1]=0.
2mi(m —n) [6 ¢ } 2mi(m —n) | I=0

1 2T 1 27 1 2
Also, ( fu, fn) = /0 ettt gy — — 1dt = 2—(2% —-0)= 21 = 1. Therefore, S is

21 21 Jo T T
orthonormal subset of H.

Example 6.1.7

Let V = C? with the standard inner product. Let z = (2,1 +4,4) and y = (2 — 7,2, 1 + 2i).

1. Compute (z,y), (y,2), llzll, lyll, and ||z + y]|.
2. Verity both Cauchy-Schwarz Inequality and triangle inequality.

Solution:
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(z,y) :in@:2(ﬁ)+(1+i)(§)+i(1+2i)

=1
=224 +2+24+i(1—-2))=4+21+2+2i+i+2

= 8 + 51.

Thus, (y,z) = (x,y) =8+ 5i =8 — 5i. Also

Izl = \/(z,2) = 22) + (1 + ) (TF7) +i(3)
=4+ 1 +)1 -9 +i(—)=vEa+T —ititr1+1=T.

lyll = v/{y,y) = V@ - )@ =0) +2@2) + (1 +20) T+ 20)
=22+ +4+(1+2)(1—20)=vVE+r1+4+1+4=14

[z +yll = [I(4 = 4,3 +4,1+ 3]
= /(A —i)(4+0) + (B3 +3)(3— i) + (1 +3i)(1 — 3)

=vV16+1+9+14+1+9=+37.

2. Clearly, Cauchy-Schwarz Inequality is satisfied as
| (z,y)] = V64 +25 = V89 < VTV14 = V98.
For triangle inequality, note that

lz +yll = V37 <l + llyll = V7 + V14.

Since

(Nl + lyl)* = (V7 + V14)> = 7+ 2V/98 + 14
=21 +2V98>21+2V81=21+2-9=39

> 37 = |l +yl*.




106 Chapter 6. Inner Product Spaces

Exercise 6.1.1

Solve the following exercises from the book at pages 336 - 341:
o 2. 3.
e 8:aand c.

e 9.
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Definition 6.2.1

Let V be an inner product space. A subset of V is called an orthonormal basis for V if it

is an ordered basis that is orthonormal.

Example 6.2.1

e The standard ordered basis for F" is orthonormal basis for F”.

oS = { %(1, 2), %(2, —-1) } is an orthonormal basis for R?.

Theorem 6.2.1

Let V be an inner product space and let S = {x1, 2, ,z) } be an orthogonal subset of V

consisting of nonzero vectors. If y € span S, then

k
_ y7 xz
= 5 Ti-

izt [l

k

Write y = Zaixi, where a1, -+ ,a; € F. Then, for 1 < j <k
i=1

k
(y,x;) Zaxl,x] = a;{(z;,z;), where (z;,z;)=0ifi#j
=1

= a;j{z;,1;) = a; ||z;]*.

S0, a; = <y’xj2>. Therefore,
;51

k

k .
y = Zaixi _ Z <ya$12> ;.
i=1 i ]|

Corollary 6.2.1

Let V be an inner product space and let S = { 21,29, -+, 2% } be an orthonormal subset of
k

V. If y € span S, then y = Z(y,xz) 7.

=1
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Corollary 6.2.2

Let V be an inner product space and let S = {x1, 2, ,zx } be an orthogonal subset of V

consisting of nonzero vectors. Then, S is linearly independent.

Proof:

k
Suppose that axq + - - apxr = Z a;x; = 0. Then for all 1 < j < k, we have
i=1

k

(0,2;) = (Y awi,z;) = 3 a{wi,2;) = a;(zj,7;) = a; ||z
=1 =1

<07xj>

e P

= 0 for all 5. So, S is linearly independent.

Theorem 6.2.2: The Gram-Schmidt Process

Let V be an inner product space and S = { y1,¥2, - ,yn } be linearly independent subset of

V. Define S = { z1, 29, -+ ,x, }, where x; = y; and

k-1 4
Tk = Yk — Z 7<yk7xé> zj, for 2<j<n.
=l

Then, S’ is an orthogonal set of nonzero vectors such that span S’ = span S.

Theorem 6.2.3

Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis
B. Furthermore, if 8 = {z1, 29, -+ ,2, } and y € V, then

n

y=z<y,$z>$z

i=1

That is [yl = ((y,21),(y,22), -, (Y, n) ). These scalars are called Fourier coefficients.

Corollary 6.2.3

Let T be a linear operator on a finite-dimensional inner product space V with an or-
thonorml basis 8 = {z1,72,---,2,}, and let A = [T]; = (a;;). Then, for any i and j,
aij = (T (z;), z;).
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Example 6.2.2

1
V2

r = (2,1,3) € R? as a linear combination of vectors of S.

1 1
Let S = { (1,1,0), %(1, -1,1), %(—1, 1,2) } be an orthonormal basis for R3. Express

Solution:

Consider # = (2,1,3) = c15(1,1,0) + e = (1, —1, 1)—}—03\[( 1,1,2). Then,

1 3
1 1 4
1 1 5

Thus z = (2,1,3) = 3(1,1,0) + 5(1,-1,1) + 3(-1,1,2).

Example 6.2.3

Use the Gram-Schmidt process to find an orthonormal basis for span S, where
S = {yl = (170’170)7y2 = (171’171)7y3 = (071’271)}

is a subset of R%.

Solution:

We first compute S’ containing orthogonal vectors i, xs, r3 and then we normalize these

vectors to obtain an orthonormal set S”.

® Ty =Y = (1,0,1,0)

2
o Iy =1y — x1, where ||:U1H (\/5) =2 and (yp,77) =14+0+14+0=2.
Then x9 = yo — 5x1 =(0,1,0,1).

2
S < <m1 ot <\TJ’ 1\22> ) where [l2s]* = (v2)" =2 = [z
1 )

Moreover, (ys,z1) =0+0+24+0 =2 and (ys,z2) =0+ 1+ 0+ 1 = 2. Therefore,
zs=(0,1,2,1) — 2(1,0,1,0) — 2(0,1,0,1) = (—1,0,1,0).

Thus, by Theorem 6.2.2, S’ = {(1,0,1,0),(0,1,0,1),(—1,0,1,0) } is orthogonal set in R*
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such that span S’ = span S. Therefore,

1 1 1
§" =1 —_(1,0,1,0),—=(0,1,0,1), —=(—1,0,1,0
{ 50,010, 50,100, 51010

DO
(]

is orthonormal set in R*.

Example 6.2.4

1
Let V = P(R) with an inner product defined by ( f(x), g(x)) = / f()g(t) dt. Use the Gram-
il
Schmidt process to replace the standard ordered basis S = {1,¢,¢? } by an orthonormal basis
for Py(R). Represent h(z) = 1+2z+ 3z as a linear combination of the vectors of the obtained

orthonormal basis for Py(R).

Solution:

Let S={y, =1,y =t,y3 =t2}. Then S’ = {x, 12, 23 }, where

o 11 =y = 1.

t, 1
To =Yz — <y27m§> T =1— (£ 1) 1=t—(t,1). Note that
[l 1)
I1)* = /1dt—t —2,
=il
and
! e 11
t1 :/ tldi=2| —-—-—0
< ) =l 215 2 2

Therefore, zo =t — g 1=t

3:y3_<(y3,x1>x1+ (yg,x2>x2> s (%1) 1 <t2’t>t.

= oL 2

|1l [E21] [1]] 121l

2 2 1 2 t

Note that |12 = 2 and || :/ =<

(t*,1 / t* dt = alf
31

= —. Moreover,

2
=73 and (1t / 3 dt = = 0. Therefore,

1
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1 1 1
Ty, T2,
21

We now normalize S’ to obtain S” = { T3 } as follows:

1 s

2 2
lzall” = 11I1° =2 = [laall = V2.

2
zo||” = |It]|° = (t,t) =2 = |lzof = 3
112 1 1 1 1\2
2 2 2 2 2
=|[B=-<| =(P-5,2-2)= 22— dt
3] | =-se-5=[ (#-3)
1 1 283 171!t 8
=/ t— t2+dt—{ ~ ] — =
-1 9 5 33 914 45
S gl = | = 22
e e —
s 45~ 35

1 1
Thus, 8" = z1=—= 1,20 = \/g t, 23 = 3v/5 ( - ) } is orthonormal basis for Py(R).

V2 22 3

We now use Theorem 6.2.3 to represent h(z) as a linear combination of the vectors of S”.

Note that

1
— (142t + 3t2)dt = 2v/2
\/— )

2\/_

t(1+ 2t + 3t*)dt =

oot

21/10
/\[3t2—1(1+2t+3t2)dt:\2_

o} \

Therefore, h(z) = 2v/22; + 202, 4+ 210,

111

Example 6.2.5

Let W = span { (1,1,1),(1,0,2) } be a subspace of R?. Find an orthonormal basis for W.

Solution:

Consider z; = (1,1,1) and

((1,0,2),(1,1,1))
11,1, )

zo = (1,0,2) — (1,1,1) = (1,0,2) — 3(1, 1,1) = (0,—1,1).

Thus, S’ = { +(1,1,1), (0, —1,1) } is an orthonormal basis for W.
3 2
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Example 6.2.6

Let W= {(z,y,2) : *+ 3y — 2z =0} be a subspace of the inner product space R3. Find an

orthonormal basis for W.

Solution:

Note that
W= {<2Z_3y7yvz)}zspan {(28_3T7Ta3) s e R} = span {(2a071)7(_37170)}a

where S = {(2,0,1),(—3,1,0) } is an ordered basis for W. We now construct orthogonal

basis for W and normalize it to an orthonormal basis. Let z; = (2,0, 1) and

((—3,1,0),(2,0,1))

2y = (=3,1,0) — (2,0,1)
(2,0, 1)
—6 3 6
= (=3,1,0) — —(2,0,1) = (=2,1,2).
(=3,1,0) = ==(2.0,1) = (=5, 1, £)

Thus, [|zof| = /2 + 2+ 2 = @. Thus, S" = { %(2, 0,1), %(—3, 5,6) } is an orthonormal
basis for W.
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Exercise 6.2.1

Solve the following exercises from the book at pages 352 - 357:

e 2:a,b,c, g, and h.
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Section 6.3: The Adjoint of a Linear Operator

Recall that A* is the conjugate transpose of a matrix. In this section, for a linear operator T on an
inner product space V, we define a related linear operator on V called the adjoint of T, denoted T*,

whose matrix representation with respect to any orthonormal basis 5 for V is [T];

Definition 6.3.1

Let V be a finite-dimensional inner product space , and let T be a linear operator on V. The
adjoint (sometimes called hermitian conjugate) of T is the unique linear operator T* on
V such that

(T (x),y) =(x, T (y)), for all z,y € V.

[ Remark 6.3.1 ]

Note that

(2,T(y)) =(T(y),z)

Theorem 6.3.1

Let V be a finite-dimensional inner product space , let 5 be an orthonormal basis for V, and

(y, T*(z)) = (T" (), ).

let T and U be linear operators on V. Then:

T* is unique linear operator on V.
[T*]5 = [T]5.
(T+U) =T+ U* and (TU)" = U*T*.

Example 6.3.1

Let T be the linear operator on C? defined by T (a,b) = (2ai + 3b,a — b). Evaluate T*.

Solution:
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We can find T* directly by the definition:

((a,b),T* (¢,d)) = (T (a,b), (¢c,d)) = {(2ai +3b,a —b),(c,d))

=
= (2ai +3b)c+ (a —b)d = 2aci + 3be + ad — bd

=a(2ic+d)+b(3c—d)=((ab) (~2ci+d3c—d)).

Therefore, T* (¢,d) = (—2ci +d,3c — d).

On the other hand, we can also find T* using the Theorem 6.3.1. Choose 3 as the standard
. 9 (2 3 e [—20 1

orthonormal basis for C*. Clearly, [T]; = (1 ) Then, [T*]; = [T]; = T

Hence, T* (a,b) = (—2ai + b,3a — b).

Example 6.3.2

Let T be the linear operator on R? defined by T (a,b) = (2a + b,a — 3b). Evaluate T* at
x=(3,5).

Solution:

We can find T* (3,5) directly by the definition:

((a,b), T*(3,5)) = (T (a,b),(3,5))=((2a+b,a—3b),(3,5))

(6a+3b) +5a — 15b = 11a — 12b

((a,b),(11,-12)).

Therefore, T*(3,5) = (11, —12).
On the other hand, we can also find T*(3,5) using the Remark 2.2.2. Choose ( as an

) > (2 1 B 1 |
orthonormal basis for R*. Clearly, [T]B = (1 _3). Then, [T ]5 = [T]ﬁ = (1 _3), and

[( 3>5)]5 s (?) Hence,
[T* (3,5)]5 = [T]5[(3,5)], = (f _13) (g) - (—1112) '

Therefore, T* (3,5) = (11, —12).
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Example 6.3.3

1
Let T be the linear operator on Py (R) defined by T (f) = f'+3f with ( f,¢) = f(t)g(t)dt.

]
Evaluate T* at f(z) = 4 — 2z. Get 1 bonus point when you evaluate T* (h(x)), where
h(z) = a+ bx € P;(R). Hand it over to me at my office.

Solution (1):

Using the definition: Let g(z) = a + bz for a,b € R. Then, T (g) = b+ 3a + abz.

(9, T°(f)) (9),f)=((3a+b+3bx),(4—2z))

(T
/_11(3a+b+3bx)(4—2x):-~~:24a—|—4b.
Assuming that T* (f) = ¢ + dx, we get:

(g, T°(f)) = ((a+bz),(c+dz))
:/11(a+bx)(c+da:):---:2ac+§bd.

By equating the two results, we get ¢ = 12 and d = 6 and hence T* (f =4 — 2z) = 12 4 6z.

Solution (2):

We can find T* (f) using the Remark 2.2.2. Choose = {vl — %7’02 = \/gx} as an or-
thonormal basis for P1(R) (Use Gram-Schmidt process to find such basis). Then,

T (vy) = 3\}5 —3u 400 = [T (), =(3,0)
T (’Ug) = \/g‘i' 3 21’ = \/§U1 + 3’112 = [T (Ug)]ﬂ = (\/g, 3)

Hence [T]; = (3 ?) and thus [T]; (\% g) Furthermore, observe that [f()], =

((4—2x,\%>,(4—2x,\/§x>) = (4\/5,—2@) Therefore,

T (f@)]; = ( N g) (_4;}) - (12%5) .

That is, T* (4 — 22) = 12v/2v; + 2v/6v, = 12 + 6. In the general case when h(z) = a + b,

we use the matrix multiplication since using the definition is rather difficult. Observe that

[h(z)]5 = (aﬂ, b\/%) Hence

[T (h(2))]}, = [TV [h], = ( jg g) (bf) — ( j’éﬁ ﬁ).
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That is, T* (a + bz) = (3a\/§)vl +v6(a+b)vy =3a+3(a+b)x.

117

Example 6.3.4

Let V be an inner product space , and let y,z € V. Define T : V — V by T (z) = (x,y )z for
all z € V. Show that T is linear, and evaluate T* (x).

Solution:

We first show that T is linear. For any x1,25 € V and any ¢ € F.

T (cx1 + 22) = (cx1 + Xa,y )2 = (cx1,y )2 + (X2, Y )2

= c(71,Y)2 + (22,9 )2 = T (21) + T (2) .
Hence, T is linear. Furthermore,

(u, T*(2)) = (T (u), )

I
—~
—~
£
<
~
n

8
~—

Therefore, T* (x) = (x, 2 )y.
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Exercise 6.3.1

Solve the following exercises from the book at pages 352 - 357:

e 2:a,b,c, g, and h.
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Section 6.4: Self-Adjoint, Normal, and Unitary Operators

In this section, we present more properties of special linear operators. Furthermore, we consider the

diagonalization problem for these operators.

Definition 6.4.1

Let V be an inner product space , and let T be a linear operator on V. Then:

1. T is called self-adjoint (Hermitian) if T = T*.

2. An n x n-real or complex matrix A is called self-adjoint (Hermitian) matrix if A =
A*.

3. T is called normal if TT* = T*T.

4. An n x n-real or complex matrix A is called normal matrix if AA* = A*A.

| Remark 6.4.1

b=

If T is a linear operator on an inner product space V and [ is an orthonormal basis for V,

then:

1. T is self-adjoint if and only if [T], is self-adjoint.
2. T is normal if and only if [T}, is normal.

3. If T is self-adjoint, then T is normal.

Theorem 6.4.1

Let V be an inner product space , and let T be a normal operator on V. Then:

L. ||T (x)]| = [|T* (x)|| for all z € V.

2. If z is an eigenvector of T, then x is an eigenvector of T*. In fact, if T (z) = Az, then
T* (z) = \z.

3. If A\; and A, are distinct eigenvalues of T with corresponding eigenvectors x; and xs,

respectively, then x; and x5 are orthogonal.

|
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1. For any vector x € V, we have:

IT (@)° = (T (2), T (x)) = {2, T"T ()) = (2, TT* (z) )
=(T"(2), T"(z)) = | T* (@)II".

Therefore, || T (x)| = ||T* (z)]|-
2. Observe that for any ¢ € F, (T — ¢l )* = T* — ¢l and that (T — ¢l ) is normal as T
normal (prove it!). Now assume that for some z € V, T (z) = Az. Then (T — A\ )(x) =

0, where T — A is normal.

Then, by (1), we have
0= (T =A@ = [(T=AL) (=)l
= (T =%1) @) = | ) =] = (1 =31 (=)
Hence, T* (x) = \z.

3. Let Ay # A9 be two eigenvalues of T with corresponding eigenvectors x; and xs. Then,

by part (2), we have:

()\1 —>\2)<$1,$2> = ()\1$1,$2> - <$1,>\72$2>
(T (z1),22) — (21, T (22)) = 0.

But since A\; — Ay # 0, then (z1,29) = 0.

Theorem 6.4.2

Let T be a linear operator on a finite-dimensional inner product space V over C. Then T is

normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Theorem 6.4.3

Let T be a self-adjoint linear operator on a finite-dimensional inner product space V. Then

every eigenvalues of T is real.




6.4. Self-Adjoint, Normal, and Unitary Operators 121

Assume that T (z) = Az for  # 0. Then

A =T (z) =T (x) = \z.

Therefore, A = X and hence \ is real.

Theorem 6.4.4

Let T be a linear operator on a finite-dimensional inner product space over R. Then, T is
self-adjoint if and only if there exists an orthonormal basis § for V consisting of eigenvectors

of T.

Lemma 6.4.1

Let T be a self-adjoint operator on a finite-dimensional inner product space V. If (2, T (z) ) =

0, for all z € V, then T = T,.

Proof:

Choose an orthonormal basis § for V consisting of eigenvectors of T. If z € 5, then T (z) = \x
for some A. Then

0= {(z,T(x)) ={z, x) = XMuz,z).

So, A= 0. Hence T (z) = 0 for all x € 3, and thus T = T\,.

Definition 6.4.2

Let T be a linear operator on a finite-dimensional inner product space V over F. If || T (z)|| =
||z|| for all x € V, we call T a unitary operator if F = C and an orthogonal operator if
F = R. Moreover, a square matrix A is called an orthogonal matrix if AAT = ATA = I and

unitary matrix if AA* = A*A=1.

[ Remark 6.4.2 ]

e A

Note that, the condition AA* = I is equivalent to the statement that the rows of A form an
orthonormal basis for F*. The same statement can be made on the columns of A and the

condition A*A = [.
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[ Remark 6.4.3 ]

A linear operator T on a inner product space V is unitary (orthogonal) if and only if [T], is

unitary (orthogonal, respectively), for some orthonormal basis /3 for V.

Theorem 6.4.5

Let T be a linear operator on a finite-dimensional inner product space V. Then the following

statements are equivalent:

1. TT* =TT =1,.
2. (T(z), T(y)) = (x,y) for all z,y € V.
3. If 8 is an orthonormal basis for V, then T (/) is an orthonormal basis for V.

4. || T (z)]| = ||z|| for all z € V.

We proof that each statement implies the following one as follows:

1. 1 - 2: Let 2,y € V, then (z,y) = (T*T (z),y) = (T (z), T (y) ).

2.2 - 3: Let § = {mx,x9,---,2,} be an orthonormal basis for V. So T (8) =
{T (1), T (x3), -, T ()} It follows that (T (z;),T (z;)) = (i, z;) = 6;; where
0;j = 1if ¢ = j and d;; = 0 otherwise. Hence, T () is an orthonormal basis for V.

3.3 — 4: Let x € V and let § = {x1, 29, - ,2,} be an orthonormal basis for V. Then
x =Y., a;x; for some scalars a; and hence

n n
lz||” = (z,z) = Zaxz,z%xﬂ =Y a@i{z;, ;)

i=175=1
n n
= ZZ a;0;0i; = Zalal Z|ai|2
i=1j=1 =1

In a similar way, T (z) = Y7, a;T (x;), and using the fact that T (f) is also orthonor-
mal, we obtain ||T (z)||* = £, | a; |°. Therefore, | T (z)| = ||z]|-
4. 4 — 1: For any x € V,

(z,2) = |zl = |T (@) = (T (2), T (2)) = (2, T"T (2)).

Thus, T*T (z) = z and hence (T*T — Iy )(z) = 0. Thus, (z,(T*T -1y )(z)) = 0
for all z € V. Also, (T*T — I ) is clearly self-adjoint. By Lemma 6.4.1, we get
(T*T — I, ) = Ty and therefore, T*T = Iy.
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Definition 6.4.3

Two square matrices A and B are said to be unitarily equivalent (orthogonally equiv-
alent) if and only if there exists a unitary (orthogonal, respectively) matrix P such that

A= P*BP.

Theorem 6.4.6

Let A be n X n matrix. Then:

1. If A is complex. Then, A is normal if and only if A is unitarily equivalent to a diagonal
matrix.
2. If Aisreal. Then, A is symmetric if and only if A is orthogonally equivalent to a real

diagonal matrix.

Example 6.4.1

Let T be a linear operator on an inner product space V. Let U; = T 4+ T* and Uy, = TT™.
Show that U; and U, are both self-adjoint.

Solution:

Clearly
U =(T+T")=T+(T")=T"+T=T+T"=U,.

U; = (TT*)" = (T*)"T* = TT* = U,.

Example 6.4.2

Let T be a linear operator on V = R? defined by T (a,b) = (2a — 2b, —2a + 5b). Determine
whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

2

Choose an orthonormal basis 5 = {(1,0), (0,1) }. Then, A = [T] 5 _52) . Therefore,

B:

A is self-adjoint and hence it is normal. That is, T is self-adjoint and normal operator.

We now produce an orthonormal basis for V consisting of eigenvectors of T. Consider the
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characteristic polynomial:

2-) -2

S =A=an =270 T

— .= (A=1)(A=6)=0.

Therefore, A\; = 1 and Ay = 6. For E): The eigenspace E), corresponding to Ay = 1 is
Ey, = N(T — L,). Therefore

aeforee ()}

Which implies that a = 2b. That is,
Eyx, ={t(2,1) : teR}.

Therefore, v1 = {(2,1) } is a basis for E),.
For E,: The eigenspace E), corresponding to Ay = 6 is E), = N(T — 61;). Therefore

acforee (5 9}

Which implies that a = —%b. That is,
Ey, ={t(1,-2) : teR}.

Therefore, v = {(1,—2) } is a basis for E,,.
Thus, v =71 Uy ={(2,1),(1,—2) } is orthogonal basis for V consisting of eigenvectors of
T. Normalizing the vectors of v, we obtain v* which is orthonormal basis for V consisting of
eigenvectors of T, where
1 1
= (2,1),—=(1,-2) .
v ={ g0

We note that, we can confirm our solution by confirming that Q7' AQ = diag(1,6), where

2 1
QZV%(1 —2)'

Example 6.4.3

Let T be a linear operator V.= R3? defined by T (a,b,¢) = ( —a + b, 5b, 4a — 2b + 5¢ ). Deter-

mine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis
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of eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis 8 = {(1,0,0),(0,1,0),(0,0,1)}. Then, A = [T]; =

-1 1 0 -1 0 4
0 5 0] Then A* = 1 5 —2|. Therefore, A is not self-adjoint as A* # A.
4 -2 5 0O 0 5

Furthermore, (AA*),; = 2 while (A*A),; = 17. Hence A is not normal. Therefore it has no

orthonormal basis for V consisting of eigenvectors of T.
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Example 6.4.4

Let T be a linear operator on V. = C? defined by T (a,b) = (2a + bi,a + 2b). Determine
whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

Choose an orthonormal basis # = {(1,0),(0,1) }. Then, A = [T]; = (i ;) Then A* =

(2, ;) Therefore, A is not self-adjoint. However, AA* = A*A = , 52. Q—EZz)
_ °

That is, T is normal operator. We now produce an orthonormal basis for V consisting of

eigenvectors of T. Consider the characteristic polynomial:

2—-A ?

F=la=an =P Th T

= N +(-i) = (A-2+Vi))(A-2-Vi)) =0

Therefore, \; = 2 + Viand Ay = 2 — Vi
For Ey,: The eigenspace E), corresponding to Ay = 2+ Vi is Ey, = N(T — (2 + Vi) Lb).

acfonre (5 2)0)-6)

Which implies that a = by/i. That is,

Therefore

By ={t(Vi1) : teR}.

Therefore, v, = { (\/5, 1) } is a basis for E),.
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For Ey,: The eigenspace E), corresponding to Ay = 2 — Vi is Ey, = N(T — (2 — Vi) o).

wcfonee (6 )6)-6)

Which implies that a = —bv/3. That is,

Therefore

By, ={t(Vi,-1) : teR}.

Therefore, v = { (x/i, —1) } is a basis for E),.
Thus, v = U = { ( Vi, 1 ), ( Vi, —1 ) } is orthogonal basis for V consisting of eigenvectors
of T. Normalizing the vectors of v, we obtain v* which is orthonormal basis for V consisting

of eigenvectors of T, where

7*:{\}5(\/271),\}5(\/5,—1) }

We note that, we can confirm our solution by confirming that Q' AQ = diag(2+ /1,2 — V),

where ) = % (\f \_/i)

Example 6.4.5

Let T be a linear operator on V = Py(R) defined by T (f) = f/, where ( f,g) = [, f(t)g(t)dt.
Determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal

basis of eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:

We first consider the standard ordered basis for Py(R) which 8 = {1,z,2*}. Note that 3 is
not orthonormal and hence we use the Gram-Schmidt process to construct orthogonal basis
and then normalize it to obtain an orthonormal basis. Let 8 = {u; = 1,uy = x,u3 = 2% }.

Then, 5" = { vy, v9,v3 } is orthogonal basis for Py(R), where v; = u; = 1. And,

s () o () o}
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where (z,1) = ; and (1,1) = 1. And,

v3:u3—<<u3’vé>vl+ <U3,U§>U2> — g2 (<$271> ,1+M(zl)>

[[v1]] [|va |
SRONEHICHES
N 3 4 6 2) 6’

2
where Hx—%H =5, (2%1) =1, and (z%,z — 3) = .

Thus, /' = { 1,z — %, T2 —z++ } is orthogonal basis for Py(R). We may observe that

Iy=1 1|z- and |z — 7 +

2H:2\/§’ 6H:w3

Therefore, v = { 1, 2\/§<x — %), 6\/§(m2 -+ %) } is orthonormal basis for Py(R). We
now compute the representation of T relative to 7. Note that, we can compute the Fourier

coefficients as in Theorem 6.2.3:

T(1)=0 = [T (1)], =(0,0,0).
1)) _ 1 _ (2
T (2v3(z-1)) =2v3 = |T(2 3(55—5))]7_(%,0,0).
2 _ 1 _ 2 _ 1 _
T(6v5(22—x+1))=12vB2-6V6 = [T (6v5(22-z+ 6))]7 (0,2+/15,0).
0 2V3
That is [T] =10 0 2y/15 |. Hence, T is not self-adjoint and not normal, for instance
0 0 0
([T, [T]5)11 = 12 while ([T} [T],)11 = 0. Therefore, there is no orthonormal basis for Py(R)

consisting of eigenvectors of T.

Example 6.4.6

c d a

Let T be a linear operator on V. = My,5(R) defined by T (a b) = (C Z) Determine
whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of

eigenvectors of T for V, and list the corresponding eigenvalues.

Solution:
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Choose the standard orthonormal basis § = { E'', E'2 E*' E?2}. Then,

T(l %) =0 0 = IT(! %) =(0,0,1,0)
0 0 1 0 0 0
5 s
(0 1) _(0 0 = (0 1 — (0,0,0,1)
0 0 0 1 0 0
5 s
(0 O) (1 O = T(% %) =,0,0,0)
1 0 0 0 1 0
L lp
(0 9= (0 1 ~T(° 2| =(0,1,0,0).
0 1 0 0 1
B
0 0 1 0
Therefore, A = [T]; = 2 8 8 (1) . Then A and hence T is self-adjoint and normal.

e}

1 0 0
We now produce an orthonormal basis for V consisting of eigenvectors of T. Consider the

characteristic polynomial:

~Ax 0 1 0

3 I 1| /2 V2

fO) =A==\ R =(X-1) =0
0 1 0 =A

Therefore, A\ = —1 and Ay = 1.
For E,,: The eigenspace E), corresponding to A\; = —1is Ey, = N(T + I4). Therefore

Ey\, =1 (a,b,c,d) € R* :

1

O = O
—_— O = O
O = O
—_— O = O
QL O o
o O O O

Which implies that a = —c and b = —d. That is,
Ey, ={t(1,0,-1,0),r(0,1,0,—1) : t,r e R}.

Therefore, v; = {(1,0,—1,0),(0,1,0,—1) } is a basis for F,.
For E,: The eigenspace E), corresponding to Ay = 1 is Ex, = N(T — I). Therefore

E\, = (a,b,c,d) € R* :

2

Q.0 o9
|
oo oo
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Which implies that a = c and b = d. That is,
Ey, = {#(1,0,1,0),7(0,1,0,1) : t,r eR}.

Therefore, v = {(1,0,1,0),(0,1,0,1) } is a basis for E,,.
Thus, v = 1 U~y = {(1,0,—1,0),(0,1,0,—1),(1,0,1,0),(0,1,0,1) } is orthogonal basis
for V consisting of eigenvectors of T. Normalizing the vectors of v, we obtain v* which is

orthonormal basis for V consisting of eigenvectors of T, where

1 1 1 1
At = (1,0,—1,0),(1,0,—1,0),(1,0,1,0),(1,0,1,0)}.
(702035

\&)
[\
\V)

Example 6.4.7

Let A= (; i) Show that A is orthogonally equivalent to a diagonal matrix, and find an

orthogonal or unitary matrix P and a diagonal matrix D such that P*AP = D.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We
then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from
orthonormal basis) so that P*AP = D = diag(A1, \2).

1—A 2

F=1a-2p| =N 2

=(1-X?-4=0.

ThUS, /\1 =—1and /\2 = 3
For E, : The eigenspace E), corresponding to A\; = —1 is Ey, = N(T + I5). Therefore

el (36)-6)

Which implies that a = —b. That is,
E,, ={t(1,-1) : teR}.

Therefore, v; = {(1,—1) } is a basis for E},.
For E),: The eigenspace E), corresponding to Ay = 3 is Ey, = N(T — 31;). Therefore

rfoner (2 2)()-6)
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Which implies that a = b. That is,
Ey, ={t(1,1) : teR}.

Therefore, 2 = { (1,1) } is a basis for E),.
Thus, v = 1 Uy = {(1,-1),(1,1)} is orthogonal basis consisting of eigenvectors of
A. Normalizing the vectors of 7, we obtain v* which is orthonormal basis consisting of

eigenvectors of A, where
1 1

v ={ g0 S

Finally, P*AP — D, where P — ( 1 1) and D = diag(—1,3).

S

Example 6.4.8

0 2 2
Let A=[2 0 2. Show that A is orthogonally equivalent to a diagonal matrix, and find
2 2 0

an orthogonal or unitary matrix P and a diagonal matrix D such that P*AP = D.

Solution:

Clearly, A is symmetric and hence it is orthogonally equivalent to a diagonal matrix. We
then construct a unitary matrix P whose columns are the eigenvectors of A (chosen from

orthonormal basis) so that P*AP = D = diag(\1, A2 \3).

A2 2
fAN=1A=AL]=|2 -x 2|=-=A+22%4-))=0.
2 2 -

ThUS, /\1 = —2 and /\2 = 4
For E) : The eigenspace E), corresponding to A\; = =2 is Ey, = N (T + 2I;). Therefore

2 2 2 a 0
Ey, ={(a,bc)eR*: [2 2 2]]|b|l=]0
2 2 2 c 0

Which implies that a = —b — ¢. That is,

E/\l :{t<1,—1,0),7’(1707—1> o t,TER}.
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Therefore, 1 = {u; = (1,—1,0),us = (1,0, —1) } is a basis for E,,. We note that v, is not
orthogonal set, and hence we use Gram-Schmidt process to orthogonalize it. Let vy = u; =

(1,-1,0), and

(ug,v1)

2
v

_ . _<(170>_1)7(17_1a0)> . . }1_
v = (1,0,—1) o 1,0)_(2,2, 1).

Vo = U —

Hence, 7f = { (1,-1,0), (%, %, —1) } is orthogonal basis for Fj,.

For E,,: The eigenspace E), corresponding to Ay = 4 is E, = N(T — 41;). Therefore

—4 2 2 a 0
Ey,={(abecR*: |2 _—4 2 bl=1o0
2 2 —4 © 0

Which implies that a = b = ¢. That is,
Eyx, ={t(1,1,1) : t e R}.

Therefore, v2 = { (1,1,1) } is a basis for E),.
Thus, v = 7y Uy = {(1,—1,0), (%,%,—1),(1,1,1)} is orthogonal basis consisting of
eigenvectors of A. Normalizing the vectors of v, we obtain 7* which is orthonormal basis

consisting of eigenvectors of A, where

7*:{55(1,—1,0),&(;,;7_1)’1(171v1)}‘

Finally, P*AP = D, where

w

1 1 1
V2 V6 V3
P = —% % % , and D = diag(—2,-2,4).
2 1
0 -/ %
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Exercise 6.4.1

Solve the following exercises from the book at pages 352 - 357:

e 2:a,b,c, g, and h.
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